package binsec
Semantic analysis of binary executables
Install
Dune Dependency
Authors
-
AAdel Djoudi
-
BBenjamin Farinier
-
CChakib Foulani
-
DDorian Lesbre
-
FFrédéric Recoules
-
GGuillaume Girol
-
JJosselin Feist
-
LLesly-Ann Daniel
-
MMahmudul Faisal Al Ameen
-
MManh-Dung Nguyen
-
MMathéo Vergnolle
-
MMathilde Ollivier
-
MMatthieu Lemerre
-
NNicolas Bellec
-
OOlivier Nicole
-
RRichard Bonichon
-
RRobin David
-
SSébastien Bardin
-
SSoline Ducousso
-
TTa Thanh Dinh
-
YYaëlle Vinçont
-
YYanis Sellami
Maintainers
Sources
binsec-0.10.1.tbz
sha256=87d4048c9a90c8a14ee029e77d31032a15427f06416a31938cec8a68394234c4
sha512=6a023d2a5c87c56b0aac489874431d8dcccee1451a072a826190be3a7f75a961688bab95f193f494231744abc3bc9733ab5c809057d36a5e4d24c6c29c369144
doc/src/binsec.sse/dcode.ml.html
Source file dcode.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
(**************************************************************************) (* This file is part of BINSEC. *) (* *) (* Copyright (C) 2016-2025 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Types open Ir module Make (Stats : EXPLORATION_STATISTICS_FULL) (Path : Path.S) (State : STATE) : sig module Fiber : Fiber.S with type builtin := Virtual_address.t -> Path.t -> int -> State.t -> (State.t, Types.status) Result.t type t val single : ?hooks:(string * Script.Instr.t list) list * Script.env -> task:unit Basic_types.Int.Htbl.t -> Virtual_address.t -> Lreader.t -> int -> [ `All ] Fiber.t * Instruction.t option val script : task:unit Basic_types.Int.Htbl.t -> Virtual_address.t -> ?fallthrough:bool -> Script.Instr.t list -> Script.env -> [ `All ] Fiber.t val create : ?volatile:bool -> ?hooks: (string * Script.Instr.t list) list Virtual_address.Map.t * Script.env -> task:unit Basic_types.Int.Htbl.t -> Virtual_address.t -> Lreader.t -> int -> t val get : t -> Virtual_address.t -> [ `All ] Fiber.t module G : Ir.GRAPH with type t = t val disasm : t -> Virtual_address.t -> G.vertex module type CALLBACK = sig val instruction_callback : (Ast.Instr.t -> Script.env -> Ir.fallthrough list) option val process_callback : ((module Ir.GRAPH with type t = 'a) -> 'a -> unit) option val builtin_callback : (Ir.builtin -> (Virtual_address.t -> Path.t -> int -> State.t -> (State.t, Types.status) Result.t) option) option end val register_callback : (module CALLBACK) -> unit val register_opcode_hook : (Lreader.t -> (Script.Instr.t list * Script.env) option) -> unit val set_annotation_printer : (Format.formatter -> Virtual_address.t -> unit) option -> unit end = struct let annotation_printer = ref None let set_annotation_printer fopt = annotation_printer := fopt module type CALLBACK = sig val instruction_callback : (Ast.Instr.t -> Script.env -> Ir.fallthrough list) option val process_callback : ((module Ir.GRAPH with type t = 'a) -> 'a -> unit) option val builtin_callback : (Ir.builtin -> (Virtual_address.t -> Path.t -> int -> State.t -> (State.t, Types.status) Result.t) option) option end module Fiber = struct type 'a t = | Debug : { msg : string; mutable succ : [ `All ] t } -> [< `All ] t | Print : { output : Output.t; mutable succ : [ `All ] t } -> [< `All ] t | Step : { addr : Virtual_address.t; n : int; mutable succ : [ `All ] t; } -> [< `All ] t | Assign : { var : Var.t; rval : Expr.t; mutable succ : [ `All ] t; } -> [< `All ] t | Clobber : { var : Var.t; mutable succ : [ `All ] t } -> [< `All ] t | Load : { var : Var.t; base : A.t; dir : Machine.endianness; addr : Expr.t; mutable succ : [ `All ] t; } -> [< `All ] t | Store : { base : A.t; dir : Machine.endianness; addr : Expr.t; rval : Expr.t; mutable succ : [ `All ] t; } -> [< `All ] t | Symbolize : { var : Var.t; mutable succ : [ `All ] t } -> [< `All ] t | Assume : { test : Expr.t; mutable succ : [ `All ] t; } -> [< `Assume | `All ] t | Assert : { test : Expr.t; mutable succ : [ `All ] t; } -> [< `Assert | `All ] t | Branch : { test : Expr.t; mutable taken : [ `All ] t; mutable fallthrough : [ `All ] t; } -> [< `Branch | `All ] t | Goto : Virtual_address.t -> [< `All ] t | Jump : Expr.t -> [< `Jump | `All ] t | Halt : [< `All ] t | Probe : { kind : Probe.t; mutable succ : [ `All ] t; } -> [< `Probe | `All ] t | Builtin : { f : Virtual_address.t -> Path.t -> int -> State.t -> (State.t, Types.status) Result.t; mutable succ : [ `All ] t; } -> [ `All ] t | Cut : [< `All ] t | Die : string -> [< `All ] t let relink ?(taken = false) ~(pred : [ `All ] t) (succ : [ `All ] t) = match pred with | Debug t -> t.succ <- succ | Print t -> t.succ <- succ | Step t -> t.succ <- succ | Assign t -> t.succ <- succ | Clobber t -> t.succ <- succ | Load t -> t.succ <- succ | Store t -> t.succ <- succ | Symbolize t -> t.succ <- succ | Assume t -> t.succ <- succ | Assert t -> t.succ <- succ | Branch t when taken -> t.taken <- succ | Branch t -> t.fallthrough <- succ | Probe t -> t.succ <- succ | Builtin t -> t.succ <- succ | Goto _ | Jump _ | Cut | Halt | Die _ -> () end module Var = struct module Tag = Dba.Var.Tag include Dba_types.Var let rec collect (e : Dba.Expr.t) (d : Set.t) : Set.t = match e with | Cst _ -> d | Var v -> Set.add v d | Load (_, _, e, _) | Unary (_, e) -> collect e d | Binary (_, e, e') -> collect e (collect e' d) | Ite (e, e', e'') -> collect e (collect e' (collect e'' d)) let rec appears_in v (e : Dba.Expr.t) = match e with | Cst _ -> false | Var v' -> equal v v' | Load (_, _, e, _) | Unary (_, e) -> appears_in v e | Binary (_, e, e') -> appears_in v e || appears_in v e' | Ite (e, e', e'') -> appears_in v e || appears_in v e' || appears_in v e'' end type t = { mutable n : int; nodes : node I.Htbl.t; preds : int list I.Htbl.t; entries : int Virtual_address.Htbl.t; mutable exits : I.Set.t; base : Virtual_address.t; reader : Lreader.t; size : int; volatile : bool; mutable last : Instruction.t option; mutable sinks : I.Set.t; killset : Var.Set.t I.Htbl.t; task : unit I.Htbl.t; fibers : [ `All ] Fiber.t I.Htbl.t; } let is_deadstore t var vertex = try Var.Set.mem var (I.Htbl.find t.killset vertex) with Not_found -> false let entropy = Printf.sprintf "%%entropy%%%d" let push todo addr vertex (tag : Dba.tag) = todo := Virtual_address.Map.add addr ((vertex, tag) :: (try Virtual_address.Map.find addr !todo with Not_found -> [])) !todo let add_node t vertex node = if vertex < t.n then raise (Invalid_argument "persistent vertex"); (match I.Htbl.find t.nodes vertex with | exception Not_found -> () | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } -> I.Htbl.replace t.preds succ (List.filter (( != ) vertex) (I.Htbl.find t.preds succ)); if succ < t.n then t.sinks <- I.Set.remove vertex t.sinks | Branch { target; fallthrough; _ } -> I.Htbl.replace t.preds target (List.filter (( != ) vertex) (I.Htbl.find t.preds target)); I.Htbl.replace t.preds fallthrough (List.filter (( != ) vertex) (I.Htbl.find t.preds fallthrough)); if target < t.n || fallthrough < t.n then t.sinks <- I.Set.remove vertex t.sinks | Goto { succ = None; _ } | Terminator _ -> t.exits <- I.Set.remove vertex t.exits; t.sinks <- I.Set.remove vertex t.sinks); I.Htbl.replace t.nodes vertex node; if not (I.Htbl.mem t.preds vertex) then I.Htbl.add t.preds vertex []; match node with | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } -> I.Htbl.replace t.preds succ (vertex :: (try I.Htbl.find t.preds succ with Not_found -> [])); if succ < t.n then t.sinks <- I.Set.add vertex t.sinks | Branch { target; fallthrough; _ } -> I.Htbl.replace t.preds target (vertex :: (try I.Htbl.find t.preds target with Not_found -> [])); I.Htbl.replace t.preds fallthrough (vertex :: (try I.Htbl.find t.preds fallthrough with Not_found -> [])); if target < t.n || fallthrough < t.n then t.sinks <- I.Set.add vertex t.sinks | Goto { succ = None; _ } | Terminator _ -> t.exits <- I.Set.add vertex t.exits; t.sinks <- I.Set.add vertex t.sinks let make_goto t todo vertex target tag = try let succ = Virtual_address.Htbl.find t.entries target in add_node t vertex (Goto { target; tag; succ = Some succ }) with Not_found -> add_node t vertex (Goto { target; tag; succ = None }); if not t.volatile then push todo target vertex tag module G : GRAPH with type t = t = struct type nonrec t = t let node { nodes; _ } vertex = I.Htbl.find nodes vertex module V : Graph.Sig.VERTEX with type t = int = struct type t = int let compare = ( - ) let equal = ( == ) let hash = Fun.id type label = t let create = Fun.id let label = Fun.id end type vertex = V.t module E : Graph.Sig.EDGE with type t = V.t * bool * V.t and type vertex = V.t = struct type t = V.t * bool * V.t let compare = compare type vertex = V.t let src (vertex, _, _) = vertex let dst (_, _, vertex) = vertex type label = bool let create src branch dst = (src, branch, dst) let label (_, branch, _) = branch end type edge = E.t let is_directed = true let is_empty { nodes; _ } = I.Htbl.length nodes = 0 let nb_vertex { nodes; _ } = I.Htbl.length nodes let nb_edges { preds; _ } = I.Htbl.fold (fun _ preds n -> n + List.length preds) preds 0 let is_new_vertex { n; _ } vertex = vertex >= n let out_degree { nodes; _ } vertex = match I.Htbl.find nodes vertex with | Terminator _ -> 0 | Goto { succ = None; _ } -> 0 | Goto { succ = Some _; _ } | Fallthrough _ -> 1 | Branch _ -> 2 let in_degree { preds; _ } vertex = List.length (I.Htbl.find preds vertex) let mem_vertex { nodes; _ } vertex = I.Htbl.mem nodes vertex let mem_edge { nodes; _ } src dst = match I.Htbl.find nodes src with | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } -> succ = dst | Branch { target; fallthrough; _ } -> target = dst || fallthrough = dst | Goto { succ = None; _ } | Terminator _ -> false let mem_edge_e { nodes; _ } (src, branch, dst) = match I.Htbl.find nodes src with | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } -> succ = dst | Branch { target; fallthrough; _ } -> (branch && target = dst) || ((not branch) && fallthrough = dst) | Goto { succ = None; _ } | Terminator _ -> false let find_edge { nodes; _ } src dst = match I.Htbl.find nodes src with | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } | Branch { fallthrough = succ; _ } when succ = dst -> (src, false, dst) | Branch { target; _ } when target = dst -> (src, true, dst) | Fallthrough _ | Goto _ | Branch _ | Terminator _ -> raise Not_found let find_all_edges t src dst = try [ find_edge t src dst ] with Not_found -> [] let succ { nodes; _ } vertex = match I.Htbl.find nodes vertex with | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } -> [ succ ] | Branch { target; fallthrough; _ } -> [ target; fallthrough ] | Goto { succ = None; _ } | Terminator _ -> [] let pred { preds; _ } vertex = I.Htbl.find preds vertex let succ_e { nodes; _ } vertex = match I.Htbl.find nodes vertex with | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } -> [ (vertex, false, succ) ] | Branch { target; fallthrough; _ } -> [ (vertex, true, target); (vertex, false, fallthrough) ] | Goto { succ = None; _ } | Terminator _ -> [] let pred_e t vertex = List.map (fun src -> find_edge t src vertex) (pred t vertex) let iter_vertex f { nodes; _ } = let last = I.Htbl.length nodes - 1 in for i = 0 to last do f i done let iter_new_vertex f { n; nodes; _ } = let last = I.Htbl.length nodes - 1 in for i = n to last do f i done let iter_entries f { entries; _ } = Virtual_address.Htbl.iter (fun _ i -> f i) entries let iter_exits f { exits; _ } = I.Set.iter f exits let fold_vertex f { nodes; _ } data = I.Htbl.fold (fun vertex _ -> f vertex) nodes data let iter_edges f { nodes; _ } = I.Htbl.iter (fun vertex node -> match node with | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } -> f vertex succ | Branch { target; fallthrough; _ } -> f vertex target; f vertex fallthrough | Goto { succ = None; _ } | Terminator _ -> ()) nodes let fold_edges f { nodes; _ } data = I.Htbl.fold (fun vertex node data -> match node with | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } -> f vertex succ data | Branch { target; fallthrough; _ } -> f vertex target (f vertex fallthrough data) | Goto { succ = None; _ } | Terminator _ -> data) nodes data let iter_edges_e f { nodes; _ } = I.Htbl.iter (fun vertex node -> match node with | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } -> f (vertex, false, succ) | Branch { target; fallthrough; _ } -> f (vertex, true, target); f (vertex, false, fallthrough) | Goto { succ = None; _ } | Terminator _ -> ()) nodes let fold_edges_e f { nodes; _ } data = I.Htbl.fold (fun vertex node data -> match node with | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } -> f (vertex, false, succ) data | Branch { target; fallthrough; _ } -> f (vertex, true, target) (f (vertex, false, fallthrough) data) | Goto { succ = None; _ } | Terminator _ -> data) nodes data let map_vertex f r = let t = { r with nodes = I.Htbl.create (I.Htbl.length r.nodes); preds = I.Htbl.create (I.Htbl.length r.preds); exits = I.Set.map f r.exits; sinks = I.Set.map f r.sinks; entries = Virtual_address.Htbl.create (Virtual_address.Htbl.length r.entries); killset = I.Htbl.create (I.Htbl.length r.killset); } in I.Htbl.iter (fun vertex node -> I.Htbl.add t.nodes (f vertex) (shuffle f node)) r.nodes; I.Htbl.iter (fun vertex preds -> I.Htbl.add t.preds (f vertex) (List.map f preds)) r.preds; Virtual_address.Htbl.iter (fun addr vertex -> Virtual_address.Htbl.add t.entries addr (f vertex)) r.entries; I.Htbl.iter (fun vertex set -> I.Htbl.add t.killset (f vertex) set) r.killset; t let iter_succ f { nodes; _ } vertex = match I.Htbl.find nodes vertex with | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } -> f succ | Branch { target; fallthrough; _ } -> f target; f fallthrough | Goto { succ = None; _ } | Terminator _ -> () let iter_pred f { preds; _ } vertex = List.iter f (I.Htbl.find preds vertex) let fold_succ f { nodes; _ } vertex data = match I.Htbl.find nodes vertex with | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } -> f succ data | Branch { target; fallthrough; _ } -> f target (f fallthrough data) | Goto { succ = None; _ } | Terminator _ -> data let fold_pred f { preds; _ } vertex data = List.fold_left (Fun.flip f) data (I.Htbl.find preds vertex) let iter_succ_e f { nodes; _ } vertex = match I.Htbl.find nodes vertex with | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } -> f (vertex, false, succ) | Branch { target; fallthrough; _ } -> f (vertex, true, target); f (vertex, false, fallthrough) | Goto { succ = None; _ } | Terminator _ -> () let iter_pred_e f t vertex = List.iter (fun src -> f (find_edge t src vertex)) (I.Htbl.find t.preds vertex) let fold_succ_e f { nodes; _ } vertex data = match I.Htbl.find nodes vertex with | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } -> f (vertex, false, succ) data | Branch { target; fallthrough; _ } -> f (vertex, true, target) (f (vertex, false, fallthrough) data) | Goto { succ = None; _ } | Terminator _ -> data let fold_pred_e f t vertex data = List.fold_left (fun data src -> f (find_edge t src vertex) data) data (I.Htbl.find t.preds vertex) let insert_before t vertex kind = let cur = I.Htbl.length t.nodes in iter_pred (fun pred -> add_node t pred (shuffle (fun i -> if i = vertex then cur else i) (node t pred))) t vertex; add_node t cur (Fallthrough { kind; succ = vertex }); cur let insert_list_before t vertex = function | [] -> vertex | kind :: tl -> let vertex' = insert_before t vertex kind in List.iter (fun kind -> ignore (insert_before t vertex kind)) tl; vertex' end let instruction_callback = ref [] let process_callback = Queue.create () let builtin_callback = ref [] let register_callback callback = let module C = (val callback : CALLBACK) in Option.iter (fun callback -> instruction_callback := callback :: !instruction_callback) C.instruction_callback; Option.iter (fun callback -> Queue.push (callback (module G : Ir.GRAPH with type t = G.t)) process_callback) C.process_callback; Option.iter (fun callback -> builtin_callback := callback :: !builtin_callback) C.builtin_callback let rec resolve_instruction inst env callbacks = match callbacks with | [] -> raise (Invalid_argument "missing instruction callback") | convert :: callbacks -> ( match convert inst env with | [] -> resolve_instruction inst env callbacks | l -> l) let rec resolve_builtin p callbacks = match callbacks with | [] -> raise (Invalid_argument "missing builtin callback") | exec :: callbacks -> ( match exec p with None -> resolve_builtin p callbacks | Some f -> f) let opcode_hook = ref [] let register_opcode_hook hook = opcode_hook := hook :: !opcode_hook let analyze_fallthrough kind killset = match kind with | Nop | Debug _ | Instruction _ | Hook _ -> killset | Clobber var | Forget var | Symbolize var -> Var.Set.add var killset | Assign { var; rval } -> if Var.Set.mem var killset then killset else Var.Set.diff (Var.Set.add var killset) (Var.collect rval Var.Set.empty) | Load { var; addr; _ } -> Var.Set.diff (Var.Set.add var killset) (Var.collect addr Var.Set.empty) | Store { addr; rval; _ } -> Var.Set.diff (Var.Set.diff killset (Var.collect addr Var.Set.empty)) (Var.collect rval Var.Set.empty) | Assume expr | Assert expr | Print (Value (_, expr)) | Enumerate { enum = expr; _ } -> Var.Set.diff killset (Var.collect expr Var.Set.empty) | Print _ (* TODO: refine? *) | Reach _ | Builtin _ -> Var.Set.empty let analyze_branch test target fallthrough = match (target, fallthrough) with | None, None -> assert false | None, Some killset | Some killset, None -> Var.Set.diff killset (Var.collect test Var.Set.empty) | Some target, Some fallthrough -> let killset = Var.Set.inter target fallthrough in Var.Set.diff killset (Var.collect test Var.Set.empty) let rec closure t todo push = if not (Queue.is_empty todo) then let vertex = Queue.pop todo in let killset = match G.node t vertex with | Fallthrough { kind; succ } -> analyze_fallthrough kind (I.Htbl.find t.killset succ) | Branch { test; target; fallthrough } -> analyze_branch test (I.Htbl.find_opt t.killset target) (I.Htbl.find_opt t.killset fallthrough) | Goto { succ = Some succ; _ } -> I.Htbl.find t.killset succ | Goto { succ = None; _ } | Terminator _ -> assert false in match I.Htbl.find t.killset vertex with | old when Var.Set.equal old killset -> closure t todo push | (exception Not_found) | _ -> I.Htbl.replace t.killset vertex killset; G.iter_pred push t vertex; closure t todo push let analyze t = let todo = Queue.create () in let push = Fun.flip Queue.push todo in I.Set.iter (fun vertex -> G.iter_pred push t vertex; match G.node t vertex with | Fallthrough { kind; succ } -> I.Htbl.add t.killset vertex (analyze_fallthrough kind (I.Htbl.find t.killset succ)) | Branch { test; target; fallthrough } -> I.Htbl.add t.killset vertex (analyze_branch test (I.Htbl.find_opt t.killset target) (I.Htbl.find_opt t.killset fallthrough)) | Goto { succ = Some succ; _ } -> I.Htbl.add t.killset vertex (I.Htbl.find t.killset succ) | Goto { succ = None; _ } | Terminator _ -> I.Htbl.add t.killset vertex Var.Set.empty) t.sinks; closure t todo push; t.sinks <- I.Set.empty let _export_to_file t = let filename = Filename.temp_file "dba" ".dot" in let oc = open_out_bin filename in let module C_dot = struct include G let graph_attributes _ = [] let default_vertex_attributes _ = [ `Shape `Box ] let vertex_name v = Format.asprintf "\"%d: %a\"" v pp_node (node t v) let vertex_attributes v = match node t v with | Fallthrough { kind = Forget _; _ } -> [ `Color 0xff0000 ] | Fallthrough { kind = ( Assign { var; _ } | Clobber var | Load { var; _ } | Symbolize var ); succ; } when is_deadstore t var succ -> [ `Color 0xff0000 ] | _ -> [] let get_subgraph _ = None let default_edge_attributes _ = [] let edge_attributes _ = [] end in let module D = Graph.Graphviz.Dot (C_dot) in D.output_graph oc t; close_out oc; filename (* let f = _export_to_file t in *) (* ignore (Sys.command (Format.sprintf "xdot %s" f)); *) (* ignore (Sys.command (Format.sprintf "rm %s" f)); *) let add_dhunk t todo vertex hunk = let next = ref (vertex + Dhunk.length hunk) in let temps = ref Var.Set.empty and exits = ref I.Set.empty in Dhunk.iteri ~f:(fun i inst -> let cur = vertex + i in match inst with | Assign (Var var, rval, succ) -> if var.info = Var.Tag.Temp then temps := Var.Set.add var !temps; add_node t cur (Fallthrough { kind = Assign { var; rval }; succ = vertex + succ }) | Assign (Restrict (var, { hi; lo }), rval, succ) -> if var.info = Var.Tag.Temp then temps := Var.Set.add var !temps; add_node t cur (Fallthrough { kind = Assign { var; rval = Dba_utils.Expr.complement rval ~hi ~lo var; }; succ = vertex + succ; }) | Assign (Store (_, dir, addr, base), rval, succ) -> add_node t cur (Fallthrough { kind = Store { base; dir; addr; rval }; succ = vertex + succ; }) | Nondet (Var var, succ) | Undef (Var var, succ) -> if var.info = Var.Tag.Temp then temps := Var.Set.add var !temps; let kind = match inst with Nondet _ -> Symbolize var | _ -> Clobber var in add_node t cur (Fallthrough { kind; succ = vertex + succ }) | Nondet (Restrict (var, { hi; lo }), succ) | Undef (Restrict (var, { hi; lo }), succ) -> if var.info = Var.Tag.Temp then temps := Var.Set.add var !temps; let size' = hi - lo + 1 in let name' = entropy size' in let var' = Dba.Var.temporary name' (Size.Bit.create size') in temps := Var.Set.add var' !temps; let rval = Dba_utils.Expr.complement (Expr.v var') ~lo ~hi var in let succ' = !next in incr next; let kind = match inst with Nondet _ -> Symbolize var' | _ -> Clobber var' in add_node t cur (Fallthrough { kind; succ = succ' }); add_node t succ' (Fallthrough { kind = Assign { var; rval }; succ = vertex + succ }) | Nondet (Store (bytes, dir, addr, base), succ) | Undef (Store (bytes, dir, addr, base), succ) -> let size' = 8 * bytes in let name' = entropy size' in let var' = Dba.Var.temporary name' (Size.Bit.create size') in let rval = Expr.v var' in let succ' = !next in incr next; let kind = match inst with Nondet _ -> Symbolize var' | _ -> Clobber var' in add_node t cur (Fallthrough { kind; succ = succ' }); add_node t succ' (Fallthrough { kind = Store { base; dir; addr; rval }; succ = vertex + succ; }) | Assume (test, succ) -> add_node t cur (Fallthrough { kind = Assume test; succ = vertex + succ }) | Assert (test, succ) -> add_node t cur (Fallthrough { kind = Assert test; succ = vertex + succ }) | If (test, JInner target, fallthrough) -> add_node t cur (Branch { test; target = vertex + target; fallthrough = vertex + fallthrough; }) | If (test, JOuter { base; _ }, fallthrough) -> let succ = !next in incr next; exits := I.Set.add succ !exits; make_goto t todo succ base Default; add_node t cur (Branch { test; target = succ; fallthrough = vertex + fallthrough }) | DJump (target, tag) -> exits := I.Set.add cur !exits; add_node t cur (Terminator (Jump { target; tag })) | SJump (JOuter { base; _ }, tag) -> exits := I.Set.add cur !exits; make_goto t todo cur base tag | SJump (JInner succ, _) -> add_node t cur (Fallthrough { kind = Nop; succ = vertex + succ }) | Stop (None | Some OK) -> exits := I.Set.add cur !exits; add_node t cur (Terminator Halt) | Stop (Some KO) -> exits := I.Set.add cur !exits; add_node t cur (Terminator (Die "KO")) | Stop (Some (Undecoded msg | Unsupported msg)) -> exits := I.Set.add cur !exits; add_node t cur (Terminator (Die msg))) hunk; I.Set.iter (fun vertex -> let temps = match G.node t vertex with | Terminator (Jump { target; _ }) -> Var.Set.diff !temps (Var.collect target Var.Set.empty) | _ -> !temps in Var.Set.iter (fun var -> ignore (G.insert_before t vertex (Forget var))) temps) !exits let mk_label = let n = ref Suid.zero in fun _ -> n := Suid.incr !n; Suid.to_string !n let inline_dhunk t todo labels tolink temps exits vertex hunk = let anchors = Array.init (Dhunk.length hunk) mk_label in let mk_local_goto anchors vertex tolink i succ = if succ <> i + 1 then ( S.Htbl.replace tolink (Array.get anchors succ) ((None, !vertex) :: (try S.Htbl.find tolink (Array.get anchors succ) with Not_found -> [])); incr vertex) in Dhunk.iteri ~f:(fun i inst -> S.Htbl.add labels (Array.get anchors i) !vertex; match inst with | Assign (Var var, rval, succ) -> if var.info = Temp then temps := Var.Set.add var !temps; add_node t !vertex (Fallthrough { kind = Assign { var; rval }; succ = !vertex + 1 }); incr vertex; mk_local_goto anchors vertex tolink i succ | Assign (Restrict (var, { hi; lo }), rval, succ) -> if var.info = Temp then temps := Var.Set.add var !temps; add_node t !vertex (Fallthrough { kind = Assign { var; rval = Dba_utils.Expr.complement rval ~hi ~lo var; }; succ = !vertex + 1; }); incr vertex; mk_local_goto anchors vertex tolink i succ | Assign (Store (_, dir, addr, base), rval, succ) -> add_node t !vertex (Fallthrough { kind = Store { base; dir; addr; rval }; succ = !vertex + 1 }); incr vertex; mk_local_goto anchors vertex tolink i succ | Undef (Var var, succ) -> if var.info = Temp then temps := Var.Set.add var !temps; add_node t !vertex (Fallthrough { kind = Clobber var; succ = !vertex + 1 }); incr vertex; mk_local_goto anchors vertex tolink i succ | Undef _ -> raise (Invalid_argument (Format.asprintf "unexpected instruction kind %a" Dba_printer.Ascii.pp_instruction inst)) | Nondet (Var var, succ) -> if var.info = Temp then temps := Var.Set.add var !temps; add_node t !vertex (Fallthrough { kind = Symbolize var; succ = !vertex + 1 }); incr vertex; mk_local_goto anchors vertex tolink i succ | Nondet (Restrict (var, { hi; lo }), succ) -> if var.info = Temp then temps := Var.Set.add var !temps; let size' = hi - lo + 1 in let name' = entropy size' in let var' = Dba.Var.temporary name' (Size.Bit.create size') in temps := Var.Set.add var' !temps; let rval = Dba_utils.Expr.complement (Expr.v var') ~lo ~hi var in add_node t !vertex (Fallthrough { kind = Symbolize var'; succ = !vertex + 1 }); incr vertex; add_node t !vertex (Fallthrough { kind = Assign { var; rval }; succ = !vertex + 1 }); incr vertex; mk_local_goto anchors vertex tolink i succ | Nondet (Store (bytes, dir, addr, base), succ) -> let size' = 8 * bytes in let name' = entropy size' in let var' = Dba.Var.temporary name' (Size.Bit.create size') in temps := Var.Set.add var' !temps; let rval = Expr.v var' in add_node t !vertex (Fallthrough { kind = Symbolize var'; succ = !vertex + 1 }); incr vertex; add_node t !vertex (Fallthrough { kind = Store { base; dir; addr; rval }; succ = !vertex + 1 }); incr vertex; mk_local_goto anchors vertex tolink i succ | Assume (test, succ) -> add_node t !vertex (Fallthrough { kind = Assume test; succ = !vertex + 1 }); incr vertex; mk_local_goto anchors vertex tolink i succ | Assert (test, succ) -> add_node t !vertex (Fallthrough { kind = Assert test; succ = !vertex + 1 }); incr vertex; mk_local_goto anchors vertex tolink i succ | If (test, JInner target, fallthrough) -> S.Htbl.replace tolink (Array.get anchors target) ((Some test, !vertex) :: (try S.Htbl.find tolink (Array.get anchors target) with Not_found -> [])); incr vertex; mk_local_goto anchors vertex tolink i fallthrough | If (test, JOuter { base; _ }, fallthrough) -> S.Htbl.replace tolink (Array.get anchors fallthrough) ((Some (Dba.Expr.lognot test), !vertex) :: (try S.Htbl.find tolink (Array.get anchors fallthrough) with Not_found -> [])); incr vertex; exits := I.Set.add !vertex !exits; make_goto t todo !vertex base Default | DJump (target, tag) -> exits := I.Set.add !vertex !exits; add_node t !vertex (Terminator (Jump { target; tag })); incr vertex | SJump (JOuter { base; _ }, tag) -> exits := I.Set.add !vertex !exits; make_goto t todo !vertex base tag; incr vertex | SJump (JInner succ, _) -> S.Htbl.replace tolink (Array.get anchors succ) ((None, !vertex) :: (try S.Htbl.find tolink (Array.get anchors succ) with Not_found -> [])); incr vertex | Stop (None | Some OK) -> exits := I.Set.add !vertex !exits; add_node t !vertex (Terminator Halt); incr vertex | Stop (Some KO) -> exits := I.Set.add !vertex !exits; add_node t !vertex (Terminator (Die "KO")); incr vertex | Stop (Some (Undecoded msg | Unsupported msg)) -> exits := I.Set.add !vertex !exits; add_node t !vertex (Terminator (Die msg)); incr vertex) hunk let add_script t todo addr stmts env fallthrough = let vertex = ref (I.Htbl.length t.nodes) in let labels = S.Htbl.create 16 and tolink = S.Htbl.create 16 and temps = ref Var.Set.empty and exits = ref I.Set.empty in List.iter (function | Script.Instr.Nop -> () | Script.Instr.Label name -> S.Htbl.add labels name !vertex | Script.Instr.Assign (lval, rval) -> ( let lval = Script.eval_loc lval env in let rval = Script.eval_expr ~size:(Dba.LValue.size_of lval) rval env in match lval with | Var var -> if var.info = Temp then temps := Var.Set.add var !temps; add_node t !vertex (Fallthrough { kind = Assign { var; rval }; succ = !vertex + 1 }); incr vertex | Restrict (var, { hi; lo }) -> if var.info = Temp then temps := Var.Set.add var !temps; add_node t !vertex (Fallthrough { kind = Assign { var; rval = Dba_utils.Expr.complement rval ~hi ~lo var; }; succ = !vertex + 1; }); incr vertex | Store (_, dir, addr, base) -> add_node t !vertex (Fallthrough { kind = Store { base; dir; addr; rval }; succ = !vertex + 1; }); incr vertex) | Script.Instr.Nondet lval -> ( match Script.eval_loc lval env with | Var var -> if var.info = Temp then temps := Var.Set.add var !temps; add_node t !vertex (Fallthrough { kind = Symbolize var; succ = !vertex + 1 }); incr vertex | Restrict (var, { hi; lo }) -> if var.info = Temp then temps := Var.Set.add var !temps; let size' = hi - lo + 1 in let name' = entropy size' in let var' = Dba.Var.temporary name' (Size.Bit.create size') in temps := Var.Set.add var' !temps; let rval = Dba_utils.Expr.complement (Expr.v var') ~lo ~hi var in add_node t !vertex (Fallthrough { kind = Symbolize var'; succ = !vertex + 1 }); incr vertex; add_node t !vertex (Fallthrough { kind = Assign { var; rval }; succ = !vertex + 1 }); incr vertex | Store (bytes, dir, addr, base) -> let size' = 8 * bytes in let name' = entropy size' in let var' = Dba.Var.temporary name' (Size.Bit.create size') in temps := Var.Set.add var' !temps; let rval = Expr.v var' in add_node t !vertex (Fallthrough { kind = Symbolize var'; succ = !vertex + 1 }); incr vertex; add_node t !vertex (Fallthrough { kind = Store { base; dir; addr; rval }; succ = !vertex + 1; }); incr vertex) | Script.Instr.Undef ((_, p) as lval) -> ( match Script.eval_loc lval env with | Var var -> if var.info = Temp then temps := Var.Set.add var !temps; add_node t !vertex (Fallthrough { kind = Clobber var; succ = !vertex + 1 }); incr vertex | _ -> raise (Script.Invalid_operation (Script.Expr.loc lval, p))) | Script.Instr.Assume test -> let test = Script.eval_expr ~size:1 test env in add_node t !vertex (Fallthrough { kind = Assume test; succ = !vertex + 1 }); incr vertex | Script.Instr.Assert test -> let test = Script.eval_expr ~size:1 test env in add_node t !vertex (Fallthrough { kind = Assert test; succ = !vertex + 1 }); incr vertex | Script.Instr.If (test, target) -> let test = Script.eval_expr ~size:1 test env in S.Htbl.replace tolink target ((Some test, !vertex) :: (try S.Htbl.find tolink target with Not_found -> [])); incr vertex | Script.Instr.Goto target -> S.Htbl.replace tolink target ((None, !vertex) :: (try S.Htbl.find tolink target with Not_found -> [])); incr vertex | Script.Instr.Jump target -> ( exits := I.Set.add !vertex !exits; match Script.eval_expr ~size:env.wordsize target env with | Cst bv -> make_goto t todo !vertex (Virtual_address.of_bitvector bv) Default; incr vertex | target -> add_node t !vertex (Terminator (Jump { target; tag = Default })); incr vertex) | Script.Instr.Halt -> exits := I.Set.add !vertex !exits; add_node t !vertex (Terminator Halt); incr vertex | Script.Cut None -> exits := I.Set.add !vertex !exits; add_node t !vertex (Terminator Cut); incr vertex | Script.Cut (Some test) -> let test = Script.eval_expr ~size:1 test env in add_node t !vertex (Branch { test; target = !vertex + 1; fallthrough = !vertex + 2 }); incr vertex; exits := I.Set.add !vertex !exits; add_node t !vertex (Terminator Cut); incr vertex | Script.Reach (n, guard, actions) -> let tid = I.Htbl.length t.task in I.Htbl.add t.task tid (); let guard = Option.fold ~none:Dba.Expr.one ~some:(fun test -> Script.eval_expr ~size:1 test env) guard in let actions = List.map (Script.Output.eval env) actions in add_node t !vertex (Fallthrough { kind = Reach { tid; n; guard; actions }; succ = !vertex + 1 }); incr vertex | Script.Print output -> add_node t !vertex (Fallthrough { kind = Print (Script.Output.eval env output); succ = !vertex + 1; }); incr vertex | Script.Enumerate (n, enum) -> let tid = I.Htbl.length t.task in I.Htbl.add t.task tid (); let enum = Script.eval_expr enum env in add_node t !vertex (Fallthrough { kind = Enumerate { tid; enum; format = Hex; n }; succ = !vertex + 1; }); incr vertex | Script.Argument (lval, n) -> ( let rval = Isa_helper.get_arg n in let lval = Script.eval_loc ~size:(Dba.Expr.size_of rval) lval env in match lval with | Var var -> if var.info = Temp then temps := Var.Set.add var !temps; add_node t !vertex (Fallthrough { kind = Assign { var; rval }; succ = !vertex + 1 }); incr vertex | Restrict (var, { hi; lo }) -> if var.info = Temp then temps := Var.Set.add var !temps; add_node t !vertex (Fallthrough { kind = Assign { var; rval = Dba_utils.Expr.complement rval ~hi ~lo var; }; succ = !vertex + 1; }); incr vertex | Store (_, dir, addr, base) -> add_node t !vertex (Fallthrough { kind = Store { base; dir; addr; rval }; succ = !vertex + 1; }); incr vertex) | Script.Return value -> let value = Option.map (fun value -> Script.eval_expr ~size:env.wordsize value env) value in let hunk = Isa_helper.make_return ?value () in inline_dhunk t todo labels tolink temps exits vertex hunk | Script.Error msg -> add_node t !vertex (Terminator (Die msg)); incr vertex | inst -> List.iter (fun kind -> add_node t !vertex (Fallthrough { kind; succ = !vertex + 1 }); incr vertex) (resolve_instruction inst env !instruction_callback)) stmts; S.Htbl.iter (fun label preds -> let target = S.Htbl.find labels label in List.iter (fun (test, pred) -> match test with | None -> add_node t pred (Fallthrough { kind = Nop; succ = target }) | Some test -> add_node t pred (Branch { test; target; fallthrough = pred + 1 })) preds) tolink; if stmts = [] || I.Htbl.mem t.preds !vertex then ( exits := I.Set.add !vertex !exits; if fallthrough then ( add_node t !vertex (Goto { target = addr; tag = Default; succ = None }); push todo addr !vertex Default) else add_node t !vertex (Terminator Halt)); I.Set.iter (fun vertex -> Var.Set.iter (fun var -> ignore (G.insert_before t vertex (Forget var))) !temps) !exits let add_hook t todo addr anchor stmts env fallthrough = let vertex = I.Htbl.length t.nodes in let succ = vertex + 1 in let info = Format.sprintf "hook at %s" anchor in add_node t vertex (Fallthrough { kind = Hook { addr; info }; succ }); if not (Virtual_address.Htbl.mem t.entries addr) then Virtual_address.Htbl.add t.entries addr vertex; (try List.iter (fun (pred, tag) -> add_node t pred (Goto { target = addr; tag; succ = Some vertex })) (Virtual_address.Map.find addr !todo); todo := Virtual_address.Map.remove addr !todo with Not_found -> ()); add_script t todo addr stmts env fallthrough let rec resolve_decode t todo addr pos decoders = match decoders with | [] -> let inst, _ = Disasm_core.decode_from t.reader addr in t.last <- Some inst; let hunk = Instruction.hunk inst in let vertex = I.Htbl.length t.nodes in add_node t vertex (Fallthrough { kind = Instruction inst; succ = vertex + 1 }); add_dhunk t todo (vertex + 1) hunk; vertex | decode :: decoders -> ( match decode t.reader with | None -> Lreader.rewind t.reader (Lreader.get_pos t.reader - pos); resolve_decode t todo addr pos decoders | Some (stmts, env) -> let pos' = Lreader.get_pos t.reader in let vertex = I.Htbl.length t.nodes in let succ = vertex + 1 in let opcode = Lreader.get_slice t.reader ~lo:pos ~hi:(pos' - 1) in let info = Format.asprintf "hook for opcode %a" Binstream.pp (Binstream.of_bytes (Bytes.unsafe_to_string opcode)) in add_node t vertex (Fallthrough { kind = Hook { addr; info }; succ }); add_script t todo addr (List.append stmts [ Ast.Instr.Jump ( Ast.Expr.Int ( Virtual_address.to_bigint (Virtual_address.add_int (Bytes.length opcode) addr), None ), Lexing.dummy_pos ); ]) env false; vertex) let rec disasm t todo = if not (Virtual_address.Map.is_empty !todo) then ( let addr, tolink = Virtual_address.Map.choose !todo in todo := Virtual_address.Map.remove addr !todo; let pos' = Virtual_address.diff addr t.base in if pos' < 0 || pos' >= t.size then disasm t todo else let pos = Lreader.get_pos t.reader in if pos > pos' then Lreader.rewind t.reader (pos - pos') else Lreader.advance t.reader (pos' - pos); let vertex = resolve_decode t todo addr (Lreader.get_pos t.reader) !opcode_hook in if not (Virtual_address.Htbl.mem t.entries addr) then Virtual_address.Htbl.add t.entries addr vertex; List.iter (fun (pred, tag) -> add_node t pred (Goto { target = addr; tag; succ = Some vertex })) tolink; Stats.register_address addr; disasm t todo) let extract_loads = let rec fold m (e : Expr.t) = match e with | Cst _ -> (m, e) | Var _ -> (m, e) | Load (sz, dir, addr, base) -> let m', addr' = fold m addr in let k = (sz, dir, addr', base) in let v = try List.assoc k m' with Not_found -> Dba.Var.( create (Printf.sprintf "$$%d" (List.length m')) ~bitsize:(Size.Bit.create (8 * sz)) ~tag:Tag.Temp) in ((k, v) :: m', Expr.v v) | Unary (o, x) -> let m', x' = fold m x in let e' = if x == x' then e else Expr.unary o x' in (m', e') | Binary (o, x, y) -> let m', x' = fold m x in let m', y' = fold m' y in let e' = if x == x' && y == y' then e else Expr.binary o x' y' in (m', e') | Ite (c, x, y) -> let m', c' = fold m c in let m', x' = fold m' x in let m', y' = fold m' y in let e' = if c == c' && x == x' && y == y' then e else Expr.ite c' x' y' in (m', e') in fold let define_loads kind = match kind with | Nop | Debug _ | Print _ | Instruction _ | Hook _ | Clobber _ | Forget _ | Symbolize _ | Enumerate _ | Reach _ | Builtin _ -> ([], kind) | Assign { var; rval = Load (_, dir, addr, base) } -> ( match extract_loads [] addr with | [], _ -> ([], Load { var; base; dir; addr }) | loads, addr -> (loads, Load { var; base; dir; addr })) | Assign { var; rval } -> ( match extract_loads [] rval with | [], _ -> ([], kind) | loads, rval -> (loads, Assign { var; rval })) | Load { var; base; dir; addr } -> ( match extract_loads [] addr with | [], _ -> ([], kind) | loads, addr -> (loads, Load { var; base; dir; addr })) | Store { base; dir; addr; rval } -> ( let loads, addr = extract_loads [] addr in match extract_loads loads rval with | [], _ -> ([], kind) | loads, rval -> (loads, Store { base; dir; addr; rval })) | Assume test -> ( match extract_loads [] test with | [], _ -> ([], kind) | loads, test -> (loads, Assume test)) | Assert test -> ( match extract_loads [] test with | [], _ -> ([], kind) | loads, test -> (loads, Assert test)) let define_load t vertex = match G.node t vertex with | Fallthrough { kind; succ } -> ( match define_loads kind with | [], kind' when kind == kind' -> () | loads, kind -> add_node t vertex (Fallthrough { kind; succ }); List.fold_right (fun ((_, dir, addr, base), var) () -> ignore (G.insert_before t vertex (Load { var; base; dir; addr })); ignore (G.insert_before t succ (Forget var))) loads ()) | Branch { test; target; fallthrough } -> ( match extract_loads [] test with | [], _ -> () | loads, test -> add_node t vertex (Branch { test; target; fallthrough }); List.fold_right (fun ((_, dir, addr, base), var) () -> ignore (G.insert_before t vertex (Load { var; base; dir; addr })); ignore (G.insert_before t target (Forget var)); ignore (G.insert_before t fallthrough (Forget var))) loads ()) | Terminator (Jump { target; tag }) -> ( match extract_loads [] target with | [], _ -> () | loads, target -> add_node t vertex (Terminator (Jump { target; tag })); List.fold_right (fun ((_, dir, addr, base), var) () -> ignore (G.insert_before t vertex (Load { var; base; dir; addr }))) loads ()) | Goto _ | Terminator _ -> () let process t = G.iter_new_vertex (define_load t) t; Queue.iter (fun f -> f t) process_callback; analyze t; t.n <- I.Htbl.length t.nodes let create ?(volatile = false) ?hooks ~task base reader size = let vsize = size / 6 in let t = { n = 0; nodes = I.Htbl.create size; preds = I.Htbl.create size; entries = Virtual_address.Htbl.create vsize; exits = I.Set.empty; base; reader; size; volatile; last = None; sinks = I.Set.empty; killset = I.Htbl.create size; task; fibers = I.Htbl.create (size / 15); } in let todo = ref Virtual_address.Map.empty in Option.iter (fun (hooks, env) -> Virtual_address.Map.iter (fun addr hooks -> List.iter (fun (anchor, script) -> add_hook t todo addr anchor script env true) hooks) hooks) hooks; disasm t todo; process t; t let raw_fiber (node : node) : [ `All ] Fiber.t = match node with | Fallthrough { kind = Nop; _ } -> Halt | Fallthrough { kind = Debug msg; _ } -> Debug { msg; succ = Halt } | Fallthrough { kind = Print output; _ } -> Print { output; succ = Halt } | Fallthrough { kind = Hook { addr; _ }; _ } -> Step { addr; n = 0; succ = Halt } | Fallthrough { kind = Instruction inst; _ } -> Step { addr = Instruction.address inst; n = 1; succ = Halt } | Fallthrough { kind = Assign { var; rval }; _ } -> Assign { var; rval; succ = Halt } | Fallthrough { kind = Clobber var; _ } -> Clobber { var; succ = Halt } | Fallthrough { kind = Forget _; _ } -> Halt | Fallthrough { kind = Load { var; base; dir; addr }; _ } -> Load { var; base; dir; addr; succ = Halt } | Fallthrough { kind = Store { base; dir; addr; rval }; _ } -> Store { base; dir; addr; rval; succ = Halt } | Fallthrough { kind = Symbolize var; _ } -> Symbolize { var; succ = Halt } | Fallthrough { kind = Assume test; _ } -> Assume { test; succ = Halt } | Fallthrough { kind = Assert test; _ } -> Assert { test; succ = Halt } | Fallthrough { kind = Enumerate { tid; enum; format; n }; _ } -> Probe { kind = Enumerate { id = tid; enum; format; n; k = 0; values = [] }; succ = Halt; } | Fallthrough { kind = Reach { tid; n; guard; actions }; _ } -> Probe { kind = Reach { id = tid; n; guard; actions }; succ = Halt } | Fallthrough { kind = Builtin f; _ } -> Builtin { f = resolve_builtin f !builtin_callback; succ = Halt } | Goto { succ = Some _; _ } -> Halt | Goto { target; succ = None; _ } -> Goto target | Branch { test; _ } -> Branch { test; taken = Halt; fallthrough = Halt } | Terminator (Jump { target; _ }) -> Jump target | Terminator Halt -> Halt | Terminator Cut -> Cut | Terminator (Die msg) -> Die msg let debug_level = Options.Logger.get_debug_level () let decorate_fiber = if debug_level >= 40 then fun node -> let succ = raw_fiber node in (Fiber.Debug { msg = Format.asprintf "%a" pp_node node; succ }, succ) else fun node -> let fiber = raw_fiber node in (fiber, fiber) let make_label = if debug_level >= 2 then (fun node pred -> let msg = match (node, !annotation_printer) with | Instruction inst, Some pp -> Format.asprintf "%a %-25s%a" Virtual_address.pp (Instruction.address inst) (Mnemonic.to_string (Instruction.mnemonic inst)) pp (Instruction.address inst) | Hook { addr; info }, Some pp -> Format.asprintf "%a %-25s%a" Virtual_address.pp addr info pp addr | Instruction inst, None -> Format.asprintf "%a %a" Virtual_address.pp (Instruction.address inst) Mnemonic.pp (Instruction.mnemonic inst) | Hook { addr; info }, None -> Format.asprintf "%a %s" Virtual_address.pp addr info | _ -> assert false in let debug = Fiber.Debug { msg; succ = Halt } in Fiber.relink ~pred debug; debug) else fun _ pred -> pred let rec forward t vertex = match G.node t vertex with | Fallthrough { kind = Nop | Forget _; succ } | Goto { succ = Some succ; _ } -> forward t succ | Fallthrough { kind = Assign { var; _ } | Clobber var | Load { var; _ } | Symbolize var; succ; } when is_deadstore t var succ -> forward t succ | _ -> vertex let link t todo reloc pred taken vertex = let vertex = forward t vertex in try Fiber.relink ~taken ~pred (I.Htbl.find t.fibers vertex) with Not_found -> Queue.push vertex todo; Queue.push (pred, taken, vertex) reloc let commit_addr addr n pred = if n > 0 then ( let step = Fiber.Step { addr; n; succ = Halt } in Fiber.relink ~pred (if debug_level >= 39 then Fiber.Debug { msg = Format.sprintf "step %d" n; succ = step } else step); step) else pred let commit_vars ?var ?deps vars pred = let vars, others = match deps with | None -> (vars, Var.Map.empty) | Some set -> let f var _ = Var.Set.mem var set in let f = match var with | None -> f | Some var' -> fun var rval -> Option.fold ~none:false ~some:(Var.appears_in var') rval || f var rval in Var.Map.partition f vars in ( others, Var.Map.fold (fun var value pred -> let kind = match value with | None -> Clobber var | Some rval -> Assign { var; rval } in let head, tail = decorate_fiber (Fallthrough { kind; succ = -1 }) in Fiber.relink ~pred head; tail) vars pred ) let fallthrough_var = function | Assign { var; _ } | Load { var; _ } | Clobber var | Forget var | Symbolize var -> Some var | Nop | Debug _ | Instruction _ | Hook _ | Assume _ | Assert _ | Enumerate _ | Store _ | Print _ | Reach _ | Builtin _ -> None let fallthrough_deps = function | Nop | Debug _ | Instruction _ | Hook _ | Clobber _ | Forget _ | Symbolize _ -> Some Var.Set.empty | Assign { rval = e; _ } | Load { addr = e; _ } | Assume e | Assert e | Enumerate { enum = e; _ } -> Some (Var.collect e Var.Set.empty) | Store { addr; rval; _ } -> Some (Var.collect addr (Var.collect rval Var.Set.empty)) | Print _ | Reach _ | Builtin _ -> None let commit addr n vars pred = commit_addr addr n (snd (commit_vars vars pred)) let rec line t todo reloc addr n vars pred vertex = try let fiber = I.Htbl.find t.fibers vertex in Fiber.relink ~pred:(commit addr n vars pred) fiber with Not_found -> ( match G.pred t vertex with | _ :: _ :: _ -> Queue.push vertex todo; Queue.push (commit addr n vars pred, false, vertex) reloc | _ -> baseline t todo reloc addr n vars pred vertex) and baseline t todo reloc addr n vars pred vertex = let node = G.node t vertex in match node with | Fallthrough { kind = Nop | Forget _; succ } | Goto { succ = Some succ; _ } -> line t todo reloc addr n vars pred succ | Fallthrough { kind = Instruction inst as info; succ } -> let pred = make_label info pred in line t todo reloc (Instruction.address inst) (n + 1) vars pred succ | Fallthrough { kind = Hook { addr; _ } as info; succ } -> let pred = make_label info pred in let step = Fiber.Step { addr; n; succ = Halt } in Fiber.relink ~pred step; line t todo reloc addr 0 vars step succ | Fallthrough { kind = Assign { var; _ } | Clobber var | Load { var; _ } | Symbolize var; succ; } when is_deadstore t var succ -> line t todo reloc addr n vars pred succ | Fallthrough { kind = Assign { var; rval = Var var' }; succ } when Var.Map.mem var' vars && is_deadstore t var' succ -> let value = Var.Map.find var' vars in let vars = Var.Map.remove var' vars in let vars, pred = commit_vars ~var ~deps:Var.Set.empty vars pred in line t todo reloc addr n (Var.Map.add var value vars) pred succ | Fallthrough { kind = Assign { var; rval }; succ } -> let vars, pred = commit_vars ~var ~deps:(Var.collect rval Var.Set.empty) vars pred in line t todo reloc addr n (Var.Map.add var (Some rval) vars) pred succ | Fallthrough { kind = Clobber var; succ } -> let vars, pred = commit_vars ~var vars pred in line t todo reloc addr n (Var.Map.add var None vars) pred succ | Fallthrough { kind = (Print _ | Assume _ | Assert _ | Enumerate _ | Reach _ | Builtin _) as fallthrough; succ; } -> let vars, pred = commit_vars ?deps:(fallthrough_deps fallthrough) vars pred in let head, tail = decorate_fiber node in Fiber.relink ~pred:(commit_addr addr n pred) head; line t todo reloc addr 0 vars tail succ | Fallthrough { kind; succ } -> let vars, pred = commit_vars ?var:(fallthrough_var kind) ?deps:(fallthrough_deps kind) vars pred in let head, tail = decorate_fiber node in Fiber.relink ~pred head; line t todo reloc addr n vars tail succ | Goto { succ = None; _ } | Terminator _ -> Fiber.relink ~pred:(commit addr n vars pred) (fst (decorate_fiber node)) | Branch { target; fallthrough; _ } -> let head, tail = decorate_fiber node in Fiber.relink ~pred:(commit addr n vars pred) head; link t todo reloc tail true target; link t todo reloc tail false fallthrough module Opt () = struct module Env = Cse.Env let commit_state t env pred vertex = let env = Var.Set.fold (fun var env -> Env.forget var env) (I.Htbl.find t.killset vertex) env in List.fold_left (fun pred kind -> let head, tail = decorate_fiber (Fallthrough { kind; succ = 0 }) in Fiber.relink ~pred head; tail) pred (Cse.commit env) let commit t addr n env pred vertex = commit_addr addr n (commit_state t env pred vertex) let rec line t todo reloc addr n env pred vertex = try let fiber = I.Htbl.find t.fibers vertex in Fiber.relink ~pred:(commit t addr n env pred vertex) fiber with Not_found -> ( match G.pred t vertex with | _ :: _ :: _ -> Queue.push vertex todo; Queue.push (commit t addr n env pred vertex, false, vertex) reloc | _ -> baseline t todo reloc addr n env pred vertex) and baseline t todo reloc addr n env pred vertex = let node = G.node t vertex in match node with | Fallthrough { kind = Nop; succ } | Goto { succ = Some succ; _ } -> line t todo reloc addr n env pred succ | Fallthrough { kind = Instruction inst as info; succ } -> let pred = make_label info pred in line t todo reloc (Instruction.address inst) (n + 1) env pred succ | Fallthrough { kind = Hook { addr; _ } as info; succ } -> let pred = make_label info pred in let step = Fiber.Step { addr; n; succ = Halt } in Fiber.relink ~pred step; line t todo reloc addr 0 env step succ | Fallthrough { kind = Assign { var; _ } | Clobber var | Load { var; _ } | Symbolize var; succ; } when Var.Set.mem var (I.Htbl.find t.killset succ) -> line t todo reloc addr n env pred succ | Fallthrough { kind = Assign { var; rval }; succ } -> line t todo reloc addr n (Env.assign var rval env) pred succ | Fallthrough { kind = Clobber var; succ } -> line t todo reloc addr n (Env.clobber var env) pred succ | Fallthrough { kind = Forget var; succ } -> line t todo reloc addr n (Env.forget var env) pred succ | Fallthrough { kind = Load { var; base; dir; addr = ptr }; succ } -> line t todo reloc addr n (Env.load var base dir ptr env) pred succ | Fallthrough { kind = Store { base; dir; addr = ptr; rval }; succ } -> line t todo reloc addr n (Env.store base dir ~addr:ptr rval env) pred succ | Fallthrough { succ; _ } -> let pred = commit_state t env pred vertex in let head, tail = decorate_fiber node in Fiber.relink ~pred head; line t todo reloc addr n Env.empty tail succ | Goto { succ = None; _ } | Terminator _ -> Fiber.relink ~pred:(commit t addr n env pred vertex) (fst (decorate_fiber node)) | Branch { test; target; fallthrough } -> let node, target, fallthrough = match test with | Unary (Not, test) -> ( Branch { test; target = fallthrough; fallthrough = target }, fallthrough, target ) | _ -> (node, target, fallthrough) in let head, tail = decorate_fiber node in Fiber.relink ~pred:(commit t addr n env pred vertex) head; link t todo reloc tail true target; link t todo reloc tail false fallthrough let run t todo reloc pred vertex = baseline t todo reloc Virtual_address.zero 0 Env.empty pred vertex end let assemble = if Options.Cse.get () then let module O = Opt () in fun t todo reloc pred vertex -> if not t.volatile then O.run t todo reloc pred vertex else baseline t todo reloc Virtual_address.zero 0 Var.Map.empty pred vertex else fun t todo reloc pred vertex -> baseline t todo reloc Virtual_address.zero 0 Var.Map.empty pred vertex let rec closure t todo reloc = if Queue.is_empty todo then Queue.iter (fun (pred, taken, target) -> Fiber.relink ~taken ~pred (I.Htbl.find t.fibers (forward t target))) reloc else let vertex = Queue.pop todo in let vertex = forward t vertex in if I.Htbl.mem t.fibers vertex then closure t todo reloc; let placeholder : [ `Assume ] Fiber.t = Assume { test = Expr.one; succ = Halt } in assemble t todo reloc (let (Assume _ as head) = placeholder in head) vertex; let (Assume { succ; _ }) = placeholder in I.Htbl.add t.fibers vertex succ; closure t todo reloc let rec get t addr = match Virtual_address.Htbl.find t.entries addr with | exception Not_found -> disasm t (ref (Virtual_address.Map.singleton addr [])); process t; get t addr | vertex -> ( let vertex = forward t vertex in try I.Htbl.find t.fibers vertex with Not_found -> let todo = Queue.create () in Queue.add vertex todo; closure t todo (Queue.create ()); I.Htbl.find t.fibers vertex) let disasm t addr = try Virtual_address.Htbl.find t.entries addr with Not_found -> disasm t (ref (Virtual_address.Map.singleton addr [])); process t; Virtual_address.Htbl.find t.entries addr let single ?hooks ~task addr reader size = let hooks = Option.map (fun (hooks, env) -> (Virtual_address.Map.singleton addr hooks, env)) hooks in let t = create ~volatile:true ?hooks ~task addr reader size in let fiber = get t addr in (fiber, t.last) let script ~task addr ?(fallthrough = false) script env = let t = { n = 0; nodes = I.Htbl.create 16; preds = I.Htbl.create 16; entries = Virtual_address.Htbl.create 1; exits = I.Set.empty; base = addr; reader = Lreader.of_bytes ""; size = 0; volatile = true; last = None; sinks = I.Set.empty; killset = I.Htbl.create 16; task; fibers = I.Htbl.create 1; } in add_node t 0 (Fallthrough { kind = Hook { addr; info = "anonymous" }; succ = 1 }); Virtual_address.Htbl.add t.entries addr 0; add_script t (ref Virtual_address.Map.empty) addr script env fallthrough; process t; get t addr end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>