package binsec

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file dcode.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
(**************************************************************************)
(*  This file is part of BINSEC.                                          *)
(*                                                                        *)
(*  Copyright (C) 2016-2023                                               *)
(*    CEA (Commissariat à l'énergie atomique et aux énergies              *)
(*         alternatives)                                                  *)
(*                                                                        *)
(*  you can redistribute it and/or modify it under the terms of the GNU   *)
(*  Lesser General Public License as published by the Free Software       *)
(*  Foundation, version 2.1.                                              *)
(*                                                                        *)
(*  It is distributed in the hope that it will be useful,                 *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *)
(*  GNU Lesser General Public License for more details.                   *)
(*                                                                        *)
(*  See the GNU Lesser General Public License version 2.1                 *)
(*  for more details (enclosed in the file licenses/LGPLv2.1).            *)
(*                                                                        *)
(**************************************************************************)

open Types
open Ir

module Make
    (Stats : EXPLORATION_STATISTICS_FULL)
    (Path : Path.S)
    (State : STATE) : sig
  module Fiber :
    Fiber.S
      with type builtin :=
            Virtual_address.t ->
            Path.t ->
            int ->
            State.t ->
            (State.t, Types.status) Result.t

  type t

  val single :
    ?hooks:(string * Script.Instr.t list) list * Script.env ->
    task:unit Basic_types.Int.Htbl.t ->
    Virtual_address.t ->
    Lreader.t ->
    int ->
    [ `All ] Fiber.t * Instruction.t option

  val script :
    task:unit Basic_types.Int.Htbl.t ->
    Virtual_address.t ->
    ?fallthrough:bool ->
    Script.Instr.t list ->
    Script.env ->
    [ `All ] Fiber.t

  val create :
    ?volatile:bool ->
    ?hooks:
      (string * Script.Instr.t list) list Virtual_address.Map.t * Script.env ->
    task:unit Basic_types.Int.Htbl.t ->
    Virtual_address.t ->
    Lreader.t ->
    int ->
    t

  val get : t -> Virtual_address.t -> [ `All ] Fiber.t

  module type CALLBACK = sig
    val instruction_callback :
      (Ast.Instr.t -> Script.env -> Ir.fallthrough list) option

    val process_callback :
      ((module Ir.GRAPH with type t = 'a) -> 'a -> unit) option

    val builtin_callback :
      (Ir.builtin ->
      (Virtual_address.t ->
      Path.t ->
      int ->
      State.t ->
      (State.t, Types.status) Result.t)
      option)
      option
  end

  val register_callback : (module CALLBACK) -> unit
end = struct
  module type CALLBACK = sig
    val instruction_callback :
      (Ast.Instr.t -> Script.env -> Ir.fallthrough list) option

    val process_callback :
      ((module Ir.GRAPH with type t = 'a) -> 'a -> unit) option

    val builtin_callback :
      (Ir.builtin ->
      (Virtual_address.t ->
      Path.t ->
      int ->
      State.t ->
      (State.t, Types.status) Result.t)
      option)
      option
  end

  module Fiber = struct
    type 'a t =
      | Debug : { msg : string; mutable succ : [ `All ] t } -> [< `All ] t
      | Print : { output : Output.t; mutable succ : [ `All ] t } -> [< `All ] t
      | Step : {
          addr : Virtual_address.t;
          n : int;
          mutable succ : [ `All ] t;
        }
          -> [< `All ] t
      | Assign : {
          var : Var.t;
          rval : Expr.t;
          mutable succ : [ `All ] t;
        }
          -> [< `All ] t
      | Clobber : { var : Var.t; mutable succ : [ `All ] t } -> [< `All ] t
      | Load : {
          var : Var.t;
          base : A.t;
          dir : Machine.endianness;
          addr : Expr.t;
          mutable succ : [ `All ] t;
        }
          -> [< `All ] t
      | Store : {
          base : A.t;
          dir : Machine.endianness;
          addr : Expr.t;
          rval : Expr.t;
          mutable succ : [ `All ] t;
        }
          -> [< `All ] t
      | Symbolize : { var : Var.t; mutable succ : [ `All ] t } -> [< `All ] t
      | Assume : {
          test : Expr.t;
          mutable succ : [ `All ] t;
        }
          -> [< `Assume | `All ] t
      | Assert : {
          test : Expr.t;
          mutable succ : [ `All ] t;
        }
          -> [< `Assert | `All ] t
      | Branch : {
          test : Expr.t;
          mutable taken : [ `All ] t;
          mutable fallthrough : [ `All ] t;
        }
          -> [< `Branch | `All ] t
      | Goto : Virtual_address.t -> [< `All ] t
      | Jump : Expr.t -> [< `Jump | `All ] t
      | Halt : [< `All ] t
      | Probe : {
          kind : Probe.t;
          mutable succ : [ `All ] t;
        }
          -> [< `Probe | `All ] t
      | Builtin : {
          f :
            Virtual_address.t ->
            Path.t ->
            int ->
            State.t ->
            (State.t, Types.status) Result.t;
          mutable succ : [ `All ] t;
        }
          -> [ `All ] t
      | Cut : [< `All ] t
      | Die : string -> [< `All ] t

    let relink ?(taken = false) ~(pred : [ `All ] t) (succ : [ `All ] t) =
      match pred with
      | Debug t -> t.succ <- succ
      | Print t -> t.succ <- succ
      | Step t -> t.succ <- succ
      | Assign t -> t.succ <- succ
      | Clobber t -> t.succ <- succ
      | Load t -> t.succ <- succ
      | Store t -> t.succ <- succ
      | Symbolize t -> t.succ <- succ
      | Assume t -> t.succ <- succ
      | Assert t -> t.succ <- succ
      | Branch t when taken -> t.taken <- succ
      | Branch t -> t.fallthrough <- succ
      | Probe t -> t.succ <- succ
      | Builtin t -> t.succ <- succ
      | Goto _ | Jump _ | Cut | Halt | Die _ -> ()
  end

  module Var = struct
    module Tag = Dba.Var.Tag
    include Dba_types.Var

    let rec collect (e : Dba.Expr.t) (d : Set.t) : Set.t =
      match e with
      | Cst _ -> d
      | Var v -> Set.add v d
      | Load (_, _, e, _) | Unary (_, e) -> collect e d
      | Binary (_, e, e') -> collect e (collect e' d)
      | Ite (e, e', e'') -> collect e (collect e' (collect e'' d))

    let rec appears_in v (e : Dba.Expr.t) =
      match e with
      | Cst _ -> false
      | Var v' -> equal v v'
      | Load (_, _, e, _) | Unary (_, e) -> appears_in v e
      | Binary (_, e, e') -> appears_in v e || appears_in v e'
      | Ite (e, e', e'') ->
          appears_in v e || appears_in v e' || appears_in v e''
  end

  type t = {
    mutable n : int;
    nodes : node I.Htbl.t;
    preds : int list I.Htbl.t;
    entries : int Virtual_address.Htbl.t;
    mutable exits : I.Set.t;
    base : Virtual_address.t;
    reader : Lreader.t;
    size : int;
    volatile : bool;
    mutable last : Instruction.t option;
    mutable sinks : I.Set.t;
    killset : Var.Set.t I.Htbl.t;
    fibers : [ `All ] Fiber.t I.Htbl.t;
  }

  let entropy = Printf.sprintf "%%entropy%%%d"

  let push todo addr vertex (tag : Dba.tag) =
    todo :=
      Virtual_address.Map.add addr
        ((vertex, tag)
        :: (try Virtual_address.Map.find addr !todo with Not_found -> []))
        !todo

  let add_node t vertex node =
    if vertex < t.n then raise (Invalid_argument "persistent vertex");
    (match I.Htbl.find t.nodes vertex with
    | exception Not_found -> ()
    | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } ->
        I.Htbl.replace t.preds succ
          (List.filter (( != ) vertex) (I.Htbl.find t.preds succ));
        if succ < t.n then t.sinks <- I.Set.remove vertex t.sinks
    | Branch { target; fallthrough; _ } ->
        I.Htbl.replace t.preds target
          (List.filter (( != ) vertex) (I.Htbl.find t.preds target));
        I.Htbl.replace t.preds fallthrough
          (List.filter (( != ) vertex) (I.Htbl.find t.preds fallthrough));
        if target < t.n || fallthrough < t.n then
          t.sinks <- I.Set.remove vertex t.sinks
    | Goto { succ = None; _ } | Terminator _ ->
        t.exits <- I.Set.remove vertex t.exits;
        t.sinks <- I.Set.remove vertex t.sinks);
    I.Htbl.replace t.nodes vertex node;
    if not (I.Htbl.mem t.preds vertex) then I.Htbl.add t.preds vertex [];
    match node with
    | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } ->
        I.Htbl.replace t.preds succ
          (vertex :: (try I.Htbl.find t.preds succ with Not_found -> []));
        if succ < t.n then t.sinks <- I.Set.add vertex t.sinks
    | Branch { target; fallthrough; _ } ->
        I.Htbl.replace t.preds target
          (vertex :: (try I.Htbl.find t.preds target with Not_found -> []));
        I.Htbl.replace t.preds fallthrough
          (vertex
          :: (try I.Htbl.find t.preds fallthrough with Not_found -> []));
        if target < t.n || fallthrough < t.n then
          t.sinks <- I.Set.add vertex t.sinks
    | Goto { succ = None; _ } | Terminator _ ->
        t.exits <- I.Set.add vertex t.exits;
        t.sinks <- I.Set.add vertex t.sinks

  let make_goto t todo vertex target tag =
    try
      let succ = Virtual_address.Htbl.find t.entries target in
      add_node t vertex (Goto { target; tag; succ = Some succ })
    with Not_found ->
      add_node t vertex (Goto { target; tag; succ = None });
      if not t.volatile then push todo target vertex tag

  module G : GRAPH with type t = t = struct
    type nonrec t = t

    let node { nodes; _ } vertex = I.Htbl.find nodes vertex

    module V : Graph.Sig.VERTEX with type t = int = struct
      type t = int

      let compare = ( - )

      let equal = ( == )

      let hash = Fun.id

      type label = t

      let create = Fun.id

      let label = Fun.id
    end

    type vertex = V.t

    module E :
      Graph.Sig.EDGE with type t = V.t * bool * V.t and type vertex = V.t =
    struct
      type t = V.t * bool * V.t

      let compare = compare

      type vertex = V.t

      let src (vertex, _, _) = vertex

      let dst (_, _, vertex) = vertex

      type label = bool

      let create src branch dst = (src, branch, dst)

      let label (_, branch, _) = branch
    end

    type edge = E.t

    let is_directed = true

    let is_empty { nodes; _ } = I.Htbl.length nodes = 0

    let nb_vertex { nodes; _ } = I.Htbl.length nodes

    let nb_edges { preds; _ } =
      I.Htbl.fold (fun _ preds n -> n + List.length preds) preds 0

    let out_degree { nodes; _ } vertex =
      match I.Htbl.find nodes vertex with
      | Terminator _ -> 0
      | Goto { succ = None; _ } -> 0
      | Goto { succ = Some _; _ } | Fallthrough _ -> 1
      | Branch _ -> 2

    let in_degree { preds; _ } vertex = List.length (I.Htbl.find preds vertex)

    let mem_vertex { nodes; _ } vertex = I.Htbl.mem nodes vertex

    let mem_edge { nodes; _ } src dst =
      match I.Htbl.find nodes src with
      | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } -> succ = dst
      | Branch { target; fallthrough; _ } -> target = dst || fallthrough = dst
      | Goto { succ = None; _ } | Terminator _ -> false

    let mem_edge_e { nodes; _ } (src, branch, dst) =
      match I.Htbl.find nodes src with
      | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } -> succ = dst
      | Branch { target; fallthrough; _ } ->
          (branch && target = dst) || ((not branch) && fallthrough = dst)
      | Goto { succ = None; _ } | Terminator _ -> false

    let find_edge { nodes; _ } src dst =
      match I.Htbl.find nodes src with
      | Fallthrough { succ; _ }
      | Goto { succ = Some succ; _ }
      | Branch { fallthrough = succ; _ }
        when succ = dst ->
          (src, false, dst)
      | Branch { target; _ } when target = dst -> (src, true, dst)
      | Fallthrough _ | Goto _ | Branch _ | Terminator _ -> raise Not_found

    let find_all_edges t src dst =
      try [ find_edge t src dst ] with Not_found -> []

    let succ { nodes; _ } vertex =
      match I.Htbl.find nodes vertex with
      | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } -> [ succ ]
      | Branch { target; fallthrough; _ } -> [ target; fallthrough ]
      | Goto { succ = None; _ } | Terminator _ -> []

    let pred { preds; _ } vertex = I.Htbl.find preds vertex

    let succ_e { nodes; _ } vertex =
      match I.Htbl.find nodes vertex with
      | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } ->
          [ (vertex, false, succ) ]
      | Branch { target; fallthrough; _ } ->
          [ (vertex, true, target); (vertex, false, fallthrough) ]
      | Goto { succ = None; _ } | Terminator _ -> []

    let pred_e t vertex =
      List.map (fun src -> find_edge t src vertex) (pred t vertex)

    let iter_vertex f { nodes; _ } =
      let last = I.Htbl.length nodes - 1 in
      for i = 0 to last do
        f i
      done

    let iter_new_vertex f { n; nodes; _ } =
      let last = I.Htbl.length nodes - 1 in
      for i = n to last do
        f i
      done

    let iter_entries f { entries; _ } =
      Virtual_address.Htbl.iter (fun _ i -> f i) entries

    let iter_exits f { exits; _ } = I.Set.iter f exits

    let fold_vertex f { nodes; _ } data =
      I.Htbl.fold (fun vertex _ -> f vertex) nodes data

    let iter_edges f { nodes; _ } =
      I.Htbl.iter
        (fun vertex node ->
          match node with
          | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } ->
              f vertex succ
          | Branch { target; fallthrough; _ } ->
              f vertex target;
              f vertex fallthrough
          | Goto { succ = None; _ } | Terminator _ -> ())
        nodes

    let fold_edges f { nodes; _ } data =
      I.Htbl.fold
        (fun vertex node data ->
          match node with
          | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } ->
              f vertex succ data
          | Branch { target; fallthrough; _ } ->
              f vertex target (f vertex fallthrough data)
          | Goto { succ = None; _ } | Terminator _ -> data)
        nodes data

    let iter_edges_e f { nodes; _ } =
      I.Htbl.iter
        (fun vertex node ->
          match node with
          | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } ->
              f (vertex, false, succ)
          | Branch { target; fallthrough; _ } ->
              f (vertex, true, target);
              f (vertex, false, fallthrough)
          | Goto { succ = None; _ } | Terminator _ -> ())
        nodes

    let fold_edges_e f { nodes; _ } data =
      I.Htbl.fold
        (fun vertex node data ->
          match node with
          | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } ->
              f (vertex, false, succ) data
          | Branch { target; fallthrough; _ } ->
              f (vertex, true, target) (f (vertex, false, fallthrough) data)
          | Goto { succ = None; _ } | Terminator _ -> data)
        nodes data

    let map_vertex f r =
      let t =
        {
          r with
          nodes = I.Htbl.create (I.Htbl.length r.nodes);
          preds = I.Htbl.create (I.Htbl.length r.preds);
          exits = I.Set.map f r.exits;
          sinks = I.Set.map f r.sinks;
          entries =
            Virtual_address.Htbl.create (Virtual_address.Htbl.length r.entries);
          killset = I.Htbl.create (I.Htbl.length r.killset);
        }
      in
      I.Htbl.iter
        (fun vertex node -> I.Htbl.add t.nodes (f vertex) (shuffle f node))
        r.nodes;
      I.Htbl.iter
        (fun vertex preds -> I.Htbl.add t.preds (f vertex) (List.map f preds))
        r.preds;
      Virtual_address.Htbl.iter
        (fun addr vertex -> Virtual_address.Htbl.add t.entries addr (f vertex))
        r.entries;
      I.Htbl.iter
        (fun vertex set -> I.Htbl.add t.killset (f vertex) set)
        r.killset;
      t

    let iter_succ f { nodes; _ } vertex =
      match I.Htbl.find nodes vertex with
      | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } -> f succ
      | Branch { target; fallthrough; _ } ->
          f target;
          f fallthrough
      | Goto { succ = None; _ } | Terminator _ -> ()

    let iter_pred f { preds; _ } vertex = List.iter f (I.Htbl.find preds vertex)

    let fold_succ f { nodes; _ } vertex data =
      match I.Htbl.find nodes vertex with
      | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } -> f succ data
      | Branch { target; fallthrough; _ } -> f target (f fallthrough data)
      | Goto { succ = None; _ } | Terminator _ -> data

    let fold_pred f { preds; _ } vertex data =
      List.fold_left (Fun.flip f) data (I.Htbl.find preds vertex)

    let iter_succ_e f { nodes; _ } vertex =
      match I.Htbl.find nodes vertex with
      | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } ->
          f (vertex, false, succ)
      | Branch { target; fallthrough; _ } ->
          f (vertex, true, target);
          f (vertex, false, fallthrough)
      | Goto { succ = None; _ } | Terminator _ -> ()

    let iter_pred_e f t vertex =
      List.iter
        (fun src -> f (find_edge t src vertex))
        (I.Htbl.find t.preds vertex)

    let fold_succ_e f { nodes; _ } vertex data =
      match I.Htbl.find nodes vertex with
      | Fallthrough { succ; _ } | Goto { succ = Some succ; _ } ->
          f (vertex, false, succ) data
      | Branch { target; fallthrough; _ } ->
          f (vertex, true, target) (f (vertex, false, fallthrough) data)
      | Goto { succ = None; _ } | Terminator _ -> data

    let fold_pred_e f t vertex data =
      List.fold_left
        (fun data src -> f (find_edge t src vertex) data)
        data
        (I.Htbl.find t.preds vertex)

    let insert_before t vertex kind =
      let cur = I.Htbl.length t.nodes in
      iter_pred
        (fun pred ->
          add_node t pred
            (shuffle (fun i -> if i = vertex then cur else i) (node t pred)))
        t vertex;
      add_node t cur (Fallthrough { kind; succ = vertex });
      cur

    let insert_list_before t vertex = function
      | [] -> vertex
      | kind :: tl ->
          let vertex' = insert_before t vertex kind in
          List.iter (fun kind -> ignore (insert_before t vertex kind)) tl;
          vertex'
  end

  let instruction_callback = ref []

  let process_callback = Queue.create ()

  let builtin_callback = ref []

  let register_callback callback =
    let module C = (val callback : CALLBACK) in
    Option.iter
      (fun callback ->
        instruction_callback := callback :: !instruction_callback)
      C.instruction_callback;
    Option.iter
      (fun callback ->
        Queue.push
          (callback (module G : Ir.GRAPH with type t = G.t))
          process_callback)
      C.process_callback;
    Option.iter
      (fun callback -> builtin_callback := callback :: !builtin_callback)
      C.builtin_callback

  let rec resolve_instruction inst env callbacks =
    match callbacks with
    | [] -> raise (Invalid_argument "missing instruction callback")
    | convert :: callbacks -> (
        match convert inst env with
        | [] -> resolve_instruction inst env callbacks
        | l -> l)

  let rec resolve_builtin p callbacks =
    match callbacks with
    | [] -> raise (Invalid_argument "missing builtin callback")
    | exec :: callbacks -> (
        match exec p with None -> resolve_builtin p callbacks | Some f -> f)

  let analyze_fallthrough kind killset =
    match kind with
    | Nop | Debug _ | Instruction _ | Hook _ -> killset
    | Clobber var | Forget var | Symbolize var -> Var.Set.add var killset
    | Assign { var; rval } ->
        if Var.Set.mem var killset then killset
        else
          Var.Set.diff (Var.Set.add var killset)
            (Var.collect rval Var.Set.empty)
    | Load { var; addr; _ } ->
        Var.Set.diff (Var.Set.add var killset) (Var.collect addr Var.Set.empty)
    | Store { addr; rval; _ } ->
        Var.Set.diff
          (Var.Set.diff killset (Var.collect addr Var.Set.empty))
          (Var.collect rval Var.Set.empty)
    | Assume expr
    | Assert expr
    | Print (Value (_, expr))
    | Enumerate { enum = expr; _ } ->
        Var.Set.diff killset (Var.collect expr Var.Set.empty)
    | Print _ (* TODO: refine? *) | Reach _ | Builtin _ -> Var.Set.empty

  let analyze_branch test target fallthrough =
    match (target, fallthrough) with
    | None, None -> assert false
    | None, Some killset | Some killset, None ->
        Var.Set.diff killset (Var.collect test Var.Set.empty)
    | Some target, Some fallthrough ->
        let killset = Var.Set.inter target fallthrough in
        Var.Set.diff killset (Var.collect test Var.Set.empty)

  let rec closure t todo push =
    if not (Queue.is_empty todo) then
      let vertex = Queue.pop todo in
      let killset =
        match G.node t vertex with
        | Fallthrough { kind; succ } ->
            analyze_fallthrough kind (I.Htbl.find t.killset succ)
        | Branch { test; target; fallthrough } ->
            analyze_branch test
              (I.Htbl.find_opt t.killset target)
              (I.Htbl.find_opt t.killset fallthrough)
        | Goto { succ = Some succ; _ } -> I.Htbl.find t.killset succ
        | Goto { succ = None; _ } | Terminator _ -> assert false
      in
      match I.Htbl.find t.killset vertex with
      | old when Var.Set.equal old killset -> closure t todo push
      | (exception Not_found) | _ ->
          I.Htbl.add t.killset vertex killset;
          G.iter_pred push t vertex;
          closure t todo push

  let analyze t =
    let todo = Queue.create () in
    let push = Fun.flip Queue.push todo in
    I.Set.iter
      (fun vertex ->
        G.iter_pred push t vertex;
        match G.node t vertex with
        | Fallthrough { kind; succ } ->
            I.Htbl.add t.killset vertex
              (analyze_fallthrough kind (I.Htbl.find t.killset succ))
        | Branch { test; target; fallthrough } ->
            I.Htbl.add t.killset vertex
              (analyze_branch test
                 (I.Htbl.find_opt t.killset target)
                 (I.Htbl.find_opt t.killset fallthrough))
        | Goto { succ = Some succ; _ } ->
            I.Htbl.add t.killset vertex (I.Htbl.find t.killset succ)
        | Goto { succ = None; _ } | Terminator _ ->
            I.Htbl.add t.killset vertex Var.Set.empty)
      t.sinks;
    closure t todo push;
    t.sinks <- I.Set.empty

  let _export_to_file t =
    let filename = Filename.temp_file "dba" ".dot" in
    let oc = open_out_bin filename in
    let module C_dot = struct
      include G

      let graph_attributes _ = []

      let default_vertex_attributes _ = [ `Shape `Box ]

      let vertex_name v = Format.asprintf "\"%d: %a\"" v pp_node (node t v)

      let vertex_attributes v =
        match node t v with
        | Fallthrough { kind = Forget _; _ } -> [ `Color 0xff0000 ]
        | Fallthrough
            {
              kind =
                ( Assign { var; _ }
                | Clobber var
                | Load { var; _ }
                | Symbolize var );
              succ;
            }
          when Var.Set.mem var (I.Htbl.find t.killset succ) ->
            [ `Color 0xff0000 ]
        | _ -> []

      let get_subgraph _ = None

      let default_edge_attributes _ = []

      let edge_attributes _ = []
    end in
    let module D = Graph.Graphviz.Dot (C_dot) in
    D.output_graph oc t;
    close_out oc;
    filename

  (* let f = _export_to_file t in *)
  (* ignore (Sys.command (Format.sprintf "xdot %s" f)); *)
  (* ignore (Sys.command (Format.sprintf "rm %s" f)); *)

  let add_dhunk t todo vertex hunk =
    let next = ref (vertex + Dhunk.length hunk) in
    let temps = ref Var.Set.empty and exits = ref I.Set.empty in
    Dhunk.iteri
      ~f:(fun i inst ->
        let cur = vertex + i in
        match inst with
        | Assign (Var var, rval, succ) ->
            if var.info = Var.Tag.Temp then temps := Var.Set.add var !temps;
            add_node t cur
              (Fallthrough { kind = Assign { var; rval }; succ = vertex + succ })
        | Assign (Restrict (var, { hi; lo }), rval, succ) ->
            if var.info = Var.Tag.Temp then temps := Var.Set.add var !temps;
            add_node t cur
              (Fallthrough
                 {
                   kind =
                     Assign
                       {
                         var;
                         rval = Dba_utils.Expr.complement rval ~hi ~lo var;
                       };
                   succ = vertex + succ;
                 })
        | Assign (Store (_, dir, addr, base), rval, succ) ->
            add_node t cur
              (Fallthrough
                 {
                   kind = Store { base; dir; addr; rval };
                   succ = vertex + succ;
                 })
        | Undef (Var var, succ) ->
            if var.info = Var.Tag.Temp then temps := Var.Set.add var !temps;
            add_node t cur
              (Fallthrough { kind = Clobber var; succ = vertex + succ })
        | Undef _ ->
            raise
              (Invalid_argument
                 (Format.asprintf "unexpected instruction kind %a"
                    Dba_printer.Ascii.pp_instruction inst))
        | Nondet (Var var, succ) ->
            if var.info = Var.Tag.Temp then temps := Var.Set.add var !temps;
            add_node t cur
              (Fallthrough { kind = Symbolize var; succ = vertex + succ })
        | Nondet (Restrict (var, { hi; lo }), succ) ->
            if var.info = Var.Tag.Temp then temps := Var.Set.add var !temps;
            let size' = hi - lo + 1 in
            let name' = entropy size' in
            let var' = Dba.Var.temporary name' (Size.Bit.create size') in
            temps := Var.Set.add var' !temps;
            let rval = Dba_utils.Expr.complement (Expr.v var') ~lo ~hi var in
            let succ' = !next in
            incr next;
            add_node t cur (Fallthrough { kind = Symbolize var'; succ = succ' });
            add_node t succ'
              (Fallthrough { kind = Assign { var; rval }; succ = vertex + succ })
        | Nondet (Store (bytes, dir, addr, base), succ) ->
            let size' = 8 * bytes in
            let name' = entropy size' in
            let var' = Dba.Var.temporary name' (Size.Bit.create size') in
            let rval = Expr.v var' in
            let succ' = !next in
            incr next;
            add_node t cur (Fallthrough { kind = Symbolize var'; succ = succ' });
            add_node t succ'
              (Fallthrough
                 {
                   kind = Store { base; dir; addr; rval };
                   succ = vertex + succ;
                 })
        | Assume (test, succ) ->
            add_node t cur
              (Fallthrough { kind = Assume test; succ = vertex + succ })
        | Assert (test, succ) ->
            add_node t cur
              (Fallthrough { kind = Assert test; succ = vertex + succ })
        | If (test, JInner target, fallthrough) ->
            add_node t cur
              (Branch
                 {
                   test;
                   target = vertex + target;
                   fallthrough = vertex + fallthrough;
                 })
        | If (test, JOuter { base; _ }, fallthrough) ->
            let succ = !next in
            incr next;
            exits := I.Set.add succ !exits;
            make_goto t todo succ base Default;
            add_node t cur
              (Branch
                 { test; target = succ; fallthrough = vertex + fallthrough })
        | DJump (target, tag) ->
            exits := I.Set.add cur !exits;
            add_node t cur (Terminator (Jump { target; tag }))
        | SJump (JOuter { base; _ }, tag) ->
            exits := I.Set.add cur !exits;
            make_goto t todo cur base tag
        | SJump (JInner succ, _) ->
            add_node t cur (Fallthrough { kind = Nop; succ = vertex + succ })
        | Stop (None | Some OK) ->
            exits := I.Set.add cur !exits;
            add_node t cur (Terminator Halt)
        | Stop (Some KO) ->
            exits := I.Set.add cur !exits;
            add_node t cur (Terminator (Die "KO"))
        | Stop (Some (Undecoded msg | Unsupported msg)) ->
            exits := I.Set.add cur !exits;
            add_node t cur (Terminator (Die msg)))
      hunk;
    I.Set.iter
      (fun vertex ->
        let temps =
          match G.node t vertex with
          | Terminator (Jump { target; _ }) ->
              Var.Set.diff !temps (Var.collect target Var.Set.empty)
          | _ -> !temps
        in
        Var.Set.iter
          (fun var -> ignore (G.insert_before t vertex (Forget var)))
          temps)
      !exits

  let rec disasm t todo =
    if not (Virtual_address.Map.is_empty !todo) then (
      let addr, tolink = Virtual_address.Map.choose !todo in
      todo := Virtual_address.Map.remove addr !todo;
      let pos' = Virtual_address.diff addr t.base in
      if pos' < 0 || pos' >= t.size then disasm t todo
      else
        let pos = Lreader.get_pos t.reader in
        if pos > pos' then Lreader.rewind t.reader (pos - pos')
        else Lreader.advance t.reader (pos' - pos);
        let inst, _ = Disasm_core.decode_from t.reader addr in
        t.last <- Some inst;
        Stats.register_address addr;
        let hunk = Instruction.hunk inst in
        let vertex = I.Htbl.length t.nodes in
        add_node t vertex
          (Fallthrough { kind = Instruction inst; succ = vertex + 1 });
        if not (Virtual_address.Htbl.mem t.entries addr) then
          Virtual_address.Htbl.add t.entries addr vertex;
        List.iter
          (fun (pred, tag) ->
            add_node t pred (Goto { target = addr; tag; succ = Some vertex }))
          tolink;
        add_dhunk t todo (vertex + 1) hunk;
        disasm t todo)

  let mk_label =
    let n = ref Suid.zero in
    fun _ ->
      n := Suid.incr !n;
      Suid.to_string !n

  let inline_dhunk t todo labels tolink temps exits vertex hunk =
    let anchors = Array.init (Dhunk.length hunk) mk_label in
    let mk_local_goto anchors vertex tolink i succ =
      if succ <> i + 1 then (
        S.Htbl.replace tolink (Array.get anchors succ)
          ((None, !vertex)
          ::
          (try S.Htbl.find tolink (Array.get anchors succ)
           with Not_found -> []));
        incr vertex)
    in
    Dhunk.iteri
      ~f:(fun i inst ->
        S.Htbl.add labels (Array.get anchors i) !vertex;
        match inst with
        | Assign (Var var, rval, succ) ->
            if var.info = Temp then temps := Var.Set.add var !temps;
            add_node t !vertex
              (Fallthrough { kind = Assign { var; rval }; succ = !vertex + 1 });
            incr vertex;
            mk_local_goto anchors vertex tolink i succ
        | Assign (Restrict (var, { hi; lo }), rval, succ) ->
            if var.info = Temp then temps := Var.Set.add var !temps;
            add_node t !vertex
              (Fallthrough
                 {
                   kind =
                     Assign
                       {
                         var;
                         rval = Dba_utils.Expr.complement rval ~hi ~lo var;
                       };
                   succ = !vertex + 1;
                 });
            incr vertex;
            mk_local_goto anchors vertex tolink i succ
        | Assign (Store (_, dir, addr, base), rval, succ) ->
            add_node t !vertex
              (Fallthrough
                 { kind = Store { base; dir; addr; rval }; succ = !vertex + 1 });
            incr vertex;
            mk_local_goto anchors vertex tolink i succ
        | Undef (Var var, succ) ->
            if var.info = Temp then temps := Var.Set.add var !temps;
            add_node t !vertex
              (Fallthrough { kind = Clobber var; succ = !vertex + 1 });
            incr vertex;
            mk_local_goto anchors vertex tolink i succ
        | Undef _ ->
            raise
              (Invalid_argument
                 (Format.asprintf "unexpected instruction kind %a"
                    Dba_printer.Ascii.pp_instruction inst))
        | Nondet (Var var, succ) ->
            if var.info = Temp then temps := Var.Set.add var !temps;
            add_node t !vertex
              (Fallthrough { kind = Symbolize var; succ = !vertex + 1 });
            incr vertex;
            mk_local_goto anchors vertex tolink i succ
        | Nondet (Restrict (var, { hi; lo }), succ) ->
            if var.info = Temp then temps := Var.Set.add var !temps;
            let size' = hi - lo + 1 in
            let name' = entropy size' in
            let var' = Dba.Var.temporary name' (Size.Bit.create size') in
            temps := Var.Set.add var' !temps;
            let rval = Dba_utils.Expr.complement (Expr.v var') ~lo ~hi var in
            add_node t !vertex
              (Fallthrough { kind = Symbolize var'; succ = !vertex + 1 });
            incr vertex;
            add_node t !vertex
              (Fallthrough { kind = Assign { var; rval }; succ = !vertex + 1 });
            incr vertex;
            mk_local_goto anchors vertex tolink i succ
        | Nondet (Store (bytes, dir, addr, base), succ) ->
            let size' = 8 * bytes in
            let name' = entropy size' in
            let var' = Dba.Var.temporary name' (Size.Bit.create size') in
            temps := Var.Set.add var' !temps;
            let rval = Expr.v var' in
            add_node t !vertex
              (Fallthrough { kind = Symbolize var'; succ = !vertex + 1 });
            incr vertex;
            add_node t !vertex
              (Fallthrough
                 { kind = Store { base; dir; addr; rval }; succ = !vertex + 1 });
            incr vertex;
            mk_local_goto anchors vertex tolink i succ
        | Assume (test, succ) ->
            add_node t !vertex
              (Fallthrough { kind = Assume test; succ = !vertex + 1 });
            incr vertex;
            mk_local_goto anchors vertex tolink i succ
        | Assert (test, succ) ->
            add_node t !vertex
              (Fallthrough { kind = Assert test; succ = !vertex + 1 });
            incr vertex;
            mk_local_goto anchors vertex tolink i succ
        | If (test, JInner target, fallthrough) ->
            S.Htbl.replace tolink (Array.get anchors target)
              ((Some test, !vertex)
              ::
              (try S.Htbl.find tolink (Array.get anchors target)
               with Not_found -> []));
            incr vertex;
            mk_local_goto anchors vertex tolink i fallthrough
        | If (test, JOuter { base; _ }, fallthrough) ->
            S.Htbl.replace tolink
              (Array.get anchors fallthrough)
              ((Some (Dba.Expr.lognot test), !vertex)
              ::
              (try S.Htbl.find tolink (Array.get anchors fallthrough)
               with Not_found -> []));
            incr vertex;
            exits := I.Set.add !vertex !exits;
            make_goto t todo !vertex base Default
        | DJump (target, tag) ->
            exits := I.Set.add !vertex !exits;
            add_node t !vertex (Terminator (Jump { target; tag }));
            incr vertex
        | SJump (JOuter { base; _ }, tag) ->
            exits := I.Set.add !vertex !exits;
            make_goto t todo !vertex base tag;
            incr vertex
        | SJump (JInner succ, _) ->
            S.Htbl.replace tolink (Array.get anchors succ)
              ((None, !vertex)
              ::
              (try S.Htbl.find tolink (Array.get anchors succ)
               with Not_found -> []));
            incr vertex
        | Stop (None | Some OK) ->
            exits := I.Set.add !vertex !exits;
            add_node t !vertex (Terminator Halt);
            incr vertex
        | Stop (Some KO) ->
            exits := I.Set.add !vertex !exits;
            add_node t !vertex (Terminator (Die "KO"));
            incr vertex
        | Stop (Some (Undecoded msg | Unsupported msg)) ->
            exits := I.Set.add !vertex !exits;
            add_node t !vertex (Terminator (Die msg));
            incr vertex)
      hunk

  let add_script t todo task addr stmts env fallthrough =
    let vertex = ref (I.Htbl.length t.nodes) in
    let labels = S.Htbl.create 16
    and tolink = S.Htbl.create 16
    and temps = ref Var.Set.empty
    and exits = ref I.Set.empty in
    List.iter
      (function
        | Script.Instr.Nop -> ()
        | Script.Instr.Label name -> S.Htbl.add labels name !vertex
        | Script.Instr.Assign (lval, rval) -> (
            let lval = Script.eval_loc lval env in
            let rval =
              Script.eval_expr ~size:(Dba.LValue.size_of lval) rval env
            in
            match lval with
            | Var var ->
                if var.info = Temp then temps := Var.Set.add var !temps;
                add_node t !vertex
                  (Fallthrough
                     { kind = Assign { var; rval }; succ = !vertex + 1 });
                incr vertex
            | Restrict (var, { hi; lo }) ->
                if var.info = Temp then temps := Var.Set.add var !temps;
                add_node t !vertex
                  (Fallthrough
                     {
                       kind =
                         Assign
                           {
                             var;
                             rval = Dba_utils.Expr.complement rval ~hi ~lo var;
                           };
                       succ = !vertex + 1;
                     });
                incr vertex
            | Store (_, dir, addr, base) ->
                add_node t !vertex
                  (Fallthrough
                     {
                       kind = Store { base; dir; addr; rval };
                       succ = !vertex + 1;
                     });
                incr vertex)
        | Script.Instr.Nondet lval -> (
            match Script.eval_loc lval env with
            | Var var ->
                if var.info = Temp then temps := Var.Set.add var !temps;
                add_node t !vertex
                  (Fallthrough { kind = Symbolize var; succ = !vertex + 1 });
                incr vertex
            | Restrict (var, { hi; lo }) ->
                if var.info = Temp then temps := Var.Set.add var !temps;
                let size' = hi - lo + 1 in
                let name' = entropy size' in
                let var' = Dba.Var.temporary name' (Size.Bit.create size') in
                temps := Var.Set.add var' !temps;
                let rval =
                  Dba_utils.Expr.complement (Expr.v var') ~lo ~hi var
                in
                add_node t !vertex
                  (Fallthrough { kind = Symbolize var'; succ = !vertex + 1 });
                incr vertex;
                add_node t !vertex
                  (Fallthrough
                     { kind = Assign { var; rval }; succ = !vertex + 1 });
                incr vertex
            | Store (bytes, dir, addr, base) ->
                let size' = 8 * bytes in
                let name' = entropy size' in
                let var' = Dba.Var.temporary name' (Size.Bit.create size') in
                temps := Var.Set.add var' !temps;
                let rval = Expr.v var' in
                add_node t !vertex
                  (Fallthrough { kind = Symbolize var'; succ = !vertex + 1 });
                incr vertex;
                add_node t !vertex
                  (Fallthrough
                     {
                       kind = Store { base; dir; addr; rval };
                       succ = !vertex + 1;
                     });
                incr vertex)
        | Script.Instr.Undef ((_, p) as lval) -> (
            match Script.eval_loc lval env with
            | Var var ->
                if var.info = Temp then temps := Var.Set.add var !temps;
                add_node t !vertex
                  (Fallthrough { kind = Clobber var; succ = !vertex + 1 });
                incr vertex
            | _ -> raise (Script.Invalid_operation (Script.Expr.loc lval, p)))
        | Script.Instr.Assume test ->
            let test = Script.eval_expr ~size:1 test env in
            add_node t !vertex
              (Fallthrough { kind = Assume test; succ = !vertex + 1 });
            incr vertex
        | Script.Instr.Assert test ->
            let test = Script.eval_expr ~size:1 test env in
            add_node t !vertex
              (Fallthrough { kind = Assert test; succ = !vertex + 1 });
            incr vertex
        | Script.Instr.If (test, target) ->
            let test = Script.eval_expr ~size:1 test env in
            S.Htbl.replace tolink target
              ((Some test, !vertex)
              :: (try S.Htbl.find tolink target with Not_found -> []));
            incr vertex
        | Script.Instr.Goto target ->
            S.Htbl.replace tolink target
              ((None, !vertex)
              :: (try S.Htbl.find tolink target with Not_found -> []));
            incr vertex
        | Script.Instr.Jump target -> (
            exits := I.Set.add !vertex !exits;
            match Script.eval_expr ~size:env.wordsize target env with
            | Cst bv ->
                make_goto t todo !vertex
                  (Virtual_address.of_bitvector bv)
                  Default;
                incr vertex
            | target ->
                add_node t !vertex (Terminator (Jump { target; tag = Default }));
                incr vertex)
        | Script.Instr.Halt ->
            exits := I.Set.add !vertex !exits;
            add_node t !vertex (Terminator Halt);
            incr vertex
        | Script.Cut None ->
            exits := I.Set.add !vertex !exits;
            add_node t !vertex (Terminator Cut);
            incr vertex
        | Script.Cut (Some test) ->
            let test = Script.eval_expr ~size:1 test env in
            add_node t !vertex
              (Branch { test; target = !vertex + 1; fallthrough = !vertex + 2 });
            incr vertex;
            exits := I.Set.add !vertex !exits;
            add_node t !vertex (Terminator Cut);
            incr vertex
        | Script.Reach (n, guard, actions) ->
            let tid = I.Htbl.length task in
            I.Htbl.add task tid ();
            let guard =
              Option.fold ~none:Dba.Expr.one
                ~some:(fun test -> Script.eval_expr ~size:1 test env)
                guard
            in
            let actions =
              List.map
                (fun (output : Script.Output.t) : Output.t ->
                  match output with
                  | Model -> Model
                  | Formula -> Formula
                  | Slice values ->
                      Slice
                        (List.map
                           (fun (e, name) -> (Script.eval_expr e env, name))
                           values)
                  | Value (fmt, e) -> Value (fmt, Script.eval_expr e env)
                  | Stream name -> Stream name
                  | String name -> String name)
                actions
            in
            add_node t !vertex
              (Fallthrough
                 { kind = Reach { tid; n; guard; actions }; succ = !vertex + 1 });
            incr vertex
        | Script.Enumerate (n, enum) ->
            let tid = I.Htbl.length task in
            I.Htbl.add task tid ();
            let enum = Script.eval_expr enum env in
            add_node t !vertex
              (Fallthrough
                 {
                   kind = Enumerate { tid; enum; format = Hex; n };
                   succ = !vertex + 1;
                 });
            incr vertex
        | Script.Argument (lval, n) -> (
            let rval = Isa_helper.get_arg n in
            let lval = Script.eval_loc ~size:(Dba.Expr.size_of rval) lval env in
            match lval with
            | Var var ->
                if var.info = Temp then temps := Var.Set.add var !temps;
                add_node t !vertex
                  (Fallthrough
                     { kind = Assign { var; rval }; succ = !vertex + 1 });
                incr vertex
            | Restrict (var, { hi; lo }) ->
                if var.info = Temp then temps := Var.Set.add var !temps;
                add_node t !vertex
                  (Fallthrough
                     {
                       kind =
                         Assign
                           {
                             var;
                             rval = Dba_utils.Expr.complement rval ~hi ~lo var;
                           };
                       succ = !vertex + 1;
                     });
                incr vertex
            | Store (_, dir, addr, base) ->
                add_node t !vertex
                  (Fallthrough
                     {
                       kind = Store { base; dir; addr; rval };
                       succ = !vertex + 1;
                     });
                incr vertex)
        | Script.Return value ->
            let value =
              Option.map
                (fun value -> Script.eval_expr ~size:env.wordsize value env)
                value
            in
            let hunk = Isa_helper.make_return ?value () in
            inline_dhunk t todo labels tolink temps exits vertex hunk
        | inst ->
            List.iter
              (fun kind ->
                add_node t !vertex (Fallthrough { kind; succ = !vertex + 1 });
                incr vertex)
              (resolve_instruction inst env !instruction_callback))
      stmts;
    S.Htbl.iter
      (fun label preds ->
        let target = S.Htbl.find labels label in
        List.iter
          (fun (test, pred) ->
            match test with
            | None ->
                add_node t pred (Fallthrough { kind = Nop; succ = target })
            | Some test ->
                add_node t pred
                  (Branch { test; target; fallthrough = pred + 1 }))
          preds)
      tolink;
    if stmts = [] || I.Htbl.mem t.preds !vertex then (
      exits := I.Set.add !vertex !exits;
      if fallthrough then (
        add_node t !vertex (Goto { target = addr; tag = Default; succ = None });
        push todo addr !vertex Default)
      else add_node t !vertex (Terminator Halt));
    I.Set.iter
      (fun vertex ->
        Var.Set.iter
          (fun var -> ignore (G.insert_before t vertex (Forget var)))
          !temps)
      !exits

  let add_hook t todo task addr anchor stmts env fallthrough =
    let vertex = I.Htbl.length t.nodes in
    let succ = vertex + 1 in
    let info = Format.sprintf "hook at %s" anchor in
    add_node t vertex (Fallthrough { kind = Hook { addr; info }; succ });
    if not (Virtual_address.Htbl.mem t.entries addr) then
      Virtual_address.Htbl.add t.entries addr vertex;
    (try
       List.iter
         (fun (pred, tag) ->
           add_node t pred (Goto { target = addr; tag; succ = Some vertex }))
         (Virtual_address.Map.find addr !todo);
       todo := Virtual_address.Map.remove addr !todo
     with Not_found -> ());
    add_script t todo task addr stmts env fallthrough

  let extract_loads =
    let rec fold m (e : Expr.t) =
      match e with
      | Cst _ -> (m, e)
      | Var _ -> (m, e)
      | Load (sz, dir, addr, base) ->
          let m', addr' = fold m addr in
          let k = (sz, dir, addr', base) in
          let v =
            try List.assoc k m'
            with Not_found ->
              Dba.Var.(
                create
                  (Printf.sprintf "$$%d" (List.length m'))
                  ~bitsize:(Size.Bit.create (8 * sz))
                  ~tag:Tag.Temp)
          in
          ((k, v) :: m', Expr.v v)
      | Unary (o, x) ->
          let m', x' = fold m x in
          let e' = if x == x' then e else Expr.unary o x' in
          (m', e')
      | Binary (o, x, y) ->
          let m', x' = fold m x in
          let m', y' = fold m' y in
          let e' = if x == x' && y == y' then e else Expr.binary o x' y' in
          (m', e')
      | Ite (c, x, y) ->
          let m', c' = fold m c in
          let m', x' = fold m' x in
          let m', y' = fold m' y in
          let e' =
            if c == c' && x == x' && y == y' then e else Expr.ite c' x' y'
          in
          (m', e')
    in
    fold

  let define_loads kind =
    match kind with
    | Nop | Debug _ | Print _ | Instruction _ | Hook _ | Clobber _ | Forget _
    | Symbolize _ | Enumerate _ | Reach _ | Builtin _ ->
        ([], kind)
    | Assign { var; rval = Load (_, dir, addr, base) } -> (
        match extract_loads [] addr with
        | [], _ -> ([], Load { var; base; dir; addr })
        | loads, addr -> (loads, Load { var; base; dir; addr }))
    | Assign { var; rval } -> (
        match extract_loads [] rval with
        | [], _ -> ([], kind)
        | loads, rval -> (loads, Assign { var; rval }))
    | Load { var; base; dir; addr } -> (
        match extract_loads [] addr with
        | [], _ -> ([], kind)
        | loads, addr -> (loads, Load { var; base; dir; addr }))
    | Store { base; dir; addr; rval } -> (
        let loads, addr = extract_loads [] addr in
        match extract_loads loads rval with
        | [], _ -> ([], kind)
        | loads, rval -> (loads, Store { base; dir; addr; rval }))
    | Assume test -> (
        match extract_loads [] test with
        | [], _ -> ([], kind)
        | loads, test -> (loads, Assume test))
    | Assert test -> (
        match extract_loads [] test with
        | [], _ -> ([], kind)
        | loads, test -> (loads, Assert test))

  let define_load t vertex =
    match G.node t vertex with
    | Fallthrough { kind; succ } -> (
        match define_loads kind with
        | [], kind' when kind == kind' -> ()
        | loads, kind ->
            add_node t vertex (Fallthrough { kind; succ });
            List.fold_right
              (fun ((_, dir, addr, base), var) () ->
                ignore
                  (G.insert_before t vertex (Load { var; base; dir; addr }));
                ignore (G.insert_before t succ (Forget var)))
              loads ())
    | Branch { test; target; fallthrough } -> (
        match extract_loads [] test with
        | [], _ -> ()
        | loads, test ->
            add_node t vertex (Branch { test; target; fallthrough });
            List.fold_right
              (fun ((_, dir, addr, base), var) () ->
                ignore
                  (G.insert_before t vertex (Load { var; base; dir; addr }));
                ignore (G.insert_before t target (Forget var));
                ignore (G.insert_before t fallthrough (Forget var)))
              loads ())
    | Terminator (Jump { target; tag }) -> (
        match extract_loads [] target with
        | [], _ -> ()
        | loads, target ->
            add_node t vertex (Terminator (Jump { target; tag }));
            List.fold_right
              (fun ((_, dir, addr, base), var) () ->
                ignore
                  (G.insert_before t vertex (Load { var; base; dir; addr })))
              loads ())
    | Goto _ | Terminator _ -> ()

  let process t =
    G.iter_new_vertex (define_load t) t;
    Queue.iter (fun f -> f t) process_callback;
    analyze t;
    t.n <- I.Htbl.length t.nodes

  let create ?(volatile = false) ?hooks ~task base reader size =
    let vsize = size / 6 in
    let t =
      {
        n = 0;
        nodes = I.Htbl.create size;
        preds = I.Htbl.create size;
        entries = Virtual_address.Htbl.create vsize;
        exits = I.Set.empty;
        base;
        reader;
        size;
        volatile;
        last = None;
        sinks = I.Set.empty;
        killset = I.Htbl.create size;
        fibers = I.Htbl.create (size / 15);
      }
    in
    let todo = ref Virtual_address.Map.empty in
    Option.iter
      (fun (hooks, env) ->
        Virtual_address.Map.iter
          (fun addr hooks ->
            List.iter
              (fun (anchor, script) ->
                add_hook t todo task addr anchor script env true)
              hooks)
          hooks)
      hooks;
    disasm t todo;
    process t;
    t

  let raw_fiber (node : node) : [ `All ] Fiber.t =
    match node with
    | Fallthrough { kind = Nop; _ } -> Halt
    | Fallthrough { kind = Debug msg; _ } -> Debug { msg; succ = Halt }
    | Fallthrough { kind = Print output; _ } -> Print { output; succ = Halt }
    | Fallthrough { kind = Hook { addr; _ }; _ } ->
        Step { addr; n = 0; succ = Halt }
    | Fallthrough { kind = Instruction inst; _ } ->
        Step { addr = Instruction.address inst; n = 1; succ = Halt }
    | Fallthrough { kind = Assign { var; rval }; _ } ->
        Assign { var; rval; succ = Halt }
    | Fallthrough { kind = Clobber var; _ } -> Clobber { var; succ = Halt }
    | Fallthrough { kind = Forget _; _ } -> Halt
    | Fallthrough { kind = Load { var; base; dir; addr }; _ } ->
        Load { var; base; dir; addr; succ = Halt }
    | Fallthrough { kind = Store { base; dir; addr; rval }; _ } ->
        Store { base; dir; addr; rval; succ = Halt }
    | Fallthrough { kind = Symbolize var; _ } -> Symbolize { var; succ = Halt }
    | Fallthrough { kind = Assume test; _ } -> Assume { test; succ = Halt }
    | Fallthrough { kind = Assert test; _ } -> Assert { test; succ = Halt }
    | Fallthrough { kind = Enumerate { tid; enum; format; n }; _ } ->
        Probe
          {
            kind = Enumerate { id = tid; enum; format; n; k = 0; values = [] };
            succ = Halt;
          }
    | Fallthrough { kind = Reach { tid; n; guard; actions }; _ } ->
        Probe { kind = Reach { id = tid; n; guard; actions }; succ = Halt }
    | Fallthrough { kind = Builtin f; _ } ->
        Builtin { f = resolve_builtin f !builtin_callback; succ = Halt }
    | Goto { succ = Some _; _ } -> Halt
    | Goto { target; succ = None; _ } -> Goto target
    | Branch { test; _ } -> Branch { test; taken = Halt; fallthrough = Halt }
    | Terminator (Jump { target; _ }) -> Jump target
    | Terminator Halt -> Halt
    | Terminator Cut -> Cut
    | Terminator (Die msg) -> Die msg

  let debug_level = Options.Logger.get_debug_level ()

  let decorate_fiber =
    if debug_level >= 40 then fun node ->
      let succ = raw_fiber node in
      (Fiber.Debug { msg = Format.asprintf "%a" pp_node node; succ }, succ)
    else fun node ->
      let fiber = raw_fiber node in
      (fiber, fiber)

  let make_label =
    if debug_level >= 2 then (fun node pred ->
      let debug =
        Fiber.Debug { msg = Format.asprintf "%a" pp_node node; succ = Halt }
      in
      Fiber.relink ~pred debug;
      debug)
    else fun _ pred -> pred

  let rec forward t vertex =
    match G.node t vertex with
    | Fallthrough { kind = Nop | Forget _; succ } | Goto { succ = Some succ; _ }
      ->
        forward t succ
    | Fallthrough
        {
          kind =
            Assign { var; _ } | Clobber var | Load { var; _ } | Symbolize var;
          succ;
        }
      when Var.Set.mem var (I.Htbl.find t.killset succ) ->
        forward t succ
    | _ -> vertex

  let link t todo reloc pred taken vertex =
    let vertex = forward t vertex in
    try Fiber.relink ~taken ~pred (I.Htbl.find t.fibers vertex)
    with Not_found ->
      Queue.push vertex todo;
      Queue.push (pred, taken, vertex) reloc

  let commit_addr addr n pred =
    if n > 0 then (
      let step = Fiber.Step { addr; n; succ = Halt } in
      Fiber.relink ~pred
        (if debug_level >= 39 then
         Fiber.Debug { msg = Format.sprintf "step %d" n; succ = step }
        else step);
      step)
    else pred

  let commit_vars ?var ?deps vars pred =
    let vars, others =
      match deps with
      | None -> (vars, Var.Map.empty)
      | Some set ->
          let f var _ = Var.Set.mem var set in
          let f =
            match var with
            | None -> f
            | Some var' ->
                fun var rval ->
                  Option.fold ~none:false ~some:(Var.appears_in var') rval
                  || f var rval
          in
          Var.Map.partition f vars
    in
    ( others,
      Var.Map.fold
        (fun var value pred ->
          let kind =
            match value with
            | None -> Clobber var
            | Some rval -> Assign { var; rval }
          in
          let head, tail = decorate_fiber (Fallthrough { kind; succ = -1 }) in
          Fiber.relink ~pred head;
          tail)
        vars pred )

  let fallthrough_var = function
    | Assign { var; _ }
    | Load { var; _ }
    | Clobber var
    | Forget var
    | Symbolize var ->
        Some var
    | Nop | Debug _ | Instruction _ | Hook _ | Assume _ | Assert _ | Enumerate _
    | Store _ | Print _ | Reach _ | Builtin _ ->
        None

  let fallthrough_deps = function
    | Nop | Debug _ | Instruction _ | Hook _ | Clobber _ | Forget _
    | Symbolize _ ->
        Some Var.Set.empty
    | Assign { rval = e; _ }
    | Load { addr = e; _ }
    | Assume e
    | Assert e
    | Enumerate { enum = e; _ } ->
        Some (Var.collect e Var.Set.empty)
    | Store { addr; rval; _ } ->
        Some (Var.collect addr (Var.collect rval Var.Set.empty))
    | Print _ | Reach _ | Builtin _ -> None

  let commit addr n vars pred = commit_addr addr n (snd (commit_vars vars pred))

  let rec line t todo reloc addr n vars pred vertex =
    try
      let fiber = I.Htbl.find t.fibers vertex in
      Fiber.relink ~pred:(commit addr n vars pred) fiber
    with Not_found -> (
      match G.pred t vertex with
      | _ :: _ :: _ ->
          Queue.push vertex todo;
          Queue.push (commit addr n vars pred, false, vertex) reloc
      | _ -> baseline t todo reloc addr n vars pred vertex)

  and baseline t todo reloc addr n vars pred vertex =
    let node = G.node t vertex in
    match node with
    | Fallthrough { kind = Nop | Forget _; succ } | Goto { succ = Some succ; _ }
      ->
        line t todo reloc addr n vars pred succ
    | Fallthrough { kind = Instruction inst; succ } ->
        let pred = make_label node pred in
        line t todo reloc (Instruction.address inst) (n + 1) vars pred succ
    | Fallthrough { kind = Hook { addr; _ }; succ } ->
        let pred = make_label node pred in
        let step = Fiber.Step { addr; n; succ = Halt } in
        Fiber.relink ~pred step;
        line t todo reloc addr 0 vars step succ
    | Fallthrough
        {
          kind =
            Assign { var; _ } | Clobber var | Load { var; _ } | Symbolize var;
          succ;
        }
      when Var.Set.mem var (I.Htbl.find t.killset succ) ->
        line t todo reloc addr n vars pred succ
    | Fallthrough { kind = Assign { var; rval = Var var' }; succ }
      when Var.Map.mem var' vars
           && Var.Set.mem var' (I.Htbl.find t.killset succ) ->
        let value = Var.Map.find var' vars in
        let vars, pred = commit_vars ~var ~deps:Var.Set.empty vars pred in
        line t todo reloc addr n
          (Var.Map.add var value (Var.Map.remove var' vars))
          pred succ
    | Fallthrough { kind = Assign { var; rval }; succ } ->
        let vars, pred =
          commit_vars ~var ~deps:(Var.collect rval Var.Set.empty) vars pred
        in
        line t todo reloc addr n (Var.Map.add var (Some rval) vars) pred succ
    | Fallthrough { kind = Clobber var; succ } ->
        let vars, pred = commit_vars ~var vars pred in
        line t todo reloc addr n (Var.Map.add var None vars) pred succ
    | Fallthrough
        {
          kind =
            (Print _ | Assume _ | Assert _ | Enumerate _ | Reach _ | Builtin _)
            as fallthrough;
          succ;
        } ->
        let vars, pred =
          commit_vars ?deps:(fallthrough_deps fallthrough) vars pred
        in
        let head, tail = decorate_fiber node in
        Fiber.relink ~pred:(commit_addr addr n pred) head;
        line t todo reloc addr 0 vars tail succ
    | Fallthrough { kind; succ } ->
        let vars, pred =
          commit_vars ?var:(fallthrough_var kind) ?deps:(fallthrough_deps kind)
            vars pred
        in
        let head, tail = decorate_fiber node in
        Fiber.relink ~pred head;
        line t todo reloc addr n vars tail succ
    | Goto { succ = None; _ } | Terminator _ ->
        Fiber.relink ~pred:(commit addr n vars pred) (fst (decorate_fiber node))
    | Branch { target; fallthrough; _ } ->
        let head, tail = decorate_fiber node in
        Fiber.relink ~pred:(commit addr n vars pred) head;
        link t todo reloc tail true target;
        link t todo reloc tail false fallthrough

  let rec closure t todo reloc =
    if Queue.is_empty todo then
      Queue.iter
        (fun (pred, taken, target) ->
          Fiber.relink ~taken ~pred (I.Htbl.find t.fibers (forward t target)))
        reloc
    else
      let vertex = Queue.pop todo in
      let vertex = forward t vertex in
      if I.Htbl.mem t.fibers vertex then closure t todo reloc;
      let placeholder : [ `Assume ] Fiber.t =
        Assume { test = Expr.one; succ = Halt }
      in
      baseline t todo reloc Virtual_address.zero 0 Var.Map.empty
        (let (Assume _ as head) = placeholder in
         head)
        vertex;
      let (Assume { succ; _ }) = placeholder in
      I.Htbl.add t.fibers vertex succ;
      closure t todo reloc

  let rec get t addr =
    match Virtual_address.Htbl.find t.entries addr with
    | exception Not_found ->
        disasm t (ref (Virtual_address.Map.singleton addr []));
        process t;
        get t addr
    | vertex -> (
        let vertex = forward t vertex in
        try I.Htbl.find t.fibers vertex
        with Not_found ->
          let todo = Queue.create () in
          Queue.add vertex todo;
          closure t todo (Queue.create ());
          I.Htbl.find t.fibers vertex)

  let single ?hooks ~task addr reader size =
    let hooks =
      Option.map
        (fun (hooks, env) -> (Virtual_address.Map.singleton addr hooks, env))
        hooks
    in
    let t = create ~volatile:true ?hooks ~task addr reader size in
    let fiber = get t addr in
    (fiber, t.last)

  let script ~task addr ?(fallthrough = false) script env =
    let t =
      {
        n = 0;
        nodes = I.Htbl.create 16;
        preds = I.Htbl.create 16;
        entries = Virtual_address.Htbl.create 1;
        exits = I.Set.empty;
        base = addr;
        reader = Lreader.of_bytes "";
        size = 0;
        volatile = true;
        last = None;
        sinks = I.Set.empty;
        killset = I.Htbl.create 16;
        fibers = I.Htbl.create 1;
      }
    in
    add_node t 0
      (Fallthrough { kind = Hook { addr; info = "anonymous" }; succ = 1 });
    Virtual_address.Htbl.add t.entries addr 0;
    add_script t
      (ref Virtual_address.Map.empty)
      task addr script env fallthrough;
    process t;
    get t addr
end
OCaml

Innovation. Community. Security.