package bitwuzla
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Source file bitwuzla.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
open Bitwuzla_c external set_termination_callback : t -> ('a -> int) * 'a -> unit = "ocaml_bitwuzla_set_termination_callback" module Session () = struct type nonrec 'a sort = sort type nonrec 'a term = term type 'a value = 'a term type bv = [ `Bv ] type rm = [ `Rm ] type fp = [ `Fp ] type ('a, 'b) ar = [ `Ar of 'a -> 'b ] constraint 'a = [< bv | rm | fp ] constraint 'b = [< bv | rm | fp ] type ('a, 'b) fn = [ `Fn of 'a -> 'b ] constraint 'b = [< bv ] let t = create () let () = set_option t Produce_models 1 let unsafe_close () = delete t module Sort = struct type 'a t = 'a sort let bool = mk_bool_sort t let bv size = mk_bv_sort t size let size = sort_bv_get_size let fp ~exponent size = mk_fp_sort t exponent @@ (size - exponent) let exponent = sort_fp_get_exp_size let significand = sort_fp_get_sig_size let rm = mk_rm_sort t let ar index element = mk_array_sort t index element let index = sort_array_get_index let element = sort_array_get_element type 'a variadic = | [] : unit variadic | ( :: ) : ([< bv | rm | fp ] as 'a) sort * 'b variadic -> ('a -> 'b) variadic external of_variadic : 'a variadic -> Bitwuzla_c.sort list = "%identity" external to_variadic : Bitwuzla_c.sort list -> 'a variadic = "%identity" let fn a b = mk_fun_sort t (Array.of_list @@ of_variadic a) b let arity = sort_fun_get_arity let domain s = to_variadic @@ Array.to_list @@ sort_fun_get_domain_sorts s let codomain s = sort_fun_get_codomain s let hash = sort_hash let equal = sort_is_equal let pp f x = sort_dump x `Smt2 f end module Term = struct type 'a t = 'a term constraint 'a = [< bv | rm | fp | ('b, 'c) ar ] type 'a variadic = | [] : unit variadic | ( :: ) : ([< bv | rm | fp ] as 'a) term * 'b variadic -> ('a -> 'b) variadic external of_variadic : 'a variadic -> Bitwuzla_c.term list = "%identity" external to_variadic : Bitwuzla_c.term list -> 'a variadic = "%identity" let ite x0 x1 x2 = mk_term3 t Ite x0 x1 x2 let equal x0 x1 = mk_term2 t Equal x0 x1 let distinct x0 x1 = mk_term2 t Distinct x0 x1 let bl_of_bv bv = mk_term1 t Bv_redor bv let const s n = mk_const t s n let hash x = term_hash x let sort x = term_get_sort x let pp f x = try Format.pp_print_string f @@ term_get_symbol x with Not_found -> term_dump x `Smt2 f module Bl = struct type t = bv term let false' = mk_false t let true' = mk_true t let logand b0 b1 = mk_term2 t And b0 b1 let lognand b0 b1 = mk_term2 t Bv_nand b0 b1 let redand bs = mk_term t And bs let logor b0 b1 = mk_term2 t Or b0 b1 let lognor b0 b1 = mk_term2 t Bv_nor b0 b1 let redor bs = mk_term t Or bs let logxor b0 b1 = mk_term2 t Xor b0 b1 let logxnor b0 b1 = mk_term2 t Bv_xnor b0 b1 let redxor bs = mk_term t Xor bs let lognot b = mk_term1 t Not b let iff b0 b1 = mk_term2 t Iff b0 b1 let implies b0 b1 = mk_term2 t Implies b0 b1 let of_bool b = if b then true' else false' let of_bv = bl_of_bv let assignment b = not @@ term_is_bv_value_zero b end module Bv = struct type t = bv term let zero s = mk_bv_zero t s let one s = mk_bv_one t s let ones s = mk_bv_ones t s let min_signed s = mk_bv_min_signed t s let max_signed s = mk_bv_max_signed t s let of_int s v = mk_bv_value_int t s v let of_string s v = let len = String.length v in if len > 2 && String.get v 0 = '0' then if String.get v 1 = 'b' then mk_bv_value t s (String.sub v 2 (len - 2)) Bin else if String.get v 1 = 'x' then mk_bv_value t s (String.sub v 2 (len - 2)) Hex else mk_bv_value t s v Dec else mk_bv_value t s v Dec let of_z s v = if Z.fits_int v then of_int s @@ Z.to_int v else mk_bv_value t s (Z.format "%x" v) Hex type ('a, 'b) operator = | Add : (t -> t -> t, t * t) operator | And : (t -> t -> t, t * t) operator | Ashr : (t -> t -> t, t * t) operator | Concat : (t -> t -> t, t * t) operator | Extract : (hi:int -> lo:int -> t -> t, int * int * t) operator | Mul : (t -> t -> t, t * t) operator | Neg : (t -> t, t) operator | Not : (t -> t, t) operator | Or : (t -> t -> t, t * t) operator | Rol : (t -> t -> t, t * t) operator | Ror : (t -> t -> t, t * t) operator | Sdiv : (t -> t -> t, t * t) operator | Sge : (t -> t -> t, t * t) operator | Sgt : (t -> t -> t, t * t) operator | Shl : (t -> t -> t, t * t) operator | Shr : (t -> t -> t, t * t) operator | Sle : (t -> t -> t, t * t) operator | Slt : (t -> t -> t, t * t) operator | Smod : (t -> t -> t, t * t) operator | Srem : (t -> t -> t, t * t) operator | Sub : (t -> t -> t, t * t) operator | Udiv : (t -> t -> t, t * t) operator | Uge : (t -> t -> t, t * t) operator | Ugt : (t -> t -> t, t * t) operator | Ule : (t -> t -> t, t * t) operator | Ult : (t -> t -> t, t * t) operator | Urem : (t -> t -> t, t * t) operator | Xor : (t -> t -> t, t * t) operator let term : type a b. (a, b) operator -> a = function | Add -> mk_term2 t Bv_add | And -> mk_term2 t Bv_and | Ashr -> mk_term2 t Bv_ashr | Concat -> mk_term2 t Bv_concat | Extract -> fun ~hi ~lo e -> mk_term1_indexed2 t Bv_extract e hi lo | Mul -> mk_term2 t Bv_mul | Neg -> mk_term1 t Bv_neg | Not -> mk_term1 t Bv_not | Or -> mk_term2 t Bv_or | Rol -> mk_term2 t Bv_rol | Ror -> mk_term2 t Bv_ror | Sdiv -> mk_term2 t Bv_sdiv | Sge -> mk_term2 t Bv_sge | Sgt -> mk_term2 t Bv_sgt | Shl -> mk_term2 t Bv_shl | Shr -> mk_term2 t Bv_shr | Sle -> mk_term2 t Bv_sle | Slt -> mk_term2 t Bv_slt | Smod -> mk_term2 t Bv_smod | Srem -> mk_term2 t Bv_srem | Sub -> mk_term2 t Bv_sub | Udiv -> mk_term2 t Bv_udiv | Uge -> mk_term2 t Bv_uge | Ugt -> mk_term2 t Bv_ugt | Ule -> mk_term2 t Bv_ule | Ult -> mk_term2 t Bv_ult | Urem -> mk_term2 t Bv_urem | Xor -> mk_term2 t Bv_xor let pred e = mk_term1 t Bv_dec e let succ e = mk_term1 t Bv_inc e let neg e = mk_term1 t Bv_neg e let add e0 e1 = mk_term2 t Bv_add e0 e1 let sadd_overflow e0 e1 = mk_term2 t Bv_sadd_overflow e0 e1 let uadd_overflow e0 e1 = mk_term2 t Bv_uadd_overflow e0 e1 let sub e0 e1 = mk_term2 t Bv_sub e0 e1 let ssub_overflow e0 e1 = mk_term2 t Bv_ssub_overflow e0 e1 let usub_overflow e0 e1 = mk_term2 t Bv_usub_overflow e0 e1 let mul e0 e1 = mk_term2 t Bv_mul e0 e1 let smul_overflow e0 e1 = mk_term2 t Bv_smul_overflow e0 e1 let umul_overflow e0 e1 = mk_term2 t Bv_umul_overflow e0 e1 let sdiv e0 e1 = mk_term2 t Bv_sdiv e0 e1 let sdiv_overflow e0 e1 = mk_term2 t Bv_sdiv_overflow e0 e1 let udiv e0 e1 = mk_term2 t Bv_udiv e0 e1 let smod e0 e1 = mk_term2 t Bv_smod e0 e1 let srem e0 e1 = mk_term2 t Bv_srem e0 e1 let urem e0 e1 = mk_term2 t Bv_urem e0 e1 let logand e0 e1 = mk_term2 t Bv_and e0 e1 let lognand e0 e1 = mk_term2 t Bv_nand e0 e1 let redand e = mk_term1 t Bv_redand e let logor e0 e1 = mk_term2 t Bv_or e0 e1 let lognor e0 e1 = mk_term2 t Bv_nor e0 e1 let redor e = mk_term1 t Bv_redor e let logxor e0 e1 = mk_term2 t Bv_xor e0 e1 let logxnor e0 e1 = mk_term2 t Bv_xnor e0 e1 let redxor e = mk_term1 t Bv_redxor e let lognot e = mk_term1 t Bv_not e let shift_left e0 e1 = mk_term2 t Bv_shl e0 e1 let shift_right_logical e0 e1 = mk_term2 t Bv_shr e0 e1 let shift_right e0 e1 = mk_term2 t Bv_ashr e0 e1 let rotate_left e0 e1 = mk_term2 t Bv_rol e0 e1 let rotate_lefti e i = mk_term1_indexed1 t Bv_roli e i let rotate_right e0 e1 = mk_term2 t Bv_ror e0 e1 let rotate_righti e i = mk_term1_indexed1 t Bv_rori e i let zero_extend i e = mk_term1_indexed1 t Bv_zero_extend e i let sign_extend i e = mk_term1_indexed1 t Bv_sign_extend e i let append e0 e1 = mk_term2 t Bv_concat e0 e1 let concat es = mk_term t Bv_concat es let repeat i e = mk_term1_indexed1 t Bv_repeat e i let extract ~hi ~lo e = mk_term1_indexed2 t Bv_extract e hi lo let sge e0 e1 = mk_term2 t Bv_sge e0 e1 let uge e0 e1 = mk_term2 t Bv_uge e0 e1 let sgt e0 e1 = mk_term2 t Bv_sgt e0 e1 let ugt e0 e1 = mk_term2 t Bv_ugt e0 e1 let sle e0 e1 = mk_term2 t Bv_sle e0 e1 let ule e0 e1 = mk_term2 t Bv_ule e0 e1 let slt e0 e1 = mk_term2 t Bv_slt e0 e1 let ult e0 e1 = mk_term2 t Bv_ult e0 e1 let to_bl = bl_of_bv external assignment : t -> Z.t = "ocaml_bitwuzla_value_get_bv_bits" end module Rm = struct type t = rm term type 'a operator = | Rne : rm term operator | Rna : rm term operator | Rtn : rm term operator | Rtp : rm term operator | Rtz : rm term operator let rne = mk_rm_value t Rne let rna = mk_rm_value t Rna let rtn = mk_rm_value t Rtn let rtp = mk_rm_value t Rtp let rtz = mk_rm_value t Rtz let term : type a. a operator -> a = function | Rne -> rne | Rna -> rna | Rtn -> rtn | Rtp -> rtp | Rtz -> rtz end module Fp = struct type t = fp term let pos_zero s = mk_fp_pos_zero t s let neg_zero s = mk_fp_neg_zero t s let pos_inf s = mk_fp_pos_inf t s let neg_inf s = mk_fp_neg_inf t s let nan s = mk_fp_nan t s let of_real s rm v = mk_fp_value_from_real t s (Rm.term rm) v let of_rational s rm ~num ~den = mk_fp_value_from_rational t s (Rm.term rm) num den let of_float s rm f = of_real s rm @@ string_of_float f type ieee_754 = { sign : bv term; exponent : bv term; significand : bv term; } type ('a, 'b, 'c) operator = | Abs : (t -> t, t, fp) operator | Add : (rm term -> t -> t -> t, rm term * t * t, fp) operator | Div : (rm term -> t -> t -> t, rm term * t * t, fp) operator | Eq : (t -> t -> bv term, t * t, bv) operator | Fma : (rm term -> t -> t -> t -> t, rm term * t * t * t, fp) operator | Fp : ( sign:bv term -> exponent:bv term -> bv term -> t, ieee_754, fp ) operator | Geq : (t -> t -> bv term, t * t, bv) operator | Gt : (t -> t -> bv term, t * t, bv) operator | Is_inf : (t -> bv term, t, bv) operator | Is_nan : (t -> bv term, t, bv) operator | Is_neg : (t -> bv term, t, bv) operator | Is_normal : (t -> bv term, t, bv) operator | Is_pos : (t -> bv term, t, bv) operator | Is_subnormal : (t -> bv term, t, bv) operator | Is_zero : (t -> bv term, t, bv) operator | Leq : (t -> t -> bv term, t * t, bv) operator | Lt : (t -> t -> bv term, t * t, bv) operator | Max : (t -> t -> t, t * t, fp) operator | Min : (t -> t -> t, t * t, fp) operator | Mul : (rm term -> t -> t -> t, rm term * t * t, fp) operator | Neg : (t -> t, t, fp) operator | Rem : (t -> t -> t, t * t, fp) operator | Rti : (rm term -> t -> t, rm term * t, fp) operator | Sqrt : (rm term -> t -> t, rm term * t, fp) operator | Sub : (rm term -> t -> t -> t, rm term * t * t, fp) operator | From_bv : ( exponent:int -> int -> bv term -> t, int * int * bv term, fp ) operator | From_fp : ( exponent:int -> int -> rm term -> t -> t, int * int * rm term * t, fp ) operator | From_sbv : ( exponent:int -> int -> rm term -> bv term -> t, int * int * rm term * bv term, fp ) operator | From_ubv : ( exponent:int -> int -> rm term -> bv term -> t, int * int * rm term * bv term, fp ) operator | To_sbv : (int -> rm term -> t -> bv term, int * rm term * t, bv) operator | To_ubv : (int -> rm term -> t -> bv term, int * rm term * t, bv) operator let term : type a b c. (a, b, c) operator -> a = function | Abs -> mk_term1 t Fp_abs | Add -> mk_term3 t Fp_add | Div -> mk_term3 t Fp_div | Eq -> mk_term2 t Fp_eq | Fma -> fun rm f0 f1 f2 -> mk_term t Fp_fma [| rm; f0; f1; f2 |] | Fp -> fun ~sign ~exponent significand -> mk_term3 t Fp_fp sign exponent significand | Geq -> mk_term2 t Fp_geq | Gt -> mk_term2 t Fp_gt | Is_inf -> mk_term1 t Fp_is_inf | Is_nan -> mk_term1 t Fp_is_nan | Is_neg -> mk_term1 t Fp_is_neg | Is_normal -> mk_term1 t Fp_is_normal | Is_pos -> mk_term1 t Fp_is_pos | Is_subnormal -> mk_term1 t Fp_is_subnormal | Is_zero -> mk_term1 t Fp_is_zero | Leq -> mk_term2 t Fp_leq | Lt -> mk_term2 t Fp_lt | Max -> mk_term2 t Fp_max | Min -> mk_term2 t Fp_min | Mul -> mk_term3 t Fp_mul | Neg -> mk_term1 t Fp_neg | Rem -> mk_term2 t Fp_rem | Rti -> mk_term2 t Fp_rti | Sqrt -> mk_term2 t Fp_sqrt | Sub -> mk_term3 t Fp_sub | From_bv -> fun ~exponent size bv -> mk_term1_indexed2 t Fp_to_fp_from_bv bv exponent (size - exponent) | From_fp -> fun ~exponent size rm bv -> mk_term2_indexed2 t Fp_to_fp_from_fp rm bv exponent (size - exponent) | From_sbv -> fun ~exponent size rm bv -> mk_term2_indexed2 t Fp_to_fp_from_sbv rm bv exponent (size - exponent) | From_ubv -> fun ~exponent size rm bv -> mk_term2_indexed2 t Fp_to_fp_from_ubv rm bv exponent (size - exponent) | To_sbv -> fun size rm fp -> mk_term2_indexed1 t Fp_to_sbv rm fp size | To_ubv -> fun size rm fp -> mk_term2_indexed1 t Fp_to_ubv rm fp size let make ~sign ~exponent significand = mk_term3 t Fp_fp sign exponent significand let of_sbv ~exponent size rm bv = mk_term2_indexed2 t Fp_to_fp_from_sbv rm bv exponent (size - exponent) let of_ubv ~exponent size rm bv = mk_term2_indexed2 t Fp_to_fp_from_ubv rm bv exponent (size - exponent) let of_bv ~exponent size bv = mk_term1_indexed2 t Fp_to_fp_from_bv bv exponent (size - exponent) let of_fp ~exponent size rm bv = mk_term2_indexed2 t Fp_to_fp_from_fp rm bv exponent (size - exponent) let abs f = mk_term1 t Fp_abs f let neg f = mk_term1 t Fp_neg f let add rm f0 f1 = mk_term3 t Fp_add rm f0 f1 let sub rm f0 f1 = mk_term3 t Fp_sub rm f0 f1 let mul rm f0 f1 = mk_term3 t Fp_mul rm f0 f1 let div rm f0 f1 = mk_term3 t Fp_div rm f0 f1 let fma rm f0 f1 f2 = mk_term t Fp_fma [| rm; f0; f1; f2 |] let sqrt rm f = mk_term2 t Fp_sqrt rm f let rem f0 f1 = mk_term2 t Fp_rem f0 f1 let rti rm f = mk_term2 t Fp_rti rm f let min f0 f1 = mk_term2 t Fp_min f0 f1 let max f0 f1 = mk_term2 t Fp_max f0 f1 let leq f0 f1 = mk_term2 t Fp_leq f0 f1 let lt f0 f1 = mk_term2 t Fp_lt f0 f1 let geq f0 f1 = mk_term2 t Fp_geq f0 f1 let gt f0 f1 = mk_term2 t Fp_gt f0 f1 let eq f0 f1 = mk_term2 t Fp_eq f0 f1 let is_normal f = mk_term1 t Fp_is_normal f let is_subnormal f = mk_term1 t Fp_is_subnormal f let is_zero f = mk_term1 t Fp_is_zero f let is_infinite f = mk_term1 t Fp_is_inf f let is_nan f = mk_term1 t Fp_is_nan f let is_negative f = mk_term1 t Fp_is_neg f let is_positive f = mk_term1 t Fp_is_pos f let to_sbv size rm f = mk_term2_indexed1 t Fp_to_sbv rm f size let to_ubv size rm f = mk_term2_indexed1 t Fp_to_ubv rm f size external to_float : rm term -> fp value -> float = "ocaml_bitwuzla_value_get_fp" let assignment rm f = to_float (Rm.term rm) f end module Ar = struct type ('a, 'b) t = ('a, 'b) ar term let make s e = mk_const_array t s e let select a i = mk_term2 t Array_select a i let store a i e = mk_term3 t Array_store a i e let assignment a = get_array_value t a end module Uf = struct type ('a, 'b) t = ('a, 'b) fn term let lambda s f = let vs = List.map (fun s -> mk_var t s "") @@ Sort.of_variadic s in let e = f @@ to_variadic vs in List.fold_right (fun v e -> mk_term2 t Lambda v e) vs e let apply f es = mk_term t Apply @@ Array.of_list @@ (f :: of_variadic es) type 'a variadic = | [] : unit variadic | ( :: ) : ([< bv | rm | fp ] as 'a) value * 'b variadic -> ('a -> 'b) variadic external to_variadic : Bitwuzla_c.term list -> 'a variadic = "%identity" let assignment f = Array.map (fun a -> let arity = Array.length a in let args = ref List.[] in for i = arity - 2 downto 0 do args := a.(i) :: !args done; (to_variadic !args, a.(arity - 1))) @@ get_fun_value t f end type 'a view = | Value : 'a value -> 'a view | Const : 'a sort * string -> 'a view | Var : ([< bv | rm | fp ] as 'a) sort -> 'a view | Lambda : 'a variadic * 'b term -> ('a, 'b) fn view | Equal : ([< bv | rm | fp | ('b, 'c) ar ] as 'a) term * 'a term -> bv view | Distinct : ([< bv | rm | fp | ('b, 'c) ar ] as 'a) term * 'a term -> bv view | Ite : Bl.t * ([< bv | rm | fp | ('b, 'c) ar ] as 'a) term * 'a term -> 'a view | Bv : ('a, 'b) Bv.operator * 'b -> bv view | Fp : ('a, 'b, 'c) Fp.operator * 'b -> 'c view | Select : ('a, 'b) ar term * 'a term -> 'b view | Store : ('a, 'b) ar term * 'a term * 'b term -> ('a, 'b) ar view | Apply : ('a, 'b) fn term * 'a variadic -> 'b view external unsafe_view : 'a view -> 'b view = "%identity" let view : type a. a term -> a view = fun e -> let args = term_get_children e in let arity = Array.length args in match term_get_kind e with | Const -> assert (arity = 0); Const (term_get_sort e, term_get_symbol e) | Const_Array -> assert (arity = 1); Value e | Val -> assert (arity = 0); Value e | Var -> assert (arity = 0); unsafe_view @@ Var (term_get_sort e) | And -> assert (arity = 2); unsafe_view @@ Bv (Bv.And, (args.(0), args.(1))) | Apply -> let f = args.(0) in let args = List.tl @@ Array.to_list args in unsafe_view @@ Apply (f, to_variadic args) | Array_select -> assert (arity = 2); unsafe_view @@ Select (args.(0), args.(1)) | Array_store -> assert (arity = 3); unsafe_view @@ Store (args.(0), args.(1), args.(2)) | Bv_add -> assert (arity = 2); unsafe_view @@ Bv (Bv.Add, (args.(0), args.(1))) | Bv_and -> assert (arity = 2); unsafe_view @@ Bv (Bv.And, (args.(0), args.(1))) | Bv_ashr -> assert (arity = 2); unsafe_view @@ Bv (Bv.Ashr, (args.(0), args.(1))) | Bv_comp -> assert false | Bv_concat -> assert (arity = 2); unsafe_view @@ Bv (Bv.Concat, (args.(0), args.(1))) | Bv_dec -> assert false | Bv_inc -> assert false | Bv_mul -> assert (arity = 2); unsafe_view @@ Bv (Bv.Mul, (args.(0), args.(1))) | Bv_nand -> assert false | Bv_neg -> assert (arity = 1); unsafe_view @@ Bv (Bv.Neg, args.(0)) | Bv_nor -> assert false | Bv_not -> assert (arity = 1); unsafe_view @@ Bv (Bv.Not, args.(0)) | Bv_or -> assert (arity = 2); unsafe_view @@ Bv (Bv.Or, (args.(0), args.(1))) | Bv_redand -> assert false | Bv_redor -> assert false | Bv_redxor -> assert false | Bv_rol -> assert (arity = 2); unsafe_view @@ Bv (Bv.Rol, (args.(0), args.(1))) | Bv_ror -> assert (arity = 2); unsafe_view @@ Bv (Bv.Ror, (args.(0), args.(1))) | Bv_sadd_overflow -> assert false | Bv_sdiv_overflow -> assert false | Bv_sdiv -> assert (arity = 2); unsafe_view @@ Bv (Bv.Sdiv, (args.(0), args.(1))) | Bv_sge -> assert (arity = 2); unsafe_view @@ Bv (Bv.Sge, (args.(0), args.(1))) | Bv_sgt -> assert (arity = 2); unsafe_view @@ Bv (Bv.Sgt, (args.(0), args.(1))) | Bv_shl -> assert (arity = 2); unsafe_view @@ Bv (Bv.Shl, (args.(0), args.(1))) | Bv_shr -> assert (arity = 2); unsafe_view @@ Bv (Bv.Shr, (args.(0), args.(1))) | Bv_sle -> assert (arity = 2); unsafe_view @@ Bv (Bv.Sle, (args.(0), args.(1))) | Bv_slt -> assert (arity = 2); unsafe_view @@ Bv (Bv.Slt, (args.(0), args.(1))) | Bv_smod -> assert (arity = 2); unsafe_view @@ Bv (Bv.Smod, (args.(0), args.(1))) | Bv_smul_overflow -> assert false | Bv_srem -> assert (arity = 2); unsafe_view @@ Bv (Bv.Srem, (args.(0), args.(1))) | Bv_ssub_overflow -> assert false | Bv_sub -> assert (arity = 2); unsafe_view @@ Bv (Bv.Sub, (args.(0), args.(1))) | Bv_uadd_overflow -> assert false | Bv_udiv -> assert (arity = 2); unsafe_view @@ Bv (Bv.Udiv, (args.(0), args.(1))) | Bv_uge -> assert (arity = 2); unsafe_view @@ Bv (Bv.Uge, (args.(0), args.(1))) | Bv_ugt -> assert (arity = 2); unsafe_view @@ Bv (Bv.Ugt, (args.(0), args.(1))) | Bv_ule -> assert (arity = 2); unsafe_view @@ Bv (Bv.Ule, (args.(0), args.(1))) | Bv_ult -> assert (arity = 2); unsafe_view @@ Bv (Bv.Ult, (args.(0), args.(1))) | Bv_umul_overflow -> assert false | Bv_urem -> assert (arity = 2); unsafe_view @@ Bv (Bv.Urem, (args.(0), args.(1))) | Bv_usub_overflow -> assert false | Bv_xnor -> assert false | Bv_xor -> assert (arity = 2); unsafe_view @@ Bv (Bv.Xor, (args.(0), args.(1))) | Distinct -> assert (arity = 2); unsafe_view @@ Distinct (args.(0), args.(1)) | Equal -> assert (arity = 2); unsafe_view @@ Equal (args.(0), args.(1)) | Exists -> assert false | Forall -> assert false | Fp_abs -> assert (arity = 1); unsafe_view @@ Fp (Fp.Abs, args.(0)) | Fp_add -> assert (arity = 3); unsafe_view @@ Fp (Fp.Add, (args.(0), args.(1), args.(2))) | Fp_div -> assert (arity = 3); unsafe_view @@ Fp (Fp.Div, (args.(0), args.(1), args.(2))) | Fp_eq -> assert (arity = 2); unsafe_view @@ Fp (Fp.Eq, (args.(0), args.(1))) | Fp_fma -> assert (arity = 4); unsafe_view @@ Fp (Fp.Fma, (args.(0), args.(1), args.(2), args.(3))) | Fp_fp -> assert (arity = 3); unsafe_view @@ Fp ( Fp.Fp, { sign = args.(0); exponent = args.(1); significand = args.(2); } ) | Fp_geq -> assert (arity = 2); unsafe_view @@ Fp (Fp.Geq, (args.(0), args.(1))) | Fp_gt -> assert (arity = 2); unsafe_view @@ Fp (Fp.Gt, (args.(0), args.(1))) | Fp_is_inf -> assert (arity = 1); unsafe_view @@ Fp (Fp.Is_inf, args.(0)) | Fp_is_nan -> assert (arity = 1); unsafe_view @@ Fp (Fp.Is_nan, args.(0)) | Fp_is_neg -> assert (arity = 1); unsafe_view @@ Fp (Fp.Is_neg, args.(0)) | Fp_is_normal -> assert (arity = 1); unsafe_view @@ Fp (Fp.Is_normal, args.(0)) | Fp_is_pos -> assert (arity = 1); unsafe_view @@ Fp (Fp.Is_pos, args.(0)) | Fp_is_subnormal -> assert (arity = 1); unsafe_view @@ Fp (Fp.Is_subnormal, args.(0)) | Fp_is_zero -> assert (arity = 1); unsafe_view @@ Fp (Fp.Is_zero, args.(0)) | Fp_leq -> assert (arity = 2); unsafe_view @@ Fp (Fp.Leq, (args.(0), args.(1))) | Fp_lt -> assert (arity = 2); unsafe_view @@ Fp (Fp.Lt, (args.(0), args.(1))) | Fp_max -> assert (arity = 2); unsafe_view @@ Fp (Fp.Max, (args.(0), args.(1))) | Fp_min -> assert (arity = 2); unsafe_view @@ Fp (Fp.Min, (args.(0), args.(1))) | Fp_mul -> assert (arity = 3); unsafe_view @@ Fp (Fp.Mul, (args.(0), args.(1), args.(2))) | Fp_neg -> assert (arity = 1); unsafe_view @@ Fp (Fp.Neg, args.(0)) | Fp_rem -> assert (arity = 2); unsafe_view @@ Fp (Fp.Rem, (args.(0), args.(1))) | Fp_rti -> assert (arity = 2); unsafe_view @@ Fp (Fp.Rti, (args.(0), args.(1))) | Fp_sqrt -> assert (arity = 2); unsafe_view @@ Fp (Fp.Sqrt, (args.(0), args.(1))) | Fp_sub -> assert (arity = 3); unsafe_view @@ Fp (Fp.Sub, (args.(0), args.(1), args.(2))) | Iff -> assert false | Implies -> assert false | Ite -> assert (arity = 3); unsafe_view @@ Ite (args.(0), args.(1), args.(2)) | Lambda -> let e = args.(arity - 1) in let vars = Array.to_list @@ Array.sub args 0 (arity - 1) in unsafe_view @@ Lambda (to_variadic vars, e) | Not -> assert (arity = 1); unsafe_view @@ Bv (Bv.Not, args.(0)) | Or -> assert (arity = 2); unsafe_view @@ Bv (Bv.Or, (args.(0), args.(1))) | Xor -> assert (arity = 2); unsafe_view @@ Bv (Bv.Xor, (args.(0), args.(1))) | Bv_extract -> assert (arity = 1); let indices = term_get_indices e in assert (Array.length indices = 2); unsafe_view @@ Bv (Bv.Extract, (indices.(0), indices.(1), args.(0))) | Bv_repeat -> assert false | Bv_roli -> assert false | Bv_rori -> assert false | Bv_sign_extend -> assert false | Bv_zero_extend -> assert false | Fp_to_fp_from_bv -> assert (arity = 1); let indices = term_get_indices e in assert (Array.length indices = 2); unsafe_view @@ Fp (Fp.From_bv, (indices.(0), indices.(0) + indices.(1), args.(0))) | Fp_to_fp_from_fp -> assert (arity = 2); let indices = term_get_indices e in assert (Array.length indices = 2); unsafe_view @@ Fp ( Fp.From_fp, (indices.(0), indices.(0) + indices.(1), args.(0), args.(1)) ) | Fp_to_fp_from_sbv -> assert (arity = 2); let indices = term_get_indices e in assert (Array.length indices = 2); unsafe_view @@ Fp ( Fp.From_sbv, (indices.(0), indices.(0) + indices.(1), args.(0), args.(1)) ) | Fp_to_fp_from_ubv -> assert (arity = 2); let indices = term_get_indices e in assert (Array.length indices = 2); unsafe_view @@ Fp ( Fp.From_ubv, (indices.(0), indices.(0) + indices.(1), args.(0), args.(1)) ) | Fp_to_sbv -> assert (arity = 2); let indices = term_get_indices e in assert (Array.length indices = 1); unsafe_view @@ Fp (Fp.To_sbv, (indices.(0), args.(0), args.(1))) | Fp_to_ubv -> assert (arity = 2); let indices = term_get_indices e in assert (Array.length indices = 1); unsafe_view @@ Fp (Fp.To_ubv, (indices.(0), args.(0), args.(1))) end let assert' ?name b = Option.iter (fun name -> term_set_symbol b name) name; mk_assert t b type nonrec result = result = Sat | Unsat | Unknown let pp_result ppf = function | Sat -> Format.pp_print_string ppf "sat" | Unsat -> Format.pp_print_string ppf "unsat" | Unknown -> Format.pp_print_string ppf "unknown" let check_sat = let no_interruption = (Fun.id, 0) in fun ?interrupt () -> (match interrupt with | None -> ignore @@ set_termination_callback t no_interruption | Some terminate -> ignore @@ set_termination_callback t terminate); check_sat t let timeout = let check timestamp = Float.compare (Unix.gettimeofday ()) timestamp in fun timeout (f : ?interrupt:('a -> int) * 'a -> 'b) -> let timestamp = Unix.gettimeofday () +. timeout in f ~interrupt:(check, timestamp) let get_value e = if term_is_value e then e else get_value t e end module Once = Session module Incremental () = struct include Session () let () = set_option t Incremental 1 let push level = push t level let pop level = pop t level let check_sat_assuming ?interrupt ?names assumptions = Option.iter (fun names -> Array.iter2 (fun n a -> term_set_symbol a n) names assumptions) names; Array.iter (mk_assume t) assumptions; check_sat ?interrupt () let get_unsat_assumptions () = get_unsat_assumptions t end module Unsat_core () = struct include Incremental () let () = set_option t Produce_unsat_cores 1 let get_unsat_core () = get_unsat_core t end