package binsec
Semantic analysis of binary executables
Install
Dune Dependency
Authors
-
AAdel Djoudi
-
BBenjamin Farinier
-
CChakib Foulani
-
DDorian Lesbre
-
FFrédéric Recoules
-
GGuillaume Girol
-
JJosselin Feist
-
LLesly-Ann Daniel
-
MMahmudul Faisal Al Ameen
-
MManh-Dung Nguyen
-
MMathéo Vergnolle
-
MMathilde Ollivier
-
MMatthieu Lemerre
-
NNicolas Bellec
-
OOlivier Nicole
-
RRichard Bonichon
-
RRobin David
-
SSébastien Bardin
-
SSoline Ducousso
-
TTa Thanh Dinh
-
YYaëlle Vinçont
-
YYanis Sellami
Maintainers
Sources
binsec-0.10.1.tbz
sha256=87d4048c9a90c8a14ee029e77d31032a15427f06416a31938cec8a68394234c4
sha512=6a023d2a5c87c56b0aac489874431d8dcccee1451a072a826190be3a7f75a961688bab95f193f494231744abc3bc9733ab5c809057d36a5e4d24c6c29c369144
doc/src/binsec.sse/cse.ml.html
Source file cse.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
(**************************************************************************) (* This file is part of BINSEC. *) (* *) (* Copyright (C) 2016-2025 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) module rec Expr : (Term.S with type a := Dba.Var.t and type b := Layer.t) = Term.Make (Dba.Var) (Layer) and Store : sig type t val empty : t val store : Bitvector.t -> Expr.t -> t -> t val select : (Z.t -> int -> Expr.t) -> Bitvector.t -> int -> t -> Expr.t val iter : (Z.t -> Expr.t -> unit) -> t -> unit val rev_iter : (Z.t -> Expr.t -> unit) -> t -> unit end = struct module Chunk = struct type t = Expr.t let equal = Expr.is_equal let len t = Expr.sizeof t lsr 3 let crop ~lo ~hi t = Expr.restrict ~lo:(lo lsl 3) ~hi:((hi lsl 3) + 7) t let concat = Expr.append end include Lmap.Make (Chunk) let store addr value t = let z = Bitvector.value_of addr and s = Chunk.len value in let u = Z.add z (Z.of_int s) in let n = Bitvector.size_of addr in if Z.numbits u > n && Z.popcount u > 1 then let o = Z.to_int (Z.extract u 0 n) in store z (Chunk.crop ~hi:(s - o - 1) ~lo:0 value) (store Z.zero (Chunk.crop ~hi:(s - 1) ~lo:(s - o) value) t) else store z value t let select f addr s t = let z = Bitvector.value_of addr in let u = Z.add z (Z.of_int s) in let n = Bitvector.size_of addr in if Z.numbits u > n && Z.popcount u > 1 then let o = Z.to_int (Z.extract u 0 n) in Chunk.concat (select f Z.zero o t) (select f z (s - o) t) else select f z s t end and Layer : sig type t = | Base of string option | Layer of { id : int; over : t; base : string option; addr : Expr.t; store : Store.t; } val base : t -> string option val write : read:bool -> addr:Expr.t -> Expr.t -> Expr.endianness -> t -> t val read : addr:Expr.t -> int -> Expr.endianness -> t -> Expr.t * bool include Sigs.HASHABLE with type t := t end = struct type t = | Base of string option | Layer of { id : int; over : t; base : string option; addr : Expr.t; store : Store.t; } let id = ref 0 let hash = function Base b -> Hashtbl.hash b | Layer { id; _ } -> id let compare t t' = match (t, t') with | Base b, Base b' -> compare b b' | Layer { id; _ }, Layer { id = id'; _ } -> id - id' | Base _, Layer _ -> -1 | Layer _, Base _ -> 1 let equal t t' = compare t t' = 0 let bswap = let rec iter e i r = if i = 0 then r else iter e (i - 8) (Expr.append (Expr.restrict ~hi:(i - 1) ~lo:(i - 8) e) r) in fun e -> let size = Expr.sizeof e in assert (size land 0x7 = 0); iter e (size - 8) (Expr.restrict ~hi:(size - 1) ~lo:(size - 8) e) let rebase (addr : Expr.t) = match addr with | Cst bv -> (Expr.zeros (Bitvector.size_of bv), bv) | Binary { f = Plus; x; y = Cst bv; _ } -> (x, bv) | Binary { f = Minus; x; y = Cst bv; _ } -> (x, Bitvector.neg bv) | _ -> (addr, Bitvector.zeros (Expr.sizeof addr)) let base = function Base base | Layer { base; _ } -> base let write addr value over = let addr, offset = rebase addr in incr id; Layer { id = !id; over; base = base over; addr; store = Store.store offset value Store.empty; } let write ~read ~addr value (dir : Expr.endianness) over = let value = match dir with LittleEndian -> value | BigEndian -> bswap value in match over with | Base _ -> write addr value over | Layer _ when read -> write addr value over | Layer { base = base'; addr = addr'; store = store'; over = over'; _ } -> ( match Expr.sub addr addr' with | Expr.Cst bv -> let store = Store.store bv value store' in incr id; Layer { id = !id; over = over'; base = base'; addr = addr'; store } | _ -> write addr value over) let rec read ~addr bytes (dir : Expr.endianness) t = match t with | Base _ -> (Expr.load bytes dir addr t, true) | Layer { addr = addr'; store; over; _ } -> ( match Expr.sub addr addr' with | Expr.Cst bv -> let miss i s = fst (read ~addr:(Expr.addz addr' i) s Expr.LittleEndian over) in let bytes = Store.select miss bv bytes store in let bytes = match dir with LittleEndian -> bytes | BigEndian -> bswap bytes in (bytes, false) | _ -> (Expr.load bytes dir addr t, true)) end module StrMap = Basic_types.String.Map module VarMap = Map.Make (struct type t = Dba.Var.t let compare (x : t) (y : t) = x.id - y.id end) let uop (e : Dba.Expr.t) (op : Dba.Unary_op.t) : Term.unary Term.operator = match op with | Not -> Not | UMinus -> Minus | Sext n -> Sext (n - Dba.Expr.size_of e) | Uext n -> Uext (n - Dba.Expr.size_of e) | Restrict interval -> Restrict interval let bop (op : Dba.Binary_op.t) : Term.binary Term.operator = match op with | Plus -> Plus | Minus -> Minus | Mult -> Mul | DivU -> Udiv | DivS -> Sdiv | ModU -> Umod | ModS -> Smod | Eq -> Eq | Diff -> Diff | LeqU -> Ule | LtU -> Ult | GeqU -> Uge | GtU -> Ugt | LeqS -> Sle | LtS -> Slt | GeqS -> Sge | GtS -> Sgt | Xor -> Xor | And -> And | Or -> Or | Concat -> Concat | LShift -> Lsl | RShiftU -> Lsr | RShiftS -> Asr | LeftRotate -> Rol | RightRotate -> Ror module Env = struct type t = { vars : Expr.t VarMap.t; layers : (Layer.t * bool) StrMap.t; rev_reads : Expr.t list; input_vars : Expr.t VarMap.t; } let is_empty { vars; layers; rev_reads; _ } = VarMap.is_empty vars && StrMap.is_empty layers && rev_reads = [] let rec eval (e : Types.Expr.t) t = match e with | Cst bv | Var { info = Symbol (_, (lazy bv)); _ } -> (Expr.constant bv, t) | Var var -> lookup var t | Load (len, dir, addr, base) -> load len dir addr base t | Unary (f, x) -> let x', t' = eval x t in (Expr.unary (uop x f) x', t') | Binary (f, x, y) -> let x', t' = eval x t in let y', t' = eval y t' in (Expr.binary (bop f) x' y', t') | Ite (c, r, e) -> let c', t' = eval c t in let r', t' = eval r t' in let e', t' = eval e t' in (Expr.ite c' r' e', t') and lookup var t = try (VarMap.find var t.vars, t) with Not_found -> let input = Expr.var "" var.size var in ( input, { t with vars = VarMap.add var input t.vars; input_vars = VarMap.add var input t.input_vars; } ) and load len dir addr base t = let name = Option.value ~default:"" base in let layer, read = try StrMap.find name t.layers with Not_found -> (Layer.Base base, true) in let addr, t' = eval addr t in let bytes, read' = Layer.read ~addr len dir layer in ( bytes, { t' with layers = StrMap.add name (layer, read || read') t'.layers; rev_reads = (if read' then bytes :: t'.rev_reads else t'.rev_reads); } ) let empty = { vars = VarMap.empty; layers = StrMap.empty; rev_reads = []; input_vars = VarMap.empty; } let assign var value t = let value', t' = eval value t in { t' with vars = VarMap.add var value' t'.vars } let clobber var t = assign var (Dba.Expr.constant (Bitvector.zeros var.size)) t let forget var t = { t with vars = VarMap.remove var t.vars } let load (var : Dba.Var.t) base dir addr t = let bytes, t' = eval (Dba.Expr.load ?array:base (Size.Byte.create (var.size lsr 3)) dir addr) t in { t' with vars = VarMap.add var bytes t'.vars } let store base dir ~addr value t = let name = Option.value ~default:"" base in let layer, read = try StrMap.find name t.layers with Not_found -> (Layer.Base base, false) in let addr', t' = eval addr t in let value', t' = eval value t' in let layer' = Layer.write ~read ~addr:addr' value' dir layer in { t' with layers = StrMap.add name (layer', false) t'.layers } end type value = Bv of Expr.t | Ax of string option * Expr.t * Expr.t module VarTbl = Dba_types.Var.Htbl module VarSet = Dba_types.Var.Set module BvTbl = Hashtbl.Make (struct type t = Expr.t let hash = Expr.hash let equal = Expr.is_equal end) module AxTbl = Hashtbl.Make (Layer) type t = { mutable id : int; mutable rev : value list; locals : Dba.Var.t BvTbl.t; layers : unit AxTbl.t; } let init () = { id = 0; rev = []; locals = BvTbl.create 32; layers = AxTbl.create 4 } let bv_once = Dba.Var.create ~tag:Dba.Var.Tag.Empty "" ~bitsize:Size.Bit.bits1 let rec visit_bv t bv = try if BvTbl.find t.locals bv == bv_once then ( let name = Format.sprintf "$$$%d" t.id in t.id <- t.id + 1; BvTbl.replace t.locals bv (Dba.Var.create ~tag:Dba.Var.Tag.Temp name ~bitsize:(Size.Bit.create (Expr.sizeof bv)))) with Not_found -> ( match bv with | Var _ -> () | Load { addr; label; _ } -> let name = Format.sprintf "$$$%d" t.id in t.id <- t.id + 1; BvTbl.add t.locals bv (Dba.Var.create ~tag:Dba.Var.Tag.Temp name ~bitsize:(Size.Bit.create (Expr.sizeof bv))); visit_ax t label; visit_bv t addr; t.rev <- Bv bv :: t.rev | Cst _ -> () | Unary { x; _ } -> BvTbl.add t.locals bv bv_once; visit_bv t x; t.rev <- Bv bv :: t.rev | Binary { x; y; _ } -> BvTbl.add t.locals bv bv_once; visit_bv t x; visit_bv t y; t.rev <- Bv bv :: t.rev | Ite { c; t = r; e; _ } -> BvTbl.add t.locals bv bv_once; visit_bv t c; visit_bv t r; visit_bv t e; t.rev <- Bv bv :: t.rev) and visit_ax t ax = if not (AxTbl.mem t.layers ax) then ( AxTbl.add t.layers ax (); match ax with | Base _ -> () | Layer { base; addr; store; over; _ } -> visit_ax t over; Store.rev_iter (fun offset value -> let addr = Expr.addz addr offset in visit_bv t addr; visit_bv t value; t.rev <- Ax (base, addr, value) :: t.rev) store) let mk_unop (op : Term.unary Term.operator) x : Dba.Unary_op.t = match op with | Not -> Not | Minus -> UMinus | Uext n -> Uext (Expr.sizeof x + n) | Sext n -> Sext (Expr.sizeof x + n) | Restrict i -> Restrict i let mk_binop (op : Term.binary Term.operator) : Dba.Binary_op.t = match op with | Plus -> Plus | Minus -> Minus | Mul -> Mult | Udiv -> DivU | Sdiv -> DivS | Umod -> ModU | Smod -> ModS | Eq -> Eq | Diff -> Diff | Ule -> LeqU | Ult -> LtU | Uge -> GeqU | Ugt -> GtU | Sle -> LeqS | Slt -> LtS | Sge -> GeqS | Sgt -> GtS | Xor -> Xor | And -> And | Or -> Or | Concat -> Concat | Lsl -> LShift | Lsr -> RShiftU | Asr -> RShiftS | Rol -> LeftRotate | Ror -> RightRotate let rec mk_bv t bv = match BvTbl.find t.locals bv with | var -> if var == bv_once then mk_bv_no_cons t bv else Dba.Expr.v var | exception Not_found -> mk_bv_no_cons t bv and mk_bv_no_cons t bv = match bv with | Var { label = var; _ } -> Dba.Expr.v var | Load _ -> assert false | Cst bv -> Dba.Expr.constant bv | Unary { f; x; _ } -> Dba.Expr.unary (mk_unop f x) (mk_bv t x) | Binary { f; x; y; _ } -> Dba.Expr.binary (mk_binop f) (mk_bv t x) (mk_bv t y) | Ite { c; t = r; e; _ } -> Dba.Expr.ite (mk_bv t c) (mk_bv t r) (mk_bv t e) exception Skip let rec visit_bv' bindings rev_bindings t (bv : Expr.t) = match bv with | Var { label = var; _ } -> ( try let bv = VarTbl.find bindings var in BvTbl.remove rev_bindings bv; if BvTbl.length rev_bindings = 0 then raise_notrace Skip with Not_found -> ()) | Unary { x; _ } when BvTbl.find t.locals bv == bv_once -> visit_bv' bindings rev_bindings t x | Binary { x; y; _ } when BvTbl.find t.locals bv == bv_once -> visit_bv' bindings rev_bindings t x; visit_bv' bindings rev_bindings t y | Ite { c; t = r; e; _ } when BvTbl.find t.locals bv == bv_once -> visit_bv' bindings rev_bindings t c; visit_bv' bindings rev_bindings t r; visit_bv' bindings rev_bindings t e | Cst _ | Load _ | Unary _ | Binary _ | Ite _ -> () let commit (body : Env.t) = if Env.is_empty body then [] else let t = init () in List.iter (visit_bv t) (List.rev body.rev_reads); StrMap.iter (fun _ (ax, _) -> visit_ax t ax) body.layers; let bindings = VarTbl.create 32 and inputs = VarTbl.create 32 and rev_bindings = BvTbl.create 32 in VarMap.iter (fun var bv -> match (bv : Expr.t) with | Var { label = var'; _ } when Dba.Var.equal var var' -> () | _ -> VarTbl.add bindings var bv; if VarMap.mem var body.input_vars then ( let bv = Expr.var "" var.size var in let name = Format.sprintf "$$$%d" t.id in t.id <- t.id + 1; let tmp = Dba.Var.create ~tag:Dba.Var.Tag.Temp name ~bitsize:(Size.Bit.create var.size) in BvTbl.add t.locals bv tmp; VarTbl.add inputs var tmp); if not (BvTbl.mem rev_bindings bv) then BvTbl.add rev_bindings bv var; visit_bv t bv) body.vars; (try List.iter (function | Bv bv -> ( try let var = BvTbl.find rev_bindings bv in BvTbl.replace t.locals bv var; VarTbl.remove bindings var; BvTbl.remove rev_bindings bv; if BvTbl.length rev_bindings = 0 then raise_notrace Skip with Not_found -> visit_bv' bindings rev_bindings t bv) | Ax (_, addr, value) -> visit_bv' bindings rev_bindings t addr; visit_bv' bindings rev_bindings t value) t.rev with Skip -> ()); VarTbl.fold (fun var tmp assigns -> Ir.Assign { var = tmp; rval = Dba.Expr.v var } :: assigns) inputs (List.fold_left (fun assigns -> function | Bv (Load { dir; addr; label; _ } as bv) -> Ir.Load { var = BvTbl.find t.locals bv; base = Layer.base label; dir; addr = mk_bv t addr; } :: assigns | Bv bv -> let var = BvTbl.find t.locals bv in if var == bv_once then assigns else Ir.Assign { var; rval = mk_bv_no_cons t bv } :: assigns | Ax (base, addr, value) -> Ir.Store { base; dir = LittleEndian; addr = mk_bv t addr; rval = mk_bv t value; } :: assigns) (VarTbl.fold (fun var bv assigns -> Ir.Assign { var; rval = mk_bv t bv } :: assigns) bindings []) t.rev)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>