Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
bitwuzla_cxx.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
(**************************************************************************) (* Bitwuzla: Satisfiability Modulo Theories (SMT) solver. *) (* *) (* Copyright (C) 2023 by the authors listed in the AUTHORS file at *) (* https://github.com/bitwuzla/bitwuzla/blob/main/AUTHORS *) (* *) (* This file is part of Bitwuzla under the MIT license. *) (* See COPYING for more information at *) (* https://github.com/bitwuzla/bitwuzla/blob/main/COPYING *) (**************************************************************************) external copyright : unit -> string = "ocaml_bitwuzla_cxx_copyright" external version : unit -> string = "ocaml_bitwuzla_cxx_version" external init_format : unit -> unit = "ocaml_bitwuzla_cxx_init_format" let () = Callback.register "Format.pp_open_vbox" Format.pp_open_vbox; Callback.register "Format.pp_print_string" Format.pp_print_string; Callback.register "Format.pp_print_char" Format.pp_print_char; Callback.register "Format.pp_print_space" Format.pp_print_space; Callback.register "Format.pp_close_box" Format.pp_close_box; init_format () external mk_array_sort : Manager.t -> Sort.t -> Sort.t -> Sort.t = "ocaml_bitwuzla_cxx_mk_array_sort" external mk_bool_sort : Manager.t -> Sort.t = "ocaml_bitwuzla_cxx_mk_bool_sort" external mk_bv_sort : Manager.t -> (int[@untagged]) -> Sort.t = "ocaml_bitwuzla_cxx_mk_bv_sort" "native_bitwuzla_cxx_mk_bv_sort" external mk_fp_sort : Manager.t -> (int[@untagged]) -> (int[@untagged]) -> Sort.t = "ocaml_bitwuzla_cxx_mk_fp_sort" "native_bitwuzla_cxx_mk_fp_sort" external mk_fun_sort : Manager.t -> Sort.t array -> Sort.t -> Sort.t = "ocaml_bitwuzla_cxx_mk_fun_sort" external mk_rm_sort : Manager.t -> Sort.t = "ocaml_bitwuzla_cxx_mk_rm_sort" external mk_uninterpreted_sort : Manager.t -> ?symbol:string -> unit -> Sort.t = "ocaml_bitwuzla_cxx_mk_uninterpreted_sort" external mk_true : Manager.t -> Term.t = "ocaml_bitwuzla_cxx_mk_true" external mk_false : Manager.t -> Term.t = "ocaml_bitwuzla_cxx_mk_false" external mk_bv_zero : Manager.t -> Sort.t -> Term.t = "ocaml_bitwuzla_cxx_mk_bv_zero" external mk_bv_one : Manager.t -> Sort.t -> Term.t = "ocaml_bitwuzla_cxx_mk_bv_one" external mk_bv_ones : Manager.t -> Sort.t -> Term.t = "ocaml_bitwuzla_cxx_mk_bv_ones" external mk_bv_min_signed : Manager.t -> Sort.t -> Term.t = "ocaml_bitwuzla_cxx_mk_bv_min_signed" external mk_bv_max_signed : Manager.t -> Sort.t -> Term.t = "ocaml_bitwuzla_cxx_mk_bv_max_signed" external mk_bv_value : Manager.t -> Sort.t -> string -> (int[@untagged]) -> Term.t = "ocaml_bitwuzla_cxx_mk_bv_value" "native_bitwuzla_cxx_mk_bv_value" external mk_bv_value_int : Manager.t -> Sort.t -> (int[@untagged]) -> Term.t = "ocaml_bitwuzla_cxx_mk_bv_value_int" "native_bitwuzla_cxx_mk_bv_value_int64" external mk_bv_value_int64 : Manager.t -> Sort.t -> (int64[@unboxed]) -> Term.t = "ocaml_bitwuzla_cxx_mk_bv_value_int64" "native_bitwuzla_cxx_mk_bv_value_int64" external mk_fp_pos_zero : Manager.t -> Sort.t -> Term.t = "ocaml_bitwuzla_cxx_mk_fp_pos_zero" external mk_fp_neg_zero : Manager.t -> Sort.t -> Term.t = "ocaml_bitwuzla_cxx_mk_fp_neg_zero" external mk_fp_pos_inf : Manager.t -> Sort.t -> Term.t = "ocaml_bitwuzla_cxx_mk_fp_pos_inf" external mk_fp_neg_inf : Manager.t -> Sort.t -> Term.t = "ocaml_bitwuzla_cxx_mk_fp_neg_inf" external mk_fp_nan : Manager.t -> Sort.t -> Term.t = "ocaml_bitwuzla_cxx_mk_fp_nan" external mk_fp_value : Manager.t -> Term.t -> Term.t -> Term.t -> Term.t = "ocaml_bitwuzla_cxx_mk_fp_value" external mk_fp_value_from_real : Manager.t -> Sort.t -> Term.t -> string -> Term.t = "ocaml_bitwuzla_cxx_mk_fp_value_from_real" external mk_fp_value_from_rational : Manager.t -> Sort.t -> Term.t -> string -> string -> Term.t = "ocaml_bitwuzla_cxx_mk_fp_value_from_rational" external mk_rm_value : Manager.t -> (int[@untagged]) -> Term.t = "ocaml_bitwuzla_cxx_mk_rm_value" "native_bitwuzla_cxx_mk_rm_value" external mk_term1 : Manager.t -> (int[@untagged]) -> Term.t -> Term.t = "ocaml_bitwuzla_cxx_mk_term1" "native_bitwuzla_cxx_mk_term1" external mk_term2 : Manager.t -> (int[@untagged]) -> Term.t -> Term.t -> Term.t = "ocaml_bitwuzla_cxx_mk_term2" "native_bitwuzla_cxx_mk_term2" external mk_term3 : Manager.t -> (int[@untagged]) -> Term.t -> Term.t -> Term.t -> Term.t = "ocaml_bitwuzla_cxx_mk_term3" "native_bitwuzla_cxx_mk_term3" external mk_term1_indexed1 : Manager.t -> (int[@untagged]) -> Term.t -> (int[@untagged]) -> Term.t = "ocaml_bitwuzla_cxx_mk_term1_indexed1" "native_bitwuzla_cxx_mk_term1_indexed1" external mk_term1_indexed2 : Manager.t -> (int[@untagged]) -> Term.t -> (int[@untagged]) -> (int[@untagged]) -> Term.t = "ocaml_bitwuzla_cxx_mk_term1_indexed2" "native_bitwuzla_cxx_mk_term1_indexed2" external mk_term2_indexed1 : Manager.t -> (int[@untagged]) -> Term.t -> Term.t -> (int[@untagged]) -> Term.t = "ocaml_bitwuzla_cxx_mk_term2_indexed1" "native_bitwuzla_cxx_mk_term2_indexed1" external mk_term2_indexed2 : Manager.t -> (int[@untagged]) -> Term.t -> Term.t -> (int[@untagged]) -> (int[@untagged]) -> Term.t = "ocaml_bitwuzla_cxx_mk_term2_indexed2" "native_bitwuzla_cxx_mk_term2_indexed2" external mk_term : Manager.t -> (int[@untagged]) -> Term.t array -> int array -> Term.t = "ocaml_bitwuzla_cxx_mk_term" "native_bitwuzla_cxx_mk_term" external mk_const : Manager.t -> ?symbol:string -> Sort.t -> Term.t = "ocaml_bitwuzla_cxx_mk_const" external mk_const_array : Manager.t -> Sort.t -> Term.t -> Term.t = "ocaml_bitwuzla_cxx_mk_const_array" external mk_var : Manager.t -> ?symbol:string -> Sort.t -> Term.t = "ocaml_bitwuzla_cxx_mk_var" external substitute_term : Manager.t -> Term.t -> (Term.t * Term.t) array -> Term.t = "ocaml_bitwuzla_cxx_substitute_term" external substitute_terms : Manager.t -> Term.t array -> (Term.t * Term.t) array -> unit = "ocaml_bitwuzla_cxx_substitute_terms" module Options = Options module type S = sig module Sort : sig (** {1:sort Sort} *) type t (** A Bitwuzla sort. *) (** {2:sort_util Util} *) val hash : t -> int (** [hash t] compute the hash value for a sort. @param t The sort. @return The hash value of the sort. *) val equal : t -> t -> bool (** [equal a b] Syntactical equality operator. @param a The first sort. @param b The second sort. @return True if the given sorts are equal. *) val compare : t -> t -> int (** [compare a b] Syntactical comparison operator. @param a The first sort. @param b The second sort. @return Zero if the given sorts are equal, a positive number if [a] > [b], a negative number otherwise. *) val pp : Format.formatter -> t -> unit (** [pp formatter t] print sort. @param t The sort. @param formatter The outpout formatter. *) val to_string : t -> string (** [to_string t] get string representation of this sort. @return String representation of this sort. *) (** {2:sort_query Query} *) val id : t -> int64 (** [id t] get the id of this sort. @param t The sort. @return The id value of the sort. *) val bv_size : t -> int (** [bv_size t] get the size of a bit-vector sort. Requires that given sort is a bit-vector sort. @param t The sort. @return The size of the bit-vector sort. *) val fp_exp_size : t -> int (** [fp_exp_size sort] get the exponent size of a floating-point sort. Requires that given sort is a floating-point sort. @param t The sort. @return The exponent size of the floating-point sort. *) val fp_sig_size : t -> int (** [fp_sig_size t] get the significand size of a floating-point sort. Requires that given sort is a floating-point sort. @param t The sort. @return The significand size of the floating-point sort. *) val array_index : t -> t (** [array_index t] get the index sort of an array sort. Requires that given sort is an array sort. @param t The sort. @return The index sort of the array sort. *) val array_element : t -> t (** [array_element t] get the element sort of an array sort. Requires that given sort is an array sort. @param t The sort. @return The element sort of the array sort. *) val fun_domain : t -> t array (** [fun_domain_sorts t] get the domain sorts of a function sort. Requires that given sort is a function sort. @param t The sort. @return The domain sorts of the function sort as an array of sort. *) val fun_codomain : t -> t (** [fun_codomain t] get the codomain sort of a function sort. Requires that given sort is a function sort. @param t The sort. @return The codomain sort of the function sort. *) val fun_arity : t -> int (** [fun_arity t] get the arity of a function sort. @param t The sort. @return The number of arguments of the function sort. *) val uninterpreted_symbol : t -> string (** [uninterpreted_symbol t] get the symbol of an uninterpreted sort. @param t The sort. @return The symbol. @raise Not_found if no symbol is defined. *) val is_array : t -> bool (** [is_array t] determine if a sort is an array sort. @param t The sort. @return [true] if [t] is an array sort. *) val is_bool : t -> bool (** [is_bool t] determine if a sort is a Boolean sort. @param t The sort. @return [true] if [t] is a Boolean sort. *) val is_bv : t -> bool (** [is_bv t] determine if a sort is a bit-vector sort. @param t The sort. @return [true] if [t] is a bit-vector sort. *) val is_fp : t -> bool (** [is_fp t] determine if a sort is a floating-point sort. @param t The sort. @return [true] if [t] is a floating-point sort. *) val is_fun : t -> bool (** [is_fun t] determine if a sort is a function sort. @param t The sort. @return [true] if [t] is a function sort. *) val is_rm : t -> bool (** [is_rm t] determine if a sort is a Roundingmode sort. @param t The sort. @return [true] if [t] is a Roundingmode sort. *) val is_uninterpreted : t -> bool (** [is_uninterpreted t] determine if a sort is an uninterpreted sort. @param t The sort. @return [true] if [t] is an uninterpreted sort. *) end module RoundingMode : sig (** Rounding mode for floating-point operations. For some floating-point operations, infinitely precise results may not be representable in a given format. Hence, they are rounded modulo one of five rounding modes to a representable floating-point number. The following rounding modes follow the SMT-LIB theory for floating-point arithmetic, which in turn is based on IEEE Standard 754. The rounding modes are specified in Sections 4.3.1 and 4.3.2 of the IEEE Standard 754. *) type t = | Rne (** Round to the nearest even number. If the two nearest floating-point numbers bracketing an unrepresentable infinitely precise result are equally near, the one with an even least significant digit will be delivered. SMT-LIB: [RNE] roundNearestTiesToEven *) | Rna (** Round to the nearest number away from zero. If the two nearest floating-point numbers bracketing an unrepresentable infinitely precise result are equally near, the one with larger magnitude will be selected. SMT-LIB: [RNA] roundNearestTiesToAway *) | Rtn (** Round towards negative infinity (-oo). The result shall be the format’s floating-point number (possibly -oo) closest to and no less than the infinitely precise result. SMT-LIB: [RTN] roundTowardNegative *) | Rtp (** Round towards positive infinity (+oo). The result shall be the format’s floating-point number (possibly +oo) closest to and no less than the infinitely precise result. SMT-LIB: [RTP] roundTowardPositive *) | Rtz (** Round towards zero. The result shall be the format’s floating-point number closest to and no greater in magnitude than the infinitely precise result. SMT-LIB: [RTZ] roundTowardZero *) val to_string : t -> string (** [to_string t] get string representation of this rounding mode. @return String representation of this rounding mode. *) end module Kind : sig (** The term kind. *) type t = | Constant (** First order constant. *) | Const_array (** Constant array. *) | Value (** Value. *) | Variable (** Bound variable. *) | And (** Boolean and. SMT-LIB: [and] *) | Distinct (** Disequality. SMT-LIB: [distinct] *) | Equal (** Equality. SMT-LIB: [=] *) | Iff (** Boolean if and only if. SMT-LIB: [=] *) | Implies (** Boolean implies. SMT-LIB: [=>] *) | Not (** Boolean not. SMT-LIB: [not] *) | Or (** Boolean or. SMT-LIB: [or] *) | Xor (** Boolean xor. SMT-LIB: [xor] *) | Ite (** If-then-else. SMT-LIB: [ite] *) | Exists (** Existential quantification. SMT-LIB: [exists] *) | Forall (** Universal quantification. SMT-LIB: [forall] *) | Apply (** Function application. *) | Lambda (** Lambda. *) | Select (** Array select. SMT-LIB: [select] *) | Store (** Array store. SMT-LIB: [store] *) | Bv_add (** Bit-vector addition. SMT-LIB: [bvadd] *) | Bv_and (** Bit-vector and. SMT-LIB: [bvand] *) | Bv_ashr (** Bit-vector arithmetic right shift. SMT-LIB: [bvashr] *) | Bv_comp (** Bit-vector comparison. SMT-LIB: [bvcomp] *) | Bv_concat (** Bit-vector concat. SMT-LIB: [concat] *) | Bv_dec (** Bit-vector decrement. Decrement by one. *) | Bv_inc (** Bit-vector increment. Increment by one. *) | Bv_mul (** Bit-vector multiplication. SMT-LIB: [bvmul] *) | Bv_nand (** Bit-vector nand. SMT-LIB: [bvnand] *) | Bv_neg (** Bit-vector negation (two's complement). SMT-LIB: [bvneg] *) | Bv_nego (** Bit-vector negation overflow test. Predicate indicating if bit-vector negation produces an overflow. SMT-LIB: [bvnego] *) | Bv_nor (** Bit-vector nor. SMT-LIB: [bvnor] *) | Bv_not (** Bit-vector not (one's complement). SMT-LIB: [bvnot] *) | Bv_or (** Bit-vector or. SMT-LIB: [bvor] *) | Bv_redand (** Bit-vector and reduction. Bit-wise {b and} reduction, all bits are {b and}'ed together into a single bit. This corresponds to bit-wise {b and} reduction as known from Verilog. *) | Bv_redor (** Bit-vector reduce or. Bit-wise {b or} reduction, all bits are {b or}'ed together into a single bit. This corresponds to bit-wise {b or} reduction as known from Verilog. *) | Bv_redxor (** Bit-vector reduce xor. Bit-wise {b xor} reduction, all bits are {b xor}'ed together into a single bit. This corresponds to bit-wise {b xor} reduction as known from Verilog. *) | Bv_rol (** Bit-vector rotate left (not indexed). This is a non-indexed variant of SMT-LIB [rotate_left]. *) | Bv_ror (** Bit-vector rotate right. This is a non-indexed variant of SMT-LIB [rotate_right]. *) | Bv_saddo (** Bit-vector signed addition overflow test. Single bit to indicate if signed addition produces an overflow. *) | Bv_sdivo (** Bit-vector signed division overflow test. Single bit to indicate if signed division produces an overflow. *) | Bv_sdiv (** Bit-vector signed division. SMT-LIB: [bvsdiv] *) | Bv_sge (** Bit-vector signed greater than or equal. SMT-LIB: [bvsge] *) | Bv_sgt (** Bit-vector signed greater than. SMT-LIB: [bvsgt] *) | Bv_shl (** Bit-vector logical left shift. SMT-LIB: [bvshl] *) | Bv_shr (** Bit-vector logical right shift. SMT-LIB: [bvshr] *) | Bv_sle (** Bit-vector signed less than or equal. SMT-LIB: [bvsle] *) | Bv_slt (** Bit-vector signed less than. SMT-LIB: [bvslt] *) | Bv_smod (** Bit-vector signed modulo. SMT-LIB: [bvsmod] *) | Bv_smulo (** Bit-vector signed multiplication overflow test. SMT-LIB: [bvsmod] *) | Bv_srem (** Bit-vector signed remainder. SMT-LIB: [bvsrem] *) | Bv_ssubo (** Bit-vector signed subtraction overflow test. Single bit to indicate if signed subtraction produces an overflow. *) | Bv_sub (** Bit-vector subtraction. SMT-LIB: [bvsub] *) | Bv_uaddo (** Bit-vector unsigned addition overflow test. Single bit to indicate if unsigned addition produces an overflow. *) | Bv_udiv (** Bit-vector unsigned division. SMT-LIB: [bvudiv] *) | Bv_uge (** Bit-vector unsigned greater than or equal. SMT-LIB: [bvuge] *) | Bv_ugt (** Bit-vector unsigned greater than. SMT-LIB: [bvugt] *) | Bv_ule (** Bit-vector unsigned less than or equal. SMT-LIB: [bvule] *) | Bv_ult (** Bit-vector unsigned less than. SMT-LIB: [bvult] *) | Bv_umulo (** Bit-vector unsigned multiplication overflow test. Single bit to indicate if unsigned multiplication produces an overflow. *) | Bv_urem (** Bit-vector unsigned remainder. SMT-LIB: [bvurem] *) | Bv_usubo (** Bit-vector unsigned subtraction overflow test. Single bit to indicate if unsigned subtraction produces an overflow. *) | Bv_xnor (** Bit-vector xnor. SMT-LIB: [bvxnor] *) | Bv_xor (** Bit-vector xor. SMT-LIB: [bvxor] *) | Bv_extract (** Bit-vector extract. SMT-LIB: [extract] (indexed) *) | Bv_repeat (** Bit-vector repeat. SMT-LIB: [repeat] (indexed) *) | Bv_roli (** Bit-vector rotate left by integer. SMT-LIB: [rotate_left] (indexed) *) | Bv_rori (** Bit-vector rotate right by integer. SMT-LIB: [rotate_right] (indexed) *) | Bv_sign_extend (** Bit-vector sign extend. SMT-LIB: [sign_extend] (indexed) *) | Bv_zero_extend (** Bit-vector zero extend. SMT-LIB: [zero_extend] (indexed) *) | Fp_abs (** Floating-point absolute value. SMT-LIB: [fp.abs] *) | Fp_add (** Floating-point addition. SMT-LIB: [fp.add] *) | Fp_div (** Floating-point division. SMT-LIB: [fp.div] *) | Fp_equal (** Floating-point equality. SMT-LIB: [fp.eq] *) | Fp_fma (** Floating-point fused multiplcation and addition. SMT-LIB: [fp.fma] *) | Fp_fp (** Floating-point IEEE 754 value. SMT-LIB: [fp] *) | Fp_geq (** Floating-point greater than or equal. SMT-LIB: [fp.geq] *) | Fp_gt (** Floating-point greater than. SMT-LIB: [fp.gt] *) | Fp_is_inf (** Floating-point is infinity tester. SMT-LIB: [fp.isInfinite] *) | Fp_is_nan (** Floating-point is Nan tester. SMT-LIB: [fp.isNaN] *) | Fp_is_neg (** Floating-point is negative tester. SMT-LIB: [fp.isNegative] *) | Fp_is_normal (** Floating-point is normal tester. SMT-LIB: [fp.isNormal] *) | Fp_is_pos (** Floating-point is positive tester. SMT-LIB: [fp.isPositive] *) | Fp_is_subnormal (** Floating-point is subnormal tester. SMT-LIB: [fp.isSubnormal] *) | Fp_is_zero (** Floating-point is zero tester. SMT-LIB: [fp.isZero] *) | Fp_leq (** Floating-point less than or equal. SMT-LIB: [fp.leq] *) | Fp_lt (** Floating-point less than. SMT-LIB: [fp.lt] *) | Fp_max (** Floating-point max. SMT-LIB: [fp.max] *) | Fp_min (** Floating-point min. SMT-LIB: [fp.min] *) | Fp_mul (** Floating-point multiplcation. SMT-LIB: [fp.mul] *) | Fp_neg (** Floating-point negation. SMT-LIB: [fp.neg] *) | Fp_rem (** Floating-point remainder. SMT-LIB: [fp.rem] *) | Fp_rti (** Floating-point round to integral. SMT-LIB: [fp.roundToIntegral] *) | Fp_sqrt (** Floating-point round to square root. SMT-LIB: [fp.sqrt] *) | Fp_sub (** Floating-point round to subtraction. SMT-LIB: [fp.sqrt] *) | Fp_to_fp_from_bv (** Floating-point to_fp from IEEE 754 bit-vector. SMT-LIB: [to_fp] (indexed) *) | Fp_to_fp_from_fp (** Floating-point to_fp from floating-point. SMT-LIB: [to_fp] (indexed) *) | Fp_to_fp_from_sbv (** Floating-point to_fp from signed bit-vector value. SMT-LIB: [to_fp] (indexed) *) | Fp_to_fp_from_ubv (** Floating-point to_fp from unsigned bit-vector value. SMT-LIB: [to_fp_unsigned] (indexed) *) | Fp_to_sbv (** Floating-point to_sbv. SMT-LIB: [fp.to_sbv] (indexed) *) | Fp_to_ubv (** Floating-point to_ubv. SMT-LIB: [fp.to_ubv] (indexed) *) val to_string : t -> string (** [to_string t] get string representation of this kind. @return String representation of this kind. *) end module Term : sig (** {1:term Term} *) type t (** A Bitwuzla term. *) (** {2:sort_util Util} *) val hash : t -> int (** [hash t] compute the hash value for a term. @param t The term. @return The hash value of the term. *) val equal : t -> t -> bool (** [equal a b] Syntactical equality operator. @param a The first term. @param b The second term. @return True if the given terms are equal. *) val compare : t -> t -> int (** [compare a b] Syntactical comparison operator. @param a The first term. @param b The second term. @return Zero if the given term are equal, a positive number if [a] > [b], a negative number otherwise. *) val pp : Format.formatter -> t -> unit (** [pp formatter t] print term. (alias for {!val:pp_smt2}[ 2]) @param formatter The outpout formatter. @param t The term. *) val pp_smt2 : bv_format:int -> Format.formatter -> t -> unit (** [pp_smt2 base formatter t] print term in SMTlib format. @param bv_format The bit-vector number format: [2] for binary, [10] for decimal and [16] for hexadecimal. @param formatter The output formatter. @param t The term. *) val to_string : ?bv_format:int -> t -> string (** [to_string t ~bv_format] get string representation of this term. @param t The term. @param bv_format The bit-vector number format: [2] for binary \[{b default}\], [10] for decimal and [16] for hexadecimal. @return String representation of this term. *) (** {2:term_query Query} *) val id : t -> int64 (** [id t] get the id of this term. @param t The term. @return The id value of the term. *) val kind : t -> Kind.t (** [kind t] get the kind of a term. @param t The term. @return The kind of the given term. *) val sort : t -> Sort.t (** [sort t] get the sort of a term. @param t The term. @return The sort of the term. *) val num_children : t -> int (** [num_children t] get the number of child terms of a term. @param t The term. @return The number children of [t]. *) val children : t -> t array (** [children t] get the child terms of a term. @param t The term. @return The children of [t] as an array of terms. *) val get : t -> int -> t (** [get t i] return child at position [i]. Only valid to call if [num_children t > 0]. @param i The position of the child. @return The child node at position [i]. *) val num_indices : t -> int (** [num_indices t] get the number of indices of an indexed term. Requires that given term is an indexed term. @param t The term. @return The number of indices of [t]. *) val indices : t -> int array (** [indices t] get the indices of an indexed term. Requires that given term is an indexed term. @param t The term. @return The children of [t] as an array of terms. *) val symbol : t -> string (** [symbol t] get the symbol of a term. @param t The term. @return The symbol of [t]. @raise Not_found if no symbol is defined. *) val is_const : t -> bool (** [is_const t] determine if a term is a constant. @param t The term. @return [true] if [t] is a constant. *) val is_variable : t -> bool (** [is_variable t] determine if a term is a variable. @param t The term. @return [true] if [t] is a variable. *) val is_value : t -> bool (** [is_value t] determine if a term is a value. @param t The term. @return [true] if [t] is a value. *) val is_bv_value_zero : t -> bool (** [is_bv_value_zero t] determine if a term is a bit-vector value representing zero. @param t The term. @return [true] if [t] is a bit-vector zero value. *) val is_bv_value_one : t -> bool (** [is_bv_value_one t] determine if a term is a bit-vector value representing one. @param t The term. @return [true] if [t] is a bit-vector one value. *) val is_bv_value_ones : t -> bool (** [is_bv_value_ones t] determine if a term is a bit-vector value with all bits set to one. @param t The term. @return [true] if [t] is a bit-vector value with all bits set to one. *) val is_bv_value_min_signed : t -> bool (** [is_bv_value_min_signed t] determine if a term is a bit-vector minimum signed value. @param t The term. @return [true] if [t] is a bit-vector value with the most significant bit set to 1 and all other bits set to 0. *) val is_bv_value_max_signed : t -> bool (** [is_bv_value_max_signed t] determine if a term is a bit-vector maximum signed value. @param t The term. @return [true] if [t] is a bit-vector value with the most significant bit set to 0 and all other bits set to 1. *) val is_fp_value_pos_zero : t -> bool (** [is_fp_value_pos_zero t] determine if a term is a floating-point positive zero (+zero) value. @param t The term. @return [true] if [t] is a floating-point +zero value. *) val is_fp_value_neg_zero : t -> bool (** [is_fp_value_neg_zero t] determine if a term is a floating-point value negative zero (-zero). @param t The term. @return [true] if [t] is a floating-point value negative zero. *) val is_fp_value_pos_inf : t -> bool (** [is_fp_value_pos_inf t] determine if a term is a floating-point positive infinity (+oo) value. @param t The term. @return [true] if [t] is a floating-point +oo value. *) val is_fp_value_neg_inf : t -> bool (** [is_fp_value_neg_inf t] determine if a term is a floating-point negative infinity (-oo) value. @param t The term. @return [true] if [t] is a floating-point -oo value. *) val is_fp_value_nan : t -> bool (** [is_fp_value_nan t] determine if a term is a floating-point NaN value. @param t The term. @return [true] if [t] is a floating-point NaN value. *) val is_rm_value_rna : t -> bool (** [is_rm_value_rna t] determine if a term is a rounding mode RNA value. @param t The term. @return [true] if [t] is a rounding mode RNA value. *) val is_rm_value_rne : t -> bool (** [is_rm_value_rna t] determine if a term is a rounding mode RNE value. @param t The term. @return [true] if [t] is a rounding mode RNE value. *) val is_rm_value_rtn : t -> bool (** [is_rm_value_rna t] determine if a term is a rounding mode RTN value. @param t The term. @return [true] if [t] is a rounding mode RTN value. *) val is_rm_value_rtp : t -> bool (** [is_rm_value_rna t] determine if a term is a rounding mode RTP value. @param t The term. @return [true] if [t] is a rounding mode RTP value. *) val is_rm_value_rtz : t -> bool (** [is_rm_value_rna t] determine if a term is a rounding mode RTZ value. @param t The term. @return [true] if [t] is a rounding mode RTZ value. *) type _ cast = | Bool : bool cast (** for Boolean values *) | RoundingMode : RoundingMode.t cast (** for rounding mode values *) | String : { base : int } -> string cast (** for any value (Boolean, RoundingMode, bit-vector and floating-point) *) | IEEE_754 : (string * string * string) cast (** for floating-point values as strings for sign bit, exponent and significand *) | Z : Z.t cast (** for bit-vector *) val value : 'a cast -> t -> 'a (** [value kind t] get value from value term. @param kind The type of the value representation. @return The value of [t] in a given representation. *) end module Result : sig (** A satisfiability result. *) type t = Sat (** sat *) | Unsat (** unsat *) | Unknown (** unknown *) val to_string : t -> string (** [to_string t] get string representation of this result. @return String representation of this result. *) end module Solver : sig (** {1 Solver} *) type t (** The Bitwuzla solver. *) val configure_terminator : t -> (unit -> bool) option -> unit (** [configure_terminator t f] configure a termination callback function. If terminator has been connected, Bitwuzla calls this function periodically to determine if the connected instance should be terminated. @param t The Bitwuzla instance. @param f The callback function, returns [true] if [t] should be terminated. *) val create : Options.t -> t (** [create options] create a new Bitwuzla instance. The returned instance can be deleted earlier via {!val:unsafe_delete}. @param options The associated options instance. Options must be configured at this point. @return The created Bitwuzla instance. *) (** {2 Formula} *) val push : t -> int -> unit (** [push t nlevels] push context levels. @param t The Bitwuzla instance. @param nlevels The number of context levels to push. *) val pop : t -> int -> unit (** [pop t nlevels] pop context levels. @param t The Bitwuzla instance. @param nlevels The number of context levels to pop. *) val assert_formula : t -> Term.t -> unit (** [mk_assert t term] assert formula. @param t The Bitwuzla instance. @param term The formula to assert. *) val get_assertions : t -> Term.t array (** [get_assertions t] get the set of currently asserted formulas. @return The assertion formulas. *) val pp_formula : Format.formatter -> t -> unit (** [pp_formula formatter t] print the current input formula. @param formatter The output formatter. @param t The Bitwuzla instance. *) (** {2 Check} *) val simplify : t -> unit (** [simplify t] simplify the current input formula. @param t The Bitwuzla instance. *) val check_sat : ?assumptions:Term.t array -> t -> Result.t (** [check_sat ~assumptions t] check satisfiability of current input formula. An input formula consists of assertions added via {!val:assert_formula}. The search for a solution can by guided by making assumptions via [assumptions]. Assertions and assumptions are combined via Boolean [and]. @param t The Bitwuzla instance. @return {!constructor:Sat} if the input formula is satisfiable and {!constructor:Unsat} if it is unsatisfiable, and {!constructor:Unknown} when neither satisfiability nor unsatisfiability was determined. This can happen when [t] was terminated via a termination callback. *) (** {2 Sat} *) val get_value : t -> Term.t -> Term.t (** [get_value t term] get a term representing the model value of a given term. Requires that the last {!val:check_sat} query returned [Sat]. @param t The Bitwuzla instance. @param term The term to query a model value for. @return A term representing the model value of term [term]. *) (** {2 Unsat} *) val is_unsat_assumption : t -> Term.t -> bool (** [is_unsat_assumption t term] determine if an assumption is an unsat assumption. Unsat assumptions are assumptions that force an input formula to become unsatisfiable. Unsat assumptions handling in Bitwuzla is analogous to failed assumptions in MiniSAT. Requires that unsat assumption generation has been enabled via {!val:Options.set}. Requires that the last {!val:check_sat} query returned [Unsat]. @param t The Bitwuzla instance. @param term The assumption to check for. @return [true] if given assumption is an unsat assumption. *) val get_unsat_assumptions : t -> Term.t array (** [get_unsat_assumptions t] get the set of unsat assumptions. Unsat assumptions are assumptions that force an input formula to become unsatisfiable. Unsat assumptions handling in Bitwuzla is analogous to failed assumptions in MiniSAT. Requires that unsat assumption generation has been enabled via {!val:Options.set}. Requires that the last {!val:check_sat} query returned [Unsat]. @param t The Bitwuzla instance. @return An array with unsat assumptions. *) val get_unsat_core : t -> Term.t array (** [get_unsat_core t] get the set unsat core (unsat assertions). The unsat core consists of the set of assertions that force an input formula to become unsatisfiable. Requires that unsat core generation has been enabled via {!val:Options.set}. Requires that the last {!val:check_sat} query returned [Unsat]. @param t The Bitwuzla instance. @return An array with unsat assertions. *) (** {2 Expert} *) val unsafe_delete : t -> unit (** [delete t] delete a Bitwuzla instance. UNSAFE: call this ONLY to release the resources earlier if the instance is about to be garbage collected. @param t The Bitwuzla instance to delete. *) val pp_statistics : Format.formatter -> t -> unit end (** {2:sort_constructor Sort constructor} *) val mk_array_sort : Sort.t -> Sort.t -> Sort.t (** [mk_array_sort index element] create an array sort. @param index The index sort of the array sort. @param element The element sort of the array sort. @return An array sort which maps sort [index] to sort [element]. *) val mk_bool_sort : unit -> Sort.t (** [mk_bool_sort ()] create a Boolean sort. A Boolean sort is a bit-vector sort of size 1. @return A Boolean sort. *) val mk_bv_sort : int -> Sort.t (** [mk_bv_sort size] create a bit-vector sort of given size. @param size The size of the bit-vector sort. @return A bit-vector sort of given size. *) val mk_fp_sort : int -> int -> Sort.t (** [mk_fp_sort exp_size sig_size] create a floating-point sort of given exponent and significand size. @param exp_size The size of the exponent. @param sig_size The size of the significand (including sign bit). @return A floating-point sort of given format. *) val mk_fun_sort : Sort.t array -> Sort.t -> Sort.t (** [mk_fun_sort domain codomain] create a function sort. @param domain The domain sorts (the sorts of the arguments). @param codomain The codomain sort (the sort of the return value). @return A function sort of given domain and codomain sorts. *) val mk_rm_sort : unit -> Sort.t (** [mk_rm_sort ()] create a Roundingmode sort. @return A Roundingmode sort. *) val mk_uninterpreted_sort : ?symbol:string -> unit -> Sort.t (** [mk_uninterpreted_sort name] create an uninterpreted sort. Only 0-arity uninterpreted sorts are supported. @param symbol The symbol of the sort. @return An uninterpreted sort. *) (** {2:term_constructor Term constructor} *) (** {3 Value} *) val mk_true : unit -> Term.t (** [mk_true ()] create a true value. This creates a bit-vector value 1 of size 1. @return A term representing the bit-vector value 1 of size 1. *) val mk_false : unit -> Term.t (** [mk_false ()] create a false value. This creates a bit-vector value 0 of size 1. @return A term representing the bit-vector value 0 of size 1. *) val mk_bv_zero : Sort.t -> Term.t (** [mk_bv_zero sort] create a bit-vector value zero. @param sort The sort of the value. @return A term representing the bit-vector value 0 of given sort. *) val mk_bv_one : Sort.t -> Term.t (** [mk_bv_one sort] create a bit-vector value one. @param sort The sort of the value. @return A term representing the bit-vector value 1 of given sort. *) val mk_bv_ones : Sort.t -> Term.t (** [mk_bv_ones sort] create a bit-vector value where all bits are set to 1. @param sort The sort of the value. @return A term representing the bit-vector value of given sort where all bits are set to 1. *) val mk_bv_min_signed : Sort.t -> Term.t (** [mk_bv_min_signed sort] create a bit-vector minimum signed value. @param sort The sort of the value. @return A term representing the bit-vector value of given sort where the MSB is set to 1 and all remaining bits are set to 0. *) val mk_bv_max_signed : Sort.t -> Term.t (** [mk_bv_max_signed sort] create a bit-vector maximum signed value. @param sort The sort of the value. @return A term representing the bit-vector value of given sort where the MSB is set to 0 and all remaining bits are set to 1. *) val mk_bv_value : Sort.t -> string -> int -> Term.t (** [mk_bv_value sort value base] create a bit-vector value from its string representation. Parameter [base] determines the base of the string representation. Given value must fit into a bit-vector of given size (sort). @param sort The sort of the value. @param value A string representing the value. @param base The base in which the string is given. @return A term representing the bit-vector value of given sort. *) val mk_bv_value_int : Sort.t -> int -> Term.t (** [mk_bv_value_int sort value] create a bit-vector value from its unsigned integer representation. If given value does not fit into a bit-vector of given size (sort), the value is truncated to fit. @param sort The sort of the value. @param value The unsigned integer representation of the bit-vector value. @return A term representing the bit-vector value of given sort. *) val mk_bv_value_int64 : Sort.t -> int64 -> Term.t (** [mk_bv_value_int64 sort value] create a bit-vector value from its unsigned integer representation. If given value does not fit into a bit-vector of given size (sort), the value is truncated to fit. @param sort The sort of the value. @param value The unsigned integer representation of the bit-vector value. @return A term representing the bit-vector value of given sort. *) val mk_fp_pos_zero : Sort.t -> Term.t (** [mk_fp_pos_zero sort] create a floating-point positive zero value (SMT-LIB: [+zero]). @param sort The sort of the value. @return A term representing the floating-point positive zero value of given floating-point sort. *) val mk_fp_neg_zero : Sort.t -> Term.t (** [mk_fp_neg_zero sort] create a floating-point negative zero value (SMT-LIB: [-zero]). @param sort The sort of the value. @return A term representing the floating-point negative zero value of given floating-point sort. *) val mk_fp_pos_inf : Sort.t -> Term.t (** [mk_fp_pos_inf sort] create a floating-point positive infinity value (SMT-LIB: [+oo]). @param sort The sort of the value. @return A term representing the floating-point positive infinity value of given floating-point sort. *) val mk_fp_neg_inf : Sort.t -> Term.t (** [mk_fp_neg_inf sort] create a floating-point negative infinity value (SMT-LIB: [-oo]). @param sort The sort of the value. @return A term representing the floating-point negative infinity value of given floating-point sort. *) val mk_fp_nan : Sort.t -> Term.t (** [mk_fp_nan sort] create a floating-point NaN value. @param sort The sort of the value. @return A term representing the floating-point NaN value of given floating-point sort. *) val mk_fp_value : Term.t -> Term.t -> Term.t -> Term.t (** [mk_fp_value bv_sign bv_exponent bv_significand] create a floating-point value from its IEEE 754 standard representation given as three bitvectors representing the sign bit, the exponent and the significand. @param bv_sign The sign bit. @param bv_exponent The exponent bit-vector. @param bv_significand The significand bit-vector. @return A term representing the floating-point value. *) val mk_fp_value_from_real : Sort.t -> Term.t -> string -> Term.t (** [mk_fp_value_from_real t sort rm real] create a floating-point value from its real representation, given as a decimal string, with respect to given rounding mode. @param sort The sort of the value. @param rm The rounding mode. @param real The decimal string representing a real value. @return A term representing the floating-point value of given sort. *) val mk_fp_value_from_rational : Sort.t -> Term.t -> string -> string -> Term.t (** [mk_fp_value_from_rational sort rm num den] create a floating-point value from its rational representation, given as a two decimal strings representing the numerator and denominator, with respect to given rounding mode. @param sort The sort of the value. @param rm The rounding mode. @param num The decimal string representing the numerator. @param den The decimal string representing the denominator. @return A term representing the floating-point value of given sort. *) val mk_rm_value : RoundingMode.t -> Term.t (** [mk_rm_value rm] create a rounding mode value. @param rm The rounding mode value. @return A term representing the rounding mode value. *) (** {3 Expression} *) val mk_term1 : Kind.t -> Term.t -> Term.t (** [mk_term1 kind arg] create a term of given kind with one argument term. @param kind The operator kind. @param arg The argument to the operator. @return A term representing an operation of given kind. *) val mk_term2 : Kind.t -> Term.t -> Term.t -> Term.t (** [mk_term2 kind arg0 arg1] create a term of given kind with two argument terms. @param kind The operator kind. @param arg0 The first argument to the operator. @param arg1 The second argument to the operator. @return A term representing an operation of given kind. *) val mk_term3 : Kind.t -> Term.t -> Term.t -> Term.t -> Term.t (** [mk_term3 kind arg0 arg1 arg2] create a term of given kind with three argument terms. @param kind The operator kind. @param arg0 The first argument to the operator. @param arg1 The second argument to the operator. @param arg2 The third argument to the operator. @return A term representing an operation of given kind. *) val mk_term1_indexed1 : Kind.t -> Term.t -> int -> Term.t (** [mk_term1_indexed1 kind arg idx] create an indexed term of given kind with one argument term and one index. @param kind The operator kind. @param arg The argument term. @param idx The index. @return A term representing an indexed operation of given kind. *) val mk_term1_indexed2 : Kind.t -> Term.t -> int -> int -> Term.t (** [mk_term1_indexed2 kind arg idx0 idx1] create an indexed term of given kind with one argument term and two indices. @param kind The operator kind. @param arg The argument term. @param idx0 The first index. @param idx1 The second index. @return A term representing an indexed operation of given kind. *) val mk_term2_indexed1 : Kind.t -> Term.t -> Term.t -> int -> Term.t (** [mk_term2_indexed1 t kind arg0 arg1 idx] create an indexed term of given kind with two argument terms and one index. @param kind The operator kind. @param arg0 The first argument term. @param arg1 The second argument term. @param idx The index. @return A term representing an indexed operation of given kind. *) val mk_term2_indexed2 : Kind.t -> Term.t -> Term.t -> int -> int -> Term.t (** [mk_term2_indexed2 t kind arg0 arg1 idx0 idx1] create an indexed term of given kind with two argument terms and two indices. @param kind The operator kind. @param arg0 The first argument term. @param arg1 The second argument term. @param idx0 The first index. @param idx1 The second index. @return A term representing an indexed operation of given kind. *) val mk_term : Kind.t -> ?indices:int array -> Term.t array -> Term.t (** [mk_term kind args ~indices] create an indexed term of given kind with the given argument terms and indices. @param kind The operator kind. @param args The argument terms. @param indices The indices. @return A term representing an indexed operation of given kind. *) val mk_const : ?symbol:string -> Sort.t -> Term.t (** [mk_const sort ~symbol] create a (first-order) constant of given sort with given symbol. This creates a 0-arity function symbol. @param sort The sort of the constant. @param symbol The symbol of the constant. @return A term representing the constant. *) val mk_const_array : Sort.t -> Term.t -> Term.t (** [mk_const_array sort value] create a one-dimensional constant array of given sort, initialized with given value. @param sort The sort of the array. @param value The value to initialize the elements of the array with. @return A term representing a constant array of given sort. *) val mk_var : ?symbol:string -> Sort.t -> Term.t (** [mk_var sort ~symbol] create a variable of given sort with given symbol. This creates a variable to be bound by quantifiers or lambdas. @param sort The sort of the variable. @param symbol The symbol of the variable. @return A term representing the variable. *) (** {2 Util} *) val substitute_term : Term.t -> (Term.t * Term.t) array -> Term.t (** [substitute t term map] substitute a set of keys with their corresponding values in the given term. @param term The term in which the keys are to be substituted. @param map The key/value associations. @return The resulting term from this substitution. *) val substitute_terms : Term.t array -> (Term.t * Term.t) array -> unit (** [substitute_terms t terms map] substitute a set of keys with their corresponding values in the set of given terms. The terms in [terms] are replaced with the terms resulting from this substitutions. @param terms The terms in which the keys are to be substituted. @param map The key/value associations. *) end module Make () : S = struct let t = Manager.create () module Sort = Sort let mk_array_sort = mk_array_sort t let mk_bool_sort () = mk_bool_sort t let mk_bv_sort = mk_bv_sort t let mk_fp_sort = mk_fp_sort t let mk_fun_sort = mk_fun_sort t let mk_rm_sort () = mk_rm_sort t let mk_uninterpreted_sort = mk_uninterpreted_sort t module RoundingMode = RoundingMode module Kind = Kind module Term = Term let mk_true () = mk_true t let mk_false () = mk_false t let mk_bv_zero = mk_bv_zero t let mk_bv_one = mk_bv_one t let mk_bv_ones = mk_bv_ones t let mk_bv_min_signed = mk_bv_min_signed t let mk_bv_max_signed = mk_bv_max_signed t let mk_bv_value = mk_bv_value t let mk_bv_value_int = mk_bv_value_int t let mk_bv_value_int64 = mk_bv_value_int64 t let mk_fp_pos_zero = mk_fp_pos_zero t let mk_fp_neg_zero = mk_fp_neg_zero t let mk_fp_pos_inf = mk_fp_pos_inf t let mk_fp_neg_inf = mk_fp_neg_inf t let mk_fp_nan = mk_fp_nan t let mk_fp_value = mk_fp_value t let mk_fp_value_from_real = mk_fp_value_from_real t let mk_fp_value_from_rational = mk_fp_value_from_rational t let mk_rm_value m = mk_rm_value t (RoundingMode.to_cxx m) let mk_term1 k x = mk_term1 t (Kind.to_cxx k) x let mk_term2 k x1 x2 = mk_term2 t (Kind.to_cxx k) x1 x2 let mk_term3 k x1 x2 x3 = mk_term3 t (Kind.to_cxx k) x1 x2 x3 let mk_term1_indexed1 k x i = mk_term1_indexed1 t (Kind.to_cxx k) x i let mk_term1_indexed2 k x i j = mk_term1_indexed2 t (Kind.to_cxx k) x i j let mk_term2_indexed1 k x1 x2 i = mk_term2_indexed1 t (Kind.to_cxx k) x1 x2 i let mk_term2_indexed2 k x1 x2 i j = mk_term2_indexed2 t (Kind.to_cxx k) x1 x2 i j let mk_term k ?(indices = [||]) args = mk_term t (Kind.to_cxx k) args indices let mk_const = mk_const t let mk_const_array = mk_const_array t let mk_var = mk_var t let substitute_term = substitute_term t let substitute_terms = substitute_terms t module Result = Result module Solver = struct include Solver let create = create t end end include Make ()