package bitwuzla

  1. Overview
  2. Docs

Source file bitwuzla.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
open Bitwuzla_c

external set_termination_callback : t -> ('a -> int) * 'a -> unit
  = "ocaml_bitwuzla_set_termination_callback"

module Session () = struct
  type nonrec 'a sort = sort

  type nonrec 'a term = term

  type 'a value = 'a term

  type bv = [ `Bv ]

  type rm = [ `Rm ]

  type fp = [ `Fp ]

  type ('a, 'b) ar = [ `Ar of 'a -> 'b ]
    constraint 'a = [< bv | rm | fp ] constraint 'b = [< bv | rm | fp ]

  type ('a, 'b) fn = [ `Fn of 'a -> 'b ] constraint 'b = [< bv ]

  let t = create ()

  let () = set_option t Produce_models 1

  let unsafe_close () = delete t

  module Sort = struct
    type 'a t = 'a sort

    let bool = mk_bool_sort t

    let bv size = mk_bv_sort t size

    let size = sort_bv_get_size

    let fp ~exponent size = mk_fp_sort t exponent @@ (size - exponent)

    let exponent = sort_fp_get_exp_size

    let significand = sort_fp_get_sig_size

    let rm = mk_rm_sort t

    let ar index element = mk_array_sort t index element

    let index = sort_array_get_index

    let element = sort_array_get_element

    type 'a variadic =
      | [] : unit variadic
      | ( :: ) :
          ([< bv | rm | fp ] as 'a) sort * 'b variadic
          -> ('a -> 'b) variadic

    external of_variadic : 'a variadic -> Bitwuzla_c.sort list = "%identity"

    external to_variadic : Bitwuzla_c.sort list -> 'a variadic = "%identity"

    let fn a b = mk_fun_sort t (Array.of_list @@ of_variadic a) b

    let arity = sort_fun_get_arity

    let domain s = to_variadic @@ Array.to_list @@ sort_fun_get_domain_sorts s

    let codomain s = sort_fun_get_codomain s

    let hash = sort_hash

    let equal = sort_is_equal

    let pp f x = sort_dump x `Smt2 f
  end

  module Term = struct
    type 'a t = 'a term constraint 'a = [< bv | rm | fp | ('b, 'c) ar ]

    type 'a variadic =
      | [] : unit variadic
      | ( :: ) :
          ([< bv | rm | fp ] as 'a) term * 'b variadic
          -> ('a -> 'b) variadic

    external of_variadic : 'a variadic -> Bitwuzla_c.term list = "%identity"

    external to_variadic : Bitwuzla_c.term list -> 'a variadic = "%identity"

    let ite x0 x1 x2 = mk_term3 t Ite x0 x1 x2

    let equal x0 x1 = mk_term2 t Equal x0 x1

    let distinct x0 x1 = mk_term2 t Distinct x0 x1

    let bl_of_bv bv = mk_term1 t Bv_redor bv

    let const s n = mk_const t s n

    let hash x = term_hash x

    let sort x = term_get_sort x

    let pp f x =
      try Format.pp_print_string f @@ term_get_symbol x
      with Not_found -> term_dump x `Smt2 f

    module Bl = struct
      type t = bv term

      let false' = mk_false t

      let true' = mk_true t

      let logand b0 b1 = mk_term2 t And b0 b1

      let lognand b0 b1 = mk_term2 t Bv_nand b0 b1

      let redand bs = mk_term t And bs

      let logor b0 b1 = mk_term2 t Or b0 b1

      let lognor b0 b1 = mk_term2 t Bv_nor b0 b1

      let redor bs = mk_term t Or bs

      let logxor b0 b1 = mk_term2 t Xor b0 b1

      let logxnor b0 b1 = mk_term2 t Bv_xnor b0 b1

      let redxor bs = mk_term t Xor bs

      let lognot b = mk_term1 t Not b

      let iff b0 b1 = mk_term2 t Iff b0 b1

      let implies b0 b1 = mk_term2 t Implies b0 b1

      let of_bool b = if b then true' else false'

      let of_bv = bl_of_bv

      let assignment b = not @@ term_is_bv_value_zero b
    end

    module Bv = struct
      type t = bv term

      let zero s = mk_bv_zero t s

      let one s = mk_bv_one t s

      let ones s = mk_bv_ones t s

      let min_signed s = mk_bv_min_signed t s

      let max_signed s = mk_bv_max_signed t s

      let of_int s v = mk_bv_value_int t s v

      let of_string s v =
        let len = String.length v in
        if len > 2 && String.get v 0 = '0' then
          if String.get v 1 = 'b' then
            mk_bv_value t s (String.sub v 2 (len - 2)) Bin
          else if String.get v 1 = 'x' then
            mk_bv_value t s (String.sub v 2 (len - 2)) Hex
          else mk_bv_value t s v Dec
        else mk_bv_value t s v Dec

      let of_z s v =
        if Z.fits_int v then of_int s @@ Z.to_int v
        else mk_bv_value t s (Z.format "%x" v) Hex

      type ('a, 'b) operator =
        | Add : (t -> t -> t, t * t) operator
        | And : (t -> t -> t, t * t) operator
        | Ashr : (t -> t -> t, t * t) operator
        | Concat : (t -> t -> t, t * t) operator
        | Extract : (hi:int -> lo:int -> t -> t, int * int * t) operator
        | Mul : (t -> t -> t, t * t) operator
        | Neg : (t -> t, t) operator
        | Not : (t -> t, t) operator
        | Or : (t -> t -> t, t * t) operator
        | Rol : (t -> t -> t, t * t) operator
        | Ror : (t -> t -> t, t * t) operator
        | Sdiv : (t -> t -> t, t * t) operator
        | Sge : (t -> t -> t, t * t) operator
        | Sgt : (t -> t -> t, t * t) operator
        | Shl : (t -> t -> t, t * t) operator
        | Shr : (t -> t -> t, t * t) operator
        | Sle : (t -> t -> t, t * t) operator
        | Slt : (t -> t -> t, t * t) operator
        | Smod : (t -> t -> t, t * t) operator
        | Srem : (t -> t -> t, t * t) operator
        | Sub : (t -> t -> t, t * t) operator
        | Udiv : (t -> t -> t, t * t) operator
        | Uge : (t -> t -> t, t * t) operator
        | Ugt : (t -> t -> t, t * t) operator
        | Ule : (t -> t -> t, t * t) operator
        | Ult : (t -> t -> t, t * t) operator
        | Urem : (t -> t -> t, t * t) operator
        | Xor : (t -> t -> t, t * t) operator

      let term : type a b. (a, b) operator -> a = function
        | Add -> mk_term2 t Bv_add
        | And -> mk_term2 t Bv_and
        | Ashr -> mk_term2 t Bv_ashr
        | Concat -> mk_term2 t Bv_concat
        | Extract -> fun ~hi ~lo e -> mk_term1_indexed2 t Bv_extract e hi lo
        | Mul -> mk_term2 t Bv_mul
        | Neg -> mk_term1 t Bv_neg
        | Not -> mk_term1 t Bv_not
        | Or -> mk_term2 t Bv_or
        | Rol -> mk_term2 t Bv_rol
        | Ror -> mk_term2 t Bv_ror
        | Sdiv -> mk_term2 t Bv_sdiv
        | Sge -> mk_term2 t Bv_sge
        | Sgt -> mk_term2 t Bv_sgt
        | Shl -> mk_term2 t Bv_shl
        | Shr -> mk_term2 t Bv_shr
        | Sle -> mk_term2 t Bv_sle
        | Slt -> mk_term2 t Bv_slt
        | Smod -> mk_term2 t Bv_smod
        | Srem -> mk_term2 t Bv_srem
        | Sub -> mk_term2 t Bv_sub
        | Udiv -> mk_term2 t Bv_udiv
        | Uge -> mk_term2 t Bv_uge
        | Ugt -> mk_term2 t Bv_ugt
        | Ule -> mk_term2 t Bv_ule
        | Ult -> mk_term2 t Bv_ult
        | Urem -> mk_term2 t Bv_urem
        | Xor -> mk_term2 t Bv_xor

      let pred e = mk_term1 t Bv_dec e

      let succ e = mk_term1 t Bv_inc e

      let neg e = mk_term1 t Bv_neg e

      let add e0 e1 = mk_term2 t Bv_add e0 e1

      let sadd_overflow e0 e1 = mk_term2 t Bv_sadd_overflow e0 e1

      let uadd_overflow e0 e1 = mk_term2 t Bv_uadd_overflow e0 e1

      let sub e0 e1 = mk_term2 t Bv_sub e0 e1

      let ssub_overflow e0 e1 = mk_term2 t Bv_ssub_overflow e0 e1

      let usub_overflow e0 e1 = mk_term2 t Bv_usub_overflow e0 e1

      let mul e0 e1 = mk_term2 t Bv_mul e0 e1

      let smul_overflow e0 e1 = mk_term2 t Bv_smul_overflow e0 e1

      let umul_overflow e0 e1 = mk_term2 t Bv_umul_overflow e0 e1

      let sdiv e0 e1 = mk_term2 t Bv_sdiv e0 e1

      let sdiv_overflow e0 e1 = mk_term2 t Bv_sdiv_overflow e0 e1

      let udiv e0 e1 = mk_term2 t Bv_udiv e0 e1

      let smod e0 e1 = mk_term2 t Bv_smod e0 e1

      let srem e0 e1 = mk_term2 t Bv_srem e0 e1

      let urem e0 e1 = mk_term2 t Bv_urem e0 e1

      let logand e0 e1 = mk_term2 t Bv_and e0 e1

      let lognand e0 e1 = mk_term2 t Bv_nand e0 e1

      let redand e = mk_term1 t Bv_redand e

      let logor e0 e1 = mk_term2 t Bv_or e0 e1

      let lognor e0 e1 = mk_term2 t Bv_nor e0 e1

      let redor e = mk_term1 t Bv_redor e

      let logxor e0 e1 = mk_term2 t Bv_xor e0 e1

      let logxnor e0 e1 = mk_term2 t Bv_xnor e0 e1

      let redxor e = mk_term1 t Bv_redxor e

      let lognot e = mk_term1 t Bv_not e

      let shift_left e0 e1 = mk_term2 t Bv_shl e0 e1

      let shift_right_logical e0 e1 = mk_term2 t Bv_shr e0 e1

      let shift_right e0 e1 = mk_term2 t Bv_ashr e0 e1

      let rotate_left e0 e1 = mk_term2 t Bv_rol e0 e1

      let rotate_lefti e i = mk_term1_indexed1 t Bv_roli e i

      let rotate_right e0 e1 = mk_term2 t Bv_ror e0 e1

      let rotate_righti e i = mk_term1_indexed1 t Bv_rori e i

      let zero_extend i e = mk_term1_indexed1 t Bv_zero_extend e i

      let sign_extend i e = mk_term1_indexed1 t Bv_sign_extend e i

      let append e0 e1 = mk_term2 t Bv_concat e0 e1

      let concat es = mk_term t Bv_concat es

      let repeat i e = mk_term1_indexed1 t Bv_repeat e i

      let extract ~hi ~lo e = mk_term1_indexed2 t Bv_extract e hi lo

      let sge e0 e1 = mk_term2 t Bv_sge e0 e1

      let uge e0 e1 = mk_term2 t Bv_uge e0 e1

      let sgt e0 e1 = mk_term2 t Bv_sgt e0 e1

      let ugt e0 e1 = mk_term2 t Bv_ugt e0 e1

      let sle e0 e1 = mk_term2 t Bv_sle e0 e1

      let ule e0 e1 = mk_term2 t Bv_ule e0 e1

      let slt e0 e1 = mk_term2 t Bv_slt e0 e1

      let ult e0 e1 = mk_term2 t Bv_ult e0 e1

      let to_bl = bl_of_bv

      external assignment : t -> Z.t = "ocaml_bitwuzla_value_get_bv_bits"
    end

    module Rm = struct
      type t = rm term

      type 'a operator =
        | Rne : rm term operator
        | Rna : rm term operator
        | Rtn : rm term operator
        | Rtp : rm term operator
        | Rtz : rm term operator

      let rne = mk_rm_value t Rne

      let rna = mk_rm_value t Rna

      let rtn = mk_rm_value t Rtn

      let rtp = mk_rm_value t Rtp

      let rtz = mk_rm_value t Rtz

      let term : type a. a operator -> a = function
        | Rne -> rne
        | Rna -> rna
        | Rtn -> rtn
        | Rtp -> rtp
        | Rtz -> rtz
    end

    module Fp = struct
      type t = fp term

      let pos_zero s = mk_fp_pos_zero t s

      let neg_zero s = mk_fp_neg_zero t s

      let pos_inf s = mk_fp_pos_inf t s

      let neg_inf s = mk_fp_neg_inf t s

      let nan s = mk_fp_nan t s

      let of_real s rm v = mk_fp_value_from_real t s (Rm.term rm) v

      let of_rational s rm ~num ~den =
        mk_fp_value_from_rational t s (Rm.term rm) num den

      let of_float s rm f = of_real s rm @@ string_of_float f

      type ieee_754 = {
        sign : bv term;
        exponent : bv term;
        significand : bv term;
      }

      type ('a, 'b, 'c) operator =
        | Abs : (t -> t, t, fp) operator
        | Add : (rm term -> t -> t -> t, rm term * t * t, fp) operator
        | Div : (rm term -> t -> t -> t, rm term * t * t, fp) operator
        | Eq : (t -> t -> bv term, t * t, bv) operator
        | Fma : (rm term -> t -> t -> t -> t, rm term * t * t * t, fp) operator
        | Fp
            : ( sign:bv term -> exponent:bv term -> bv term -> t,
                ieee_754,
                fp )
              operator
        | Geq : (t -> t -> bv term, t * t, bv) operator
        | Gt : (t -> t -> bv term, t * t, bv) operator
        | Is_inf : (t -> bv term, t, bv) operator
        | Is_nan : (t -> bv term, t, bv) operator
        | Is_neg : (t -> bv term, t, bv) operator
        | Is_normal : (t -> bv term, t, bv) operator
        | Is_pos : (t -> bv term, t, bv) operator
        | Is_subnormal : (t -> bv term, t, bv) operator
        | Is_zero : (t -> bv term, t, bv) operator
        | Leq : (t -> t -> bv term, t * t, bv) operator
        | Lt : (t -> t -> bv term, t * t, bv) operator
        | Max : (t -> t -> t, t * t, fp) operator
        | Min : (t -> t -> t, t * t, fp) operator
        | Mul : (rm term -> t -> t -> t, rm term * t * t, fp) operator
        | Neg : (t -> t, t, fp) operator
        | Rem : (t -> t -> t, t * t, fp) operator
        | Rti : (rm term -> t -> t, rm term * t, fp) operator
        | Sqrt : (rm term -> t -> t, rm term * t, fp) operator
        | Sub : (rm term -> t -> t -> t, rm term * t * t, fp) operator
        | From_bv
            : ( exponent:int -> int -> bv term -> t,
                int * int * bv term,
                fp )
              operator
        | From_fp
            : ( exponent:int -> int -> rm term -> t -> t,
                int * int * rm term * t,
                fp )
              operator
        | From_sbv
            : ( exponent:int -> int -> rm term -> bv term -> t,
                int * int * rm term * bv term,
                fp )
              operator
        | From_ubv
            : ( exponent:int -> int -> rm term -> bv term -> t,
                int * int * rm term * bv term,
                fp )
              operator
        | To_sbv
            : (int -> rm term -> t -> bv term, int * rm term * t, bv) operator
        | To_ubv
            : (int -> rm term -> t -> bv term, int * rm term * t, bv) operator

      let term : type a b c. (a, b, c) operator -> a = function
        | Abs -> mk_term1 t Fp_abs
        | Add -> mk_term3 t Fp_add
        | Div -> mk_term3 t Fp_div
        | Eq -> mk_term2 t Fp_eq
        | Fma -> fun rm f0 f1 f2 -> mk_term t Fp_fma [| rm; f0; f1; f2 |]
        | Fp ->
            fun ~sign ~exponent significand ->
              mk_term3 t Fp_fp sign exponent significand
        | Geq -> mk_term2 t Fp_geq
        | Gt -> mk_term2 t Fp_gt
        | Is_inf -> mk_term1 t Fp_is_inf
        | Is_nan -> mk_term1 t Fp_is_nan
        | Is_neg -> mk_term1 t Fp_is_neg
        | Is_normal -> mk_term1 t Fp_is_normal
        | Is_pos -> mk_term1 t Fp_is_pos
        | Is_subnormal -> mk_term1 t Fp_is_subnormal
        | Is_zero -> mk_term1 t Fp_is_zero
        | Leq -> mk_term2 t Fp_leq
        | Lt -> mk_term2 t Fp_lt
        | Max -> mk_term2 t Fp_max
        | Min -> mk_term2 t Fp_min
        | Mul -> mk_term3 t Fp_mul
        | Neg -> mk_term1 t Fp_neg
        | Rem -> mk_term2 t Fp_rem
        | Rti -> mk_term2 t Fp_rti
        | Sqrt -> mk_term2 t Fp_sqrt
        | Sub -> mk_term3 t Fp_sub
        | From_bv ->
            fun ~exponent size bv ->
              mk_term1_indexed2 t Fp_to_fp_from_bv bv exponent (size - exponent)
        | From_fp ->
            fun ~exponent size rm bv ->
              mk_term2_indexed2 t Fp_to_fp_from_fp rm bv exponent
                (size - exponent)
        | From_sbv ->
            fun ~exponent size rm bv ->
              mk_term2_indexed2 t Fp_to_fp_from_sbv rm bv exponent
                (size - exponent)
        | From_ubv ->
            fun ~exponent size rm bv ->
              mk_term2_indexed2 t Fp_to_fp_from_ubv rm bv exponent
                (size - exponent)
        | To_sbv -> fun size rm fp -> mk_term2_indexed1 t Fp_to_sbv rm fp size
        | To_ubv -> fun size rm fp -> mk_term2_indexed1 t Fp_to_ubv rm fp size

      let make ~sign ~exponent significand =
        mk_term3 t Fp_fp sign exponent significand

      let of_sbv ~exponent size rm bv =
        mk_term2_indexed2 t Fp_to_fp_from_sbv rm bv exponent (size - exponent)

      let of_ubv ~exponent size rm bv =
        mk_term2_indexed2 t Fp_to_fp_from_ubv rm bv exponent (size - exponent)

      let of_bv ~exponent size bv =
        mk_term1_indexed2 t Fp_to_fp_from_bv bv exponent (size - exponent)

      let of_fp ~exponent size rm bv =
        mk_term2_indexed2 t Fp_to_fp_from_fp rm bv exponent (size - exponent)

      let abs f = mk_term1 t Fp_abs f

      let neg f = mk_term1 t Fp_neg f

      let add rm f0 f1 = mk_term3 t Fp_add rm f0 f1

      let sub rm f0 f1 = mk_term3 t Fp_sub rm f0 f1

      let mul rm f0 f1 = mk_term3 t Fp_mul rm f0 f1

      let div rm f0 f1 = mk_term3 t Fp_div rm f0 f1

      let fma rm f0 f1 f2 = mk_term t Fp_fma [| rm; f0; f1; f2 |]

      let sqrt rm f = mk_term2 t Fp_sqrt rm f

      let rem f0 f1 = mk_term2 t Fp_rem f0 f1

      let rti rm f = mk_term2 t Fp_rti rm f

      let min f0 f1 = mk_term2 t Fp_min f0 f1

      let max f0 f1 = mk_term2 t Fp_max f0 f1

      let leq f0 f1 = mk_term2 t Fp_leq f0 f1

      let lt f0 f1 = mk_term2 t Fp_lt f0 f1

      let geq f0 f1 = mk_term2 t Fp_geq f0 f1

      let gt f0 f1 = mk_term2 t Fp_gt f0 f1

      let eq f0 f1 = mk_term2 t Fp_eq f0 f1

      let is_normal f = mk_term1 t Fp_is_normal f

      let is_subnormal f = mk_term1 t Fp_is_subnormal f

      let is_zero f = mk_term1 t Fp_is_zero f

      let is_infinite f = mk_term1 t Fp_is_inf f

      let is_nan f = mk_term1 t Fp_is_nan f

      let is_negative f = mk_term1 t Fp_is_neg f

      let is_positive f = mk_term1 t Fp_is_pos f

      let to_sbv size rm f = mk_term2_indexed1 t Fp_to_sbv rm f size

      let to_ubv size rm f = mk_term2_indexed1 t Fp_to_ubv rm f size

      external to_float : rm term -> fp value -> float
        = "ocaml_bitwuzla_value_get_fp"

      let assignment rm f = to_float (Rm.term rm) f
    end

    module Ar = struct
      type ('a, 'b) t = ('a, 'b) ar term

      let make s e = mk_const_array t s e

      let select a i = mk_term2 t Array_select a i

      let store a i e = mk_term3 t Array_store a i e

      let assignment a = get_array_value t a
    end

    module Uf = struct
      type ('a, 'b) t = ('a, 'b) fn term

      let lambda s f =
        let vs = List.map (fun s -> mk_var t s "") @@ Sort.of_variadic s in
        let e = f @@ to_variadic vs in
        List.fold_right (fun v e -> mk_term2 t Lambda v e) vs e

      let apply f es = mk_term t Apply @@ Array.of_list @@ (f :: of_variadic es)

      type 'a variadic =
        | [] : unit variadic
        | ( :: ) :
            ([< bv | rm | fp ] as 'a) value * 'b variadic
            -> ('a -> 'b) variadic

      external to_variadic : Bitwuzla_c.term list -> 'a variadic = "%identity"

      let assignment f =
        Array.map (fun a ->
            let arity = Array.length a in
            let args = ref List.[] in
            for i = arity - 2 downto 0 do
              args := a.(i) :: !args
            done;
            (to_variadic !args, a.(arity - 1)))
        @@ get_fun_value t f
    end

    type 'a view =
      | Value : 'a value -> 'a view
      | Const : 'a sort * string -> 'a view
      | Var : ([< bv | rm | fp ] as 'a) sort -> 'a view
      | Lambda : 'a variadic * 'b term -> ('a, 'b) fn view
      | Equal :
          ([< bv | rm | fp | ('b, 'c) ar ] as 'a) term * 'a term
          -> bv view
      | Distinct :
          ([< bv | rm | fp | ('b, 'c) ar ] as 'a) term * 'a term
          -> bv view
      | Ite :
          Bl.t * ([< bv | rm | fp | ('b, 'c) ar ] as 'a) term * 'a term
          -> 'a view
      | Bv : ('a, 'b) Bv.operator * 'b -> bv view
      | Fp : ('a, 'b, 'c) Fp.operator * 'b -> 'c view
      | Select : ('a, 'b) ar term * 'a term -> 'b view
      | Store : ('a, 'b) ar term * 'a term * 'b term -> ('a, 'b) ar view
      | Apply : ('a, 'b) fn term * 'a variadic -> 'b view

    external unsafe_view : 'a view -> 'b view = "%identity"

    let view : type a. a term -> a view =
     fun e ->
      let args = term_get_children e in
      let arity = Array.length args in
      match term_get_kind e with
      | Const ->
          assert (arity = 0);
          Const (term_get_sort e, term_get_symbol e)
      | Const_Array ->
          assert (arity = 1);
          Value e
      | Val ->
          assert (arity = 0);
          Value e
      | Var ->
          assert (arity = 0);
          unsafe_view @@ Var (term_get_sort e)
      | And ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.And, (args.(0), args.(1)))
      | Apply ->
          let f = args.(0) in
          let args = List.tl @@ Array.to_list args in
          unsafe_view @@ Apply (f, to_variadic args)
      | Array_select ->
          assert (arity = 2);
          unsafe_view @@ Select (args.(0), args.(1))
      | Array_store ->
          assert (arity = 3);
          unsafe_view @@ Store (args.(0), args.(1), args.(2))
      | Bv_add ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.Add, (args.(0), args.(1)))
      | Bv_and ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.And, (args.(0), args.(1)))
      | Bv_ashr ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.Ashr, (args.(0), args.(1)))
      | Bv_comp -> assert false
      | Bv_concat ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.Concat, (args.(0), args.(1)))
      | Bv_dec -> assert false
      | Bv_inc -> assert false
      | Bv_mul ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.Mul, (args.(0), args.(1)))
      | Bv_nand -> assert false
      | Bv_neg ->
          assert (arity = 1);
          unsafe_view @@ Bv (Bv.Neg, args.(0))
      | Bv_nor -> assert false
      | Bv_not ->
          assert (arity = 1);
          unsafe_view @@ Bv (Bv.Not, args.(0))
      | Bv_or ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.Or, (args.(0), args.(1)))
      | Bv_redand -> assert false
      | Bv_redor -> assert false
      | Bv_redxor -> assert false
      | Bv_rol ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.Rol, (args.(0), args.(1)))
      | Bv_ror ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.Ror, (args.(0), args.(1)))
      | Bv_sadd_overflow -> assert false
      | Bv_sdiv_overflow -> assert false
      | Bv_sdiv ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.Sdiv, (args.(0), args.(1)))
      | Bv_sge ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.Sge, (args.(0), args.(1)))
      | Bv_sgt ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.Sgt, (args.(0), args.(1)))
      | Bv_shl ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.Shl, (args.(0), args.(1)))
      | Bv_shr ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.Shr, (args.(0), args.(1)))
      | Bv_sle ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.Sle, (args.(0), args.(1)))
      | Bv_slt ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.Slt, (args.(0), args.(1)))
      | Bv_smod ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.Smod, (args.(0), args.(1)))
      | Bv_smul_overflow -> assert false
      | Bv_srem ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.Srem, (args.(0), args.(1)))
      | Bv_ssub_overflow -> assert false
      | Bv_sub ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.Sub, (args.(0), args.(1)))
      | Bv_uadd_overflow -> assert false
      | Bv_udiv ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.Udiv, (args.(0), args.(1)))
      | Bv_uge ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.Uge, (args.(0), args.(1)))
      | Bv_ugt ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.Ugt, (args.(0), args.(1)))
      | Bv_ule ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.Ule, (args.(0), args.(1)))
      | Bv_ult ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.Ult, (args.(0), args.(1)))
      | Bv_umul_overflow -> assert false
      | Bv_urem ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.Urem, (args.(0), args.(1)))
      | Bv_usub_overflow -> assert false
      | Bv_xnor -> assert false
      | Bv_xor ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.Xor, (args.(0), args.(1)))
      | Distinct ->
          assert (arity = 2);
          unsafe_view @@ Distinct (args.(0), args.(1))
      | Equal ->
          assert (arity = 2);
          unsafe_view @@ Equal (args.(0), args.(1))
      | Exists -> assert false
      | Forall -> assert false
      | Fp_abs ->
          assert (arity = 1);
          unsafe_view @@ Fp (Fp.Abs, args.(0))
      | Fp_add ->
          assert (arity = 3);
          unsafe_view @@ Fp (Fp.Add, (args.(0), args.(1), args.(2)))
      | Fp_div ->
          assert (arity = 3);
          unsafe_view @@ Fp (Fp.Div, (args.(0), args.(1), args.(2)))
      | Fp_eq ->
          assert (arity = 2);
          unsafe_view @@ Fp (Fp.Eq, (args.(0), args.(1)))
      | Fp_fma ->
          assert (arity = 4);
          unsafe_view @@ Fp (Fp.Fma, (args.(0), args.(1), args.(2), args.(3)))
      | Fp_fp ->
          assert (arity = 3);
          unsafe_view
          @@ Fp
               ( Fp.Fp,
                 {
                   sign = args.(0);
                   exponent = args.(1);
                   significand = args.(2);
                 } )
      | Fp_geq ->
          assert (arity = 2);
          unsafe_view @@ Fp (Fp.Geq, (args.(0), args.(1)))
      | Fp_gt ->
          assert (arity = 2);
          unsafe_view @@ Fp (Fp.Gt, (args.(0), args.(1)))
      | Fp_is_inf ->
          assert (arity = 1);
          unsafe_view @@ Fp (Fp.Is_inf, args.(0))
      | Fp_is_nan ->
          assert (arity = 1);
          unsafe_view @@ Fp (Fp.Is_nan, args.(0))
      | Fp_is_neg ->
          assert (arity = 1);
          unsafe_view @@ Fp (Fp.Is_neg, args.(0))
      | Fp_is_normal ->
          assert (arity = 1);
          unsafe_view @@ Fp (Fp.Is_normal, args.(0))
      | Fp_is_pos ->
          assert (arity = 1);
          unsafe_view @@ Fp (Fp.Is_pos, args.(0))
      | Fp_is_subnormal ->
          assert (arity = 1);
          unsafe_view @@ Fp (Fp.Is_subnormal, args.(0))
      | Fp_is_zero ->
          assert (arity = 1);
          unsafe_view @@ Fp (Fp.Is_zero, args.(0))
      | Fp_leq ->
          assert (arity = 2);
          unsafe_view @@ Fp (Fp.Leq, (args.(0), args.(1)))
      | Fp_lt ->
          assert (arity = 2);
          unsafe_view @@ Fp (Fp.Lt, (args.(0), args.(1)))
      | Fp_max ->
          assert (arity = 2);
          unsafe_view @@ Fp (Fp.Max, (args.(0), args.(1)))
      | Fp_min ->
          assert (arity = 2);
          unsafe_view @@ Fp (Fp.Min, (args.(0), args.(1)))
      | Fp_mul ->
          assert (arity = 3);
          unsafe_view @@ Fp (Fp.Mul, (args.(0), args.(1), args.(2)))
      | Fp_neg ->
          assert (arity = 1);
          unsafe_view @@ Fp (Fp.Neg, args.(0))
      | Fp_rem ->
          assert (arity = 2);
          unsafe_view @@ Fp (Fp.Rem, (args.(0), args.(1)))
      | Fp_rti ->
          assert (arity = 2);
          unsafe_view @@ Fp (Fp.Rti, (args.(0), args.(1)))
      | Fp_sqrt ->
          assert (arity = 2);
          unsafe_view @@ Fp (Fp.Sqrt, (args.(0), args.(1)))
      | Fp_sub ->
          assert (arity = 3);
          unsafe_view @@ Fp (Fp.Sub, (args.(0), args.(1), args.(2)))
      | Iff -> assert false
      | Implies -> assert false
      | Ite ->
          assert (arity = 3);
          unsafe_view @@ Ite (args.(0), args.(1), args.(2))
      | Lambda ->
          let e = args.(arity - 1) in
          let vars = Array.to_list @@ Array.sub args 0 (arity - 1) in
          unsafe_view @@ Lambda (to_variadic vars, e)
      | Not ->
          assert (arity = 1);
          unsafe_view @@ Bv (Bv.Not, args.(0))
      | Or ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.Or, (args.(0), args.(1)))
      | Xor ->
          assert (arity = 2);
          unsafe_view @@ Bv (Bv.Xor, (args.(0), args.(1)))
      | Bv_extract ->
          assert (arity = 1);
          let indices = term_get_indices e in
          assert (Array.length indices = 2);
          unsafe_view @@ Bv (Bv.Extract, (indices.(0), indices.(1), args.(0)))
      | Bv_repeat -> assert false
      | Bv_roli -> assert false
      | Bv_rori -> assert false
      | Bv_sign_extend -> assert false
      | Bv_zero_extend -> assert false
      | Fp_to_fp_from_bv ->
          assert (arity = 1);
          let indices = term_get_indices e in
          assert (Array.length indices = 2);
          unsafe_view
          @@ Fp (Fp.From_bv, (indices.(0), indices.(0) + indices.(1), args.(0)))
      | Fp_to_fp_from_fp ->
          assert (arity = 2);
          let indices = term_get_indices e in
          assert (Array.length indices = 2);
          unsafe_view
          @@ Fp
               ( Fp.From_fp,
                 (indices.(0), indices.(0) + indices.(1), args.(0), args.(1)) )
      | Fp_to_fp_from_sbv ->
          assert (arity = 2);
          let indices = term_get_indices e in
          assert (Array.length indices = 2);
          unsafe_view
          @@ Fp
               ( Fp.From_sbv,
                 (indices.(0), indices.(0) + indices.(1), args.(0), args.(1)) )
      | Fp_to_fp_from_ubv ->
          assert (arity = 2);
          let indices = term_get_indices e in
          assert (Array.length indices = 2);
          unsafe_view
          @@ Fp
               ( Fp.From_ubv,
                 (indices.(0), indices.(0) + indices.(1), args.(0), args.(1)) )
      | Fp_to_sbv ->
          assert (arity = 2);
          let indices = term_get_indices e in
          assert (Array.length indices = 1);
          unsafe_view @@ Fp (Fp.To_sbv, (indices.(0), args.(0), args.(1)))
      | Fp_to_ubv ->
          assert (arity = 2);
          let indices = term_get_indices e in
          assert (Array.length indices = 1);
          unsafe_view @@ Fp (Fp.To_ubv, (indices.(0), args.(0), args.(1)))
  end

  let assert' ?name b =
    Option.iter (fun name -> term_set_symbol b name) name;
    mk_assert t b

  type nonrec result = result = Sat | Unsat | Unknown

  let pp_result ppf = function
    | Sat -> Format.pp_print_string ppf "sat"
    | Unsat -> Format.pp_print_string ppf "unsat"
    | Unknown -> Format.pp_print_string ppf "unknown"

  let check_sat =
    let no_interruption = (Fun.id, 0) in
    fun ?interrupt () ->
      (match interrupt with
      | None -> ignore @@ set_termination_callback t no_interruption
      | Some terminate -> ignore @@ set_termination_callback t terminate);
      check_sat t

  let timeout =
    let check timestamp = Float.compare (Unix.gettimeofday ()) timestamp in
    fun timeout (f : ?interrupt:('a -> int) * 'a -> 'b) ->
      let timestamp = Unix.gettimeofday () +. timeout in
      f ~interrupt:(check, timestamp)

  let get_value e = if term_is_value e then e else get_value t e
end

module Once = Session

module Incremental () = struct
  include Session ()

  let () = set_option t Incremental 1

  let push level = push t level

  let pop level = pop t level

  let check_sat_assuming ?interrupt ?names assumptions =
    Option.iter
      (fun names ->
        Array.iter2 (fun n a -> term_set_symbol a n) names assumptions)
      names;
    Array.iter (mk_assume t) assumptions;
    check_sat ?interrupt ()

  let get_unsat_assumptions () = get_unsat_assumptions t
end

module Unsat_core () = struct
  include Incremental ()

  let () = set_option t Produce_unsat_cores 1

  let get_unsat_core () = get_unsat_core t
end
OCaml

Innovation. Community. Security.