package bls12-381-gen

  1. Overview
  2. Docs

Source file fr.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
(*****************************************************************************)
(*                                                                           *)
(* Copyright (c) 2020-2021 Danny Willems <be.danny.willems@gmail.com>        *)
(*                                                                           *)
(* Permission is hereby granted, free of charge, to any person obtaining a   *)
(* copy of this software and associated documentation files (the "Software"),*)
(* to deal in the Software without restriction, including without limitation *)
(* the rights to use, copy, modify, merge, publish, distribute, sublicense,  *)
(* and/or sell copies of the Software, and to permit persons to whom the     *)
(* Software is furnished to do so, subject to the following conditions:      *)
(*                                                                           *)
(* The above copyright notice and this permission notice shall be included   *)
(* in all copies or substantial portions of the Software.                    *)
(*                                                                           *)
(* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*)
(* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,  *)
(* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL   *)
(* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*)
(* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING   *)
(* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER       *)
(* DEALINGS IN THE SOFTWARE.                                                 *)
(*                                                                           *)
(*****************************************************************************)

module type T = sig
  include Ff_sig.PRIME

  (** Check if a point, represented as a byte array, is in the field **)
  val check_bytes : Bytes.t -> bool
end

module MakeFr (Stubs : S.RAW_BASE) : T = struct
  include S.Make (Stubs)

  let two_z = Z.succ Z.one

  let factor_power_of_two =
    let rec aux i n =
      let (q, r) = Z.ediv_rem n two_z in
      if Z.equal r Z.zero then aux Int.(succ i) q else (i, n)
    in
    aux 0 (Z.pred order)

  let empty () = Bytes.make size_in_bytes '\000'

  let to_string a = Z.to_string (Z.of_bits (Bytes.to_string (to_bytes a)))

  let to_z a = Z.of_bits (Bytes.to_string (to_bytes a))

  let of_string s =
    let g = empty () in
    let s = Bytes.of_string (Z.to_bits (Z.erem (Z.of_string s) order)) in
    Bytes.blit s 0 g 0 (min (Bytes.length s) size_in_bytes) ;
    of_bytes_exn g

  let of_z z =
    let z = Bytes.of_string (Z.to_bits (Z.erem z order)) in
    let x = empty () in
    Bytes.blit z 0 x 0 (min (Bytes.length z) size_in_bytes) ;
    of_bytes_exn x

  let legendre_symbol x =
    if is_zero x then Z.zero
    else if is_one (pow x (Z.divexact (Z.pred order) (Z.of_int 2))) then Z.one
    else Z.neg Z.one

  let is_quadratic_residue x =
    if is_zero x then true else Z.equal (legendre_symbol x) Z.one

  let rec pick_non_square () =
    let z = random () in
    if Z.equal (legendre_symbol z) (Z.of_int (-1)) then z
    else pick_non_square ()

  let sqrt_opt x =
    if not (is_quadratic_residue x) then None
    else
      (* https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm *)
      let (s, q) = factor_power_of_two in
      (* implies p = 3 mod 4 *)
      if Int.equal s 1 then
        (* r = x^((p + 1) / 4) *)
        let r = pow x (Z.divexact (Z.succ order) (Z.of_string "4")) in
        Some r
      else
        let rec compute_lowest_n_2th_root_of_unity (i : int) x upper : int =
          let x = square x in
          if is_one x then i
          else if Int.(equal i upper) then
            failwith "Upperbound should be higher"
            (* should never happen in this case, just being explicit *)
          else compute_lowest_n_2th_root_of_unity (Int.succ i) x upper
        in
        let z = pick_non_square () in
        let c = pow z q in
        let rec aux m c t r =
          if eq t zero then zero (* case x is zero *)
          else if eq t one then r (* base case *)
          else
            let i = compute_lowest_n_2th_root_of_unity 1 t m in
            let b = pow c (Z.pow two_z Int.(pred (sub m i))) in
            let m = i in
            let c = mul b b in
            let t = mul t c in
            let r = mul r b in
            aux m c t r
        in
        Some (aux s c (pow x q) (pow x (Z.divexact (Z.succ q) two_z)))
end
OCaml

Innovation. Community. Security.