Source file batMap.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
##V>=5##module Pervasives = Stdlib
module Concrete = struct
type ('k, 'v) map =
| Empty
| Node of ('k, 'v) map * 'k * 'v * ('k, 'v) map * int
let height = function
| Node (_, _, _, _, h) -> h
| Empty -> 0
let empty = Empty
let is_empty m =
m = Empty
let create l x d r =
let hl = height l and hr = height r in
Node(l, x, d, r, (if hl >= hr then hl + 1 else hr + 1))
let bal l x d r =
let hl = match l with Empty -> 0 | Node(_,_,_,_,h) -> h in
let hr = match r with Empty -> 0 | Node(_,_,_,_,h) -> h in
if hl > hr + 2 then begin
match l with
Empty -> invalid_arg "Map.bal"
| Node(ll, lv, ld, lr, _) ->
if height ll >= height lr then
create ll lv ld (create lr x d r)
else begin
match lr with
Empty -> invalid_arg "Map.bal"
| Node(lrl, lrv, lrd, lrr, _)->
create (create ll lv ld lrl) lrv lrd (create lrr x d r)
end
end else if hr > hl + 2 then begin
match r with
Empty -> invalid_arg "Map.bal"
| Node(rl, rv, rd, rr, _) ->
if height rr >= height rl then
create (create l x d rl) rv rd rr
else begin
match rl with
Empty -> invalid_arg "Map.bal"
| Node(rll, rlv, rld, rlr, _) ->
create (create l x d rll) rlv rld (create rlr rv rd rr)
end
end else
Node(l, x, d, r, (if hl >= hr then hl + 1 else hr + 1))
let rec min_binding = function
| Node (Empty, k, v, _, _) -> k, v
| Node (l, _, _, _, _) -> min_binding l
| Empty -> raise Not_found
let rec min_binding_opt = function
| Node (Empty, k, v, _, _) -> Some (k, v)
| Node (l, _, _, _, _) -> min_binding_opt l
| Empty -> None
let get_root = function
| Empty -> raise Not_found
| Node (_, k, v, _, _) -> k, v
let pop_min_binding s =
let mini = ref (get_root s) in
let rec loop = function
| Empty -> assert(false)
| Node(Empty, k, v, r, _) -> mini := (k, v); r
| Node(l, k, v, r, _) -> bal (loop l) k v r
in
let others = loop s in
(!mini, others)
let rec max_binding = function
| Node (_, k, v, Empty, _) -> k, v
| Node (_, _, _, r, _) -> max_binding r
| Empty -> raise Not_found
let rec max_binding_opt = function
| Node (_, k, v, Empty, _) -> Some (k, v)
| Node (_, _, _, r, _) -> max_binding_opt r
| Empty -> None
let pop_max_binding s =
let maxi = ref (get_root s) in
let rec loop = function
| Empty -> assert(false)
| Node (l, k, v, Empty, _) -> maxi := (k, v); l
| Node (l, k, v, r, _) -> bal l k v (loop r)
in
let others = loop s in
(!maxi, others)
let rec remove_min_binding = function
| Node (Empty, _, _, r, _) -> r
| Node (l, k, v, r, _) -> bal (remove_min_binding l) k v r
| Empty -> raise Not_found
let merge t1 t2 =
match t1, t2 with
| Empty, _ -> t2
| _, Empty -> t1
| _ ->
let k, v = min_binding t2 in
bal t1 k v (remove_min_binding t2)
let add x d cmp map =
let rec loop = function
| Node (l, k, v, r, h) as node ->
let c = cmp x k in
if c = 0 then
if d == v then
node
else
Node (l, x, d, r, h)
else if c < 0 then
let nl = loop l in
if nl == l then
node
else
bal nl k v r
else
let nr = loop r in
if nr == r then
node
else
bal l k v nr
| Empty -> Node (Empty, x, d, Empty, 1) in
loop map
let find x cmp map =
let rec loop = function
| Node (l, k, v, r, _) ->
let c = cmp x k in
if c < 0 then loop l
else if c > 0 then loop r
else v
| Empty -> raise Not_found in
loop map
let rec find_first_helper_found k0 v0 f = function
| Empty -> (k0, v0)
| Node (l, k, v, r, _) ->
if f k
then find_first_helper_found k v f l
else find_first_helper_found k0 v0 f r
let rec find_first f m =
match m with
| Empty -> raise Not_found
| Node (l, k, v, r, _) ->
if f k
then find_first_helper_found k v f l
else find_first f r
let rec find_first_opt f m =
match m with
| Empty -> None
| Node (l, k, v, r, _) ->
if f k
then Some (find_first_helper_found k v f l)
else find_first_opt f r
let rec find_last_helper_found k0 v0 f = function
| Empty -> (k0, v0)
| Node (l, k, v, r, _) ->
if f k
then find_last_helper_found k v f r
else find_last_helper_found k0 v0 f l
let rec find_last f m =
match m with
| Empty -> raise Not_found
| Node (l, k, v, r, _) ->
if f k
then find_last_helper_found k v f r
else find_last f l
let rec find_last_opt f m =
match m with
| Empty -> None
| Node (l, k, v, r, _) ->
if f k
then Some (find_last_helper_found k v f r)
else find_last_opt f l
let find_option x cmp map =
try Some (find x cmp map)
with Not_found -> None
let find_default def x cmp map =
try find x cmp map
with Not_found -> def
let remove x cmp map =
let rec loop = function
| Node (l, k, v, r, _) as node ->
let c = cmp x k in
if c = 0 then
merge l r
else if c < 0 then
let nl = loop l in
if nl == l then
node
else
bal nl k v r
else
let nr = loop r in
if nr == r then
node
else
bal l k v nr
| Empty -> Empty in
loop map
let remove_exn x cmp map =
let rec loop = function
| Empty ->
raise Not_found
| Node (l, k, v, r, _) ->
let c = cmp x k in
if c = 0 then
merge l r
else if c < 0 then
bal (loop l) k v r
else
bal l k v (loop r)
in
loop map
let update k1 k2 v2 cmp map =
if cmp k1 k2 <> 0 then
add k2 v2 cmp (remove_exn k1 cmp map)
else
let rec loop = function
| Empty -> raise Not_found
| Node(l, k, v, r, h) as node ->
let c = cmp k1 k in
if c = 0 then
if v == v2 && k == k2 then
node
else
Node(l, k2, v2, r, h)
else if c < 0 then
let nl = loop l in
if nl == l then
node
else
Node(nl, k, v, r, h)
else
let nr = loop r in
if nr == r then
node
else
Node(l, k, v, nr, h)
in
loop map
let rec update_stdlib x f cmp = function
| Empty ->
begin match f None with
| None -> Empty
| Some data -> Node(Empty, x, data, Empty, 1)
end
| Node (l, v, d, r, h) as m ->
let c = cmp x v in
if c = 0 then
begin
match f (Some d) with
| None -> merge l r
| Some data ->
if d == data
then m
else Node(l, x, data, r, h)
end
else if c < 0 then
let ll = update_stdlib x f cmp l in
if l == ll
then m
else bal ll v d r
else
let rr = update_stdlib x f cmp r in
if r == rr
then m
else bal l v d rr
let mem x cmp map =
let rec loop = function
| Node (l, k, _v, r, _) ->
let c = cmp x k in
c = 0 || loop (if c < 0 then l else r)
| Empty -> false in
loop map
let iter f map =
let rec loop = function
| Empty -> ()
| Node (l, k, v, r, _) -> loop l; f k v; loop r in
loop map
let map f map =
let rec loop = function
| Empty -> Empty
| Node (l, k, v, r, h) ->
let l' = loop l in
let v' = f v in
let r' = loop r in
Node (l', k, v', r', h) in
loop map
let mapi f map =
let rec loop = function
| Empty -> Empty
| Node (l, k, v, r, h) ->
let l' = loop l in
let v' = f k v in
let r' = loop r in
Node (l', k, v', r', h) in
loop map
let fold f map acc =
let rec loop acc = function
| Empty -> acc
| Node (l, _k, v, r, _) ->
loop (f v (loop acc l)) r in
loop acc map
let foldi f map acc =
let rec loop acc = function
| Empty -> acc
| Node (l, k, v, r, _) ->
loop (f k v (loop acc l)) r in
loop acc map
exception Found
let at_rank_exn i m =
if i < 0 then invalid_arg "Map.at_rank_exn: i < 0";
let res = ref (get_root m) in
try
let (_: int) =
foldi (fun k v j ->
if j <> i then j + 1
else begin
res := (k, v);
raise Found
end
) m 0
in
invalid_arg "Map.at_rank_exn: i >= (Map.cardinal s)"
with Found -> !res
let singleton x d = Node(Empty, x, d, Empty, 1)
let rec add_min_binding k v = function
| Empty -> singleton k v
| Node (l, x, d, r, _h) ->
bal (add_min_binding k v l) x d r
let rec add_max_binding k v = function
| Empty -> singleton k v
| Node (l, x, d, r, _h) ->
bal l x d (add_max_binding k v r)
let rec join l v d r =
match (l, r) with
(Empty, _) -> add_min_binding v d r
| (_, Empty) -> add_max_binding v d l
| (Node(ll, lv, ld, lr, lh), Node(rl, rv, rd, rr, rh)) ->
if lh > rh + 2 then bal ll lv ld (join lr v d r) else
if rh > lh + 2 then bal (join l v d rl) rv rd rr else
create l v d r
let rec split key cmp = function
| Empty -> (Empty, None, Empty)
| Node(l, x, d, r, _) ->
let c = cmp key x in
if c = 0 then (l, Some d, r)
else if c < 0 then
let (ll, pres, rl) = split key cmp l in (ll, pres, join rl x d r)
else
let (lr, pres, rr) = split key cmp r in (join l x d lr, pres, rr)
type ('key,'a) iter = E | C of 'key * 'a * ('key,'a) map * ('key,'a) iter
let cardinal map =
let rec loop acc = function
| Empty -> acc
| Node (l, _, _, r, _) ->
loop (loop (acc+1) r) l
in
loop 0 map
let rec bindings_aux accu = function
| Empty -> accu
| Node(l, v, d, r, _) -> bindings_aux ((v, d) :: bindings_aux accu r) l
let bindings s =
bindings_aux [] s
let rec cons_iter s t = match s with
| Empty -> t
| Node (l, k, v, r, _) -> cons_iter l (C (k, v, r, t))
let rec rev_cons_iter s t = match s with
| Empty -> t
| Node (l, k, v, r, _) -> rev_cons_iter r (C (k, v, l, t))
let rec cons_iter_from cmp k2 m e =
match m with
| Empty -> e
| Node (l, k, v, r, _) ->
if cmp k2 k <= 0
then cons_iter_from cmp k2 l (C (k, v, r, e))
else cons_iter_from cmp k2 r e
let enum_next l () = match !l with
E -> raise BatEnum.No_more_elements
| C (k, v, m, t) -> l := cons_iter m t; (k, v)
let enum_backwards_next l () = match !l with
E -> raise BatEnum.No_more_elements
| C (k, v, m, t) -> l := rev_cons_iter m t; (k, v)
let enum_count l () =
let rec aux n = function
| E -> n
| C (_, _, m, t) -> aux (n + 1 + cardinal m) t
in aux 0 !l
let enum t =
let rec make l =
let l = ref l in
let clone() = make !l in
BatEnum.make ~next:(enum_next l) ~count:(enum_count l) ~clone
in make (cons_iter t E)
let backwards t =
let rec make l =
let l = ref l in
let clone() = make !l in
BatEnum.make ~next:(enum_backwards_next l) ~count:(enum_count l) ~clone
in make (rev_cons_iter t E)
let keys t = BatEnum.map fst (enum t)
let values t = BatEnum.map snd (enum t)
let of_enum cmp e = BatEnum.fold (fun m (k, v) -> add k v cmp m) empty e
let print ?(first="{\n") ?(last="\n}") ?(sep=",\n") ?(kvsep=": ") print_k print_v out t =
BatEnum.print ~first ~last ~sep (fun out (k,v) -> BatPrintf.fprintf out "%a%s%a" print_k k kvsep print_v v) out (enum t)
let filterv f t cmp =
foldi (fun k a acc -> if f a then acc else remove k cmp acc) t t
let filter f t cmp =
foldi (fun k a acc -> if f k a then acc else remove k cmp acc) t t
let filter_map f t cmp =
foldi (fun k a acc -> match f k a with
| None -> acc
| Some v -> add k v cmp acc) t empty
let for_all f map =
let rec loop = function
| Empty -> true
| Node (l, k, v, r, _) ->
f k v && loop l && loop r in
loop map
let exists f map =
let rec loop = function
| Empty -> false
| Node (l, k, v, r, _) ->
f k v || loop l || loop r in
loop map
let partition f cmp map =
let rec loop m1 m2 = function
| Empty -> (m1,m2)
| Node (l, k, v, r, _) ->
let m1, m2 = loop m1 m2 l in
let m1, m2 = loop m1 m2 r in
if f k v then
(add k v cmp m1, m2)
else
(m1, add k v cmp m2)
in
loop empty empty map
let choose = min_binding
let choose_opt m =
try Some (choose m)
with Not_found -> None
let any = function
| Empty -> raise Not_found
| Node (_, k, v, _, _) -> (k,v)
let add_carry x d cmp map =
let rec loop = function
| Node (l, k, v, r, h) ->
let c = cmp x k in
if c = 0 then Node (l, x, d, r, h), Some v
else if c < 0 then
let nl,carry = loop l in
bal nl k v r, carry
else
let nr, carry = loop r in
bal l k v nr, carry
| Empty -> Node (Empty, x, d, Empty, 1), None in
loop map
let modify x f cmp map =
let rec loop = function
| Node (l, k, v, r, h) ->
let c = cmp x k in
if c = 0 then Node (l, x, f v, r, h)
else if c < 0 then
let nl = loop l in
bal nl k v r
else
let nr = loop r in
bal l k v nr
| Empty -> raise Not_found
in
loop map
let modify_def v0 x f cmp map =
let rec loop = function
| Node (l, k, v, r, h) ->
let c = cmp x k in
if c = 0 then Node (l, x, f v, r, h)
else if c < 0 then
let nl = loop l in
bal nl k v r
else
let nr = loop r in
bal l k v nr
| Empty -> Node (Empty, x, f v0, Empty, 1)
in
loop map
let modify_opt x f cmp map =
let rec loop = function
| Node (l, k, v, r, h) ->
let c = cmp x k in
if c = 0 then
match f (Some v) with
| None -> merge l r
| Some v' -> Node (l, x, v', r, h)
else if c < 0 then
let nl = loop l in
bal nl k v r
else
let nr = loop r in
bal l k v nr
| Empty ->
match f None with
| None -> raise Exit
| Some d -> Node (Empty, x, d, Empty, 1)
in
try loop map with Exit -> map
let extr x cmp map =
let rec loop = function
| Node (l, k, v, r, _) ->
let c = cmp x k in
if c = 0 then v, merge l r else
if c < 0 then
let vout, nl = loop l in
vout, bal nl k v r
else
let vout, nr = loop r in
vout, bal l k v nr
| Empty -> raise Not_found in
loop map
let pop map =
match map with
| Empty -> raise Not_found
| Node (l, k, v, r, _) ->
(k, v), merge l r
let concat t1 t2 =
match (t1, t2) with
(Empty, t) -> t
| (t, Empty) -> t
| (_, _) ->
let (x, d) = min_binding t2 in
join t1 x d (remove_min_binding t2)
let concat_or_join t1 v d t2 =
match d with
| Some d -> join t1 v d t2
| None -> concat t1 t2
let merge f cmp12 s1 s2 =
let rec loop s1 s2 =
match (s1, s2) with
| (Empty, Empty) -> Empty
| (Node (l1, v1, d1, r1, h1), _) when h1 >= height s2 ->
let (l2, d2, r2) = split v1 cmp12 s2 in
concat_or_join (loop l1 l2) v1 (f v1 (Some d1) d2) (loop r1 r2)
| (_, Node (l2, v2, d2, r2, _h2)) ->
let (l1, d1, r1) = split v2 cmp12 s1 in
concat_or_join (loop l1 l2) v2 (f v2 d1 (Some d2)) (loop r1 r2)
| _ ->
assert false in
loop s1 s2
let merge_diverse f cmp1 s1 cmp2 s2 =
let first_phase_result =
foldi (fun k v1 acc ->
match f k (Some v1) (find_option k cmp2 s2) with
| None -> acc
| Some v3 -> add k v3 cmp1 acc)
s1 empty in
foldi (fun k v2 acc ->
if mem k cmp1 s1 then acc
else match f k None (Some v2) with
| None -> acc
| Some v3 -> add k v3 cmp1 acc)
s2 first_phase_result
let ordered cmp s =
if s = Empty then true else
try
ignore
(foldi (fun k _ last_k ->
if cmp last_k k >= 0 then raise Exit
else k)
(remove_min_binding s)
(fst (min_binding s)));
true
with Exit -> false
let compatible_cmp cmp1 _m1 cmp2 m2 =
cmp1 == cmp2 || ordered cmp1 m2
let heuristic_merge f cmp1 m1 cmp2 m2 =
if compatible_cmp cmp1 m1 cmp2 m2
then merge f cmp1 m1 m2
else merge_diverse f cmp1 m1 cmp2 m2
let union cmp1 m1 cmp2 m2 =
if compatible_cmp cmp1 m1 cmp2 m2 then
let merge_fun _k a b = if a <> None then a else b in
merge merge_fun cmp2 m2 m1
else
foldi (fun k v m -> add k v cmp1 m) m2 m1
let diff cmp1 m1 cmp2 m2 =
if compatible_cmp cmp1 m1 cmp2 m2 then
let merge_fun _k a b = if b <> None then None else a in
merge merge_fun cmp1 m1 m2
else
foldi (fun k _v m -> remove k cmp1 m) m2 m1
let intersect f cmp1 m1 cmp2 m2 =
if compatible_cmp cmp1 m1 cmp2 m2 then
let merge_fun _k a b =
match a, b with
| Some v1, Some v2 -> Some (f v1 v2)
| None, _ | _, None -> None in
merge merge_fun cmp1 m1 m2
else
foldi (fun k v1 m ->
match find_option k cmp2 m2 with
| None -> m
| Some v2 -> add k (f v1 v2) cmp1 m)
m1 empty
let add_seq cmp s m =
BatSeq.fold_left
(fun m (k, v) -> add k v cmp m)
m
s
let of_seq cmp s =
add_seq cmp s empty
let rec seq_of_iter m () =
match m with
| E -> BatSeq.Nil
| C(k, v, r, e) ->
BatSeq.Cons ((k, v), seq_of_iter (cons_iter r e))
let to_seq m =
seq_of_iter (cons_iter m E)
let rec rev_seq_of_iter m () =
match m with
| E -> BatSeq.Nil
| C(k, v, r, e) ->
BatSeq.Cons ((k, v), rev_seq_of_iter (rev_cons_iter r e))
let to_rev_seq m =
rev_seq_of_iter (rev_cons_iter m E)
let to_seq_from cmp k m =
seq_of_iter (cons_iter_from cmp k m E)
let union_stdlib f cmp1 m1 cmp2 m2 =
let fwrap a b1 b2 =
match b1, b2 with
| Some b1, Some b2 -> f a b1 b2
| x, None
| None, x -> x in
heuristic_merge fwrap cmp1 m1 cmp2 m2
let compare ckey cval m1 m2 =
BatEnum.compare (fun (k1,v1) (k2,v2) -> BatOrd.bin_comp ckey k1 k2 cval v1 v2) (enum m1) (enum m2)
let equal ckey eq_val m1 m2 =
BatEnum.equal (fun (k1,v1) (k2,v2) -> ckey k1 k2 = 0 && eq_val v1 v2) (enum m1) (enum m2)
end
module type OrderedType = BatInterfaces.OrderedType
module type S =
sig
type key
type +
##V>=4.12## !
'a t
val empty: 'a t
val is_empty: 'a t -> bool
val cardinal: 'a t -> int
val add: key -> 'a -> 'a t -> 'a t
val update_stdlib: key -> ('a option -> 'a option) -> 'a t -> 'a t
val update: key -> key -> 'a -> 'a t -> 'a t
val find: key -> 'a t -> 'a
val find_opt: key -> 'a t -> 'a option
val find_default: 'a -> key -> 'a t -> 'a
val find_first: (key -> bool) -> 'a t -> key * 'a
val find_first_opt: (key -> bool) -> 'a t -> (key * 'a) option
val find_last: (key -> bool) -> 'a t -> key * 'a
val find_last_opt: (key -> bool) -> 'a t -> (key * 'a) option
val remove: key -> 'a t -> 'a t
val remove_exn: key -> 'a t -> 'a t
val modify: key -> ('a -> 'a) -> 'a t -> 'a t
val modify_def: 'a -> key -> ('a -> 'a) -> 'a t -> 'a t
val modify_opt: key -> ('a option -> 'a option) -> 'a t -> * 'a t
val pop : 'a t -> (key * 'a) * 'a t
val mem: key -> 'a t -> bool
val iter: (key -> 'a -> unit) -> 'a t -> unit
val map: ('a -> 'b) -> 'a t -> 'b t
val mapi: (key -> 'a -> 'b) -> 'a t -> 'b t
val fold: (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
val filterv: ('a -> bool) -> 'a t -> 'a t
val filter: (key -> 'a -> bool) -> 'a t -> 'a t
val filter_map: (key -> 'a -> 'b option) -> 'a t -> 'b t
val compare: ('a -> 'a -> int) -> 'a t -> 'a t -> int
val equal: ('a -> 'a -> bool) -> 'a t -> 'a t -> bool
val keys : _ t -> key BatEnum.t
val values: 'a t -> 'a BatEnum.t
val min_binding : 'a t -> (key * 'a)
val min_binding_opt : 'a t -> (key * 'a) option
val pop_min_binding: 'a t -> (key * 'a) * 'a t
val max_binding : 'a t -> (key * 'a)
val max_binding_opt : 'a t -> (key * 'a) option
val pop_max_binding: 'a t -> (key * 'a) * 'a t
val choose : 'a t -> (key * 'a)
val choose_opt : 'a t -> (key * 'a) option
val any : 'a t -> (key * 'a)
val split : key -> 'a t -> ('a t * 'a option * 'a t)
val partition : (key -> 'a -> bool) -> 'a t -> 'a t * 'a t
val singleton : key -> 'a -> 'a t
val bindings : 'a t -> (key * 'a) list
val enum : 'a t -> (key * 'a) BatEnum.t
val backwards : 'a t -> (key * 'a) BatEnum.t
val of_enum: (key * 'a) BatEnum.t -> 'a t
val for_all: (key -> 'a -> bool) -> 'a t -> bool
val exists: (key -> 'a -> bool) -> 'a t -> bool
val merge:
(key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
val union:
(key -> 'a -> 'a -> 'a option) -> 'a t -> 'a t -> 'a t
val to_seq : 'a t -> (key * 'a) BatSeq.t
val to_rev_seq : 'a t -> (key * 'a) BatSeq.t
val to_seq_from : key -> 'a t -> (key * 'a) BatSeq.t
val add_seq : (key * 'a) BatSeq.t -> 'a t -> 'a t
val of_seq : (key * 'a) BatSeq.t -> 'a t
val to_list : 'a t -> (key * 'a) list
val of_list : (key * 'a) list -> 'a t
val add_to_list: key -> 'a -> 'a list t -> 'a list t
(** {7 Printing}*)
val print : ?first:string -> ?last:string -> ?sep:string -> ?kvsep:string ->
('a BatInnerIO.output -> key -> unit) ->
('a BatInnerIO.output -> 'c -> unit) ->
'a BatInnerIO.output -> 'c t -> unit
module Exceptionless : sig
val find: key -> 'a t -> 'a option
val choose: 'a t -> (key * 'a) option
val any: 'a t -> (key * 'a) option
end
module Infix : sig
val (-->) : 'a t -> key -> 'a
val (<--) : 'a t -> key * 'a -> 'a t
end
module Labels : sig
val add : key:key -> data:'a -> 'a t -> 'a t
val iter : f:(key:key -> data:'a -> unit) -> 'a t -> unit
val map : f:('a -> 'b) -> 'a t -> 'b t
val mapi : f:(key:key -> data:'a -> 'b) -> 'a t -> 'b t
val filterv: f:('a -> bool) -> 'a t -> 'a t
val filter: f:(key -> 'a -> bool) -> 'a t -> 'a t
val fold :
f:(key:key -> data:'a -> 'b -> 'b) ->
'a t -> init:'b -> 'b
val compare: cmp:('a -> 'a -> int) -> 'a t -> 'a t -> int
val equal: cmp:('a -> 'a -> bool) -> 'a t -> 'a t -> bool
end
end
module Make(Ord : OrderedType) =
struct
include Map.Make(Ord)
type 'a implementation = (key, 'a) Concrete.map
external t_of_impl: 'a implementation -> 'a t = "%identity"
external impl_of_t: 'a t -> 'a implementation = "%identity"
let cardinal t = Concrete.cardinal (impl_of_t t)
let enum t = Concrete.enum (impl_of_t t)
let backwards t = Concrete.backwards (impl_of_t t)
let keys t = Concrete.keys (impl_of_t t)
let values t = Concrete.values (impl_of_t t)
let update k1 k2 v2 t = t_of_impl (Concrete.update k1 k2 v2 Ord.compare (impl_of_t t))
let update_stdlib k f m = t_of_impl (Concrete.update_stdlib k f Ord.compare (impl_of_t m))
let find_default d k t = Concrete.find_default d k Ord.compare (impl_of_t t)
let find_opt k t = Concrete.find_option k Ord.compare (impl_of_t t)
let find_first f t = Concrete.find_first f (impl_of_t t)
let find_first_opt f t = Concrete.find_first_opt f (impl_of_t t)
let find_last f t = Concrete.find_last f (impl_of_t t)
let find_last_opt f t = Concrete.find_last_opt f (impl_of_t t)
let of_enum e = t_of_impl (Concrete.of_enum Ord.compare e)
let mapi f t = t_of_impl (Concrete.mapi f (impl_of_t t))
let map f t = t_of_impl (Concrete.map f (impl_of_t t))
let print ?first ?last ?sep ?kvsep print_k print_v out t =
Concrete.print ?first ?last ?sep ?kvsep print_k print_v out (impl_of_t t)
let filterv f t =
t_of_impl (Concrete.filterv f (impl_of_t t) Ord.compare)
let filter f t =
t_of_impl (Concrete.filter f (impl_of_t t) Ord.compare)
let filter_map f t =
t_of_impl (Concrete.filter_map f (impl_of_t t) Ord.compare)
let exists f t = Concrete.exists f (impl_of_t t)
let for_all f t = Concrete.for_all f (impl_of_t t)
let min_binding t = Concrete.min_binding (impl_of_t t)
let pop_min_binding t =
let mini, rest = Concrete.pop_min_binding (impl_of_t t) in
(mini, t_of_impl rest)
let max_binding t = Concrete.max_binding (impl_of_t t)
let pop_max_binding t =
let maxi, rest = Concrete.pop_max_binding (impl_of_t t) in
(maxi, t_of_impl rest)
let max_binding_opt t = Concrete.max_binding_opt (impl_of_t t)
let min_binding_opt t = Concrete.min_binding_opt (impl_of_t t)
let choose t = Concrete.choose (impl_of_t t)
let choose_opt t = Concrete.choose_opt (impl_of_t t)
let any t = Concrete.any (impl_of_t t)
let split k t =
let l, v, r = Concrete.split k Ord.compare (impl_of_t t) in
(t_of_impl l, v, t_of_impl r)
let partition p t =
let l, r = Concrete.partition p Ord.compare (impl_of_t t) in
(t_of_impl l, t_of_impl r)
let remove_exn x m =
t_of_impl (Concrete.remove_exn x Ord.compare (impl_of_t m))
let modify x f m = t_of_impl (Concrete.modify x f Ord.compare (impl_of_t m))
let modify_def v0 x f m =
t_of_impl (Concrete.modify_def v0 x f Ord.compare (impl_of_t m))
let modify_opt x f m =
t_of_impl (Concrete.modify_opt x f Ord.compare (impl_of_t m))
extract k t =
let (v, t') = Concrete.extract k Ord.compare (impl_of_t t) in
(v, t_of_impl t')
let pop t =
let kv, t' = Concrete.pop (impl_of_t t) in
kv, t_of_impl t'
let singleton k v = t_of_impl (Concrete.singleton k v)
let bindings t = Concrete.bindings (impl_of_t t)
let union f m1 m2 = t_of_impl (Concrete.union_stdlib f Ord.compare (impl_of_t m1) Ord.compare (impl_of_t m2))
let merge f t1 t2 =
t_of_impl (Concrete.merge f Ord.compare (impl_of_t t1) (impl_of_t t2))
let of_seq s = t_of_impl (Concrete.of_seq Ord.compare s)
let add_seq s m = t_of_impl (Concrete.add_seq Ord.compare s (impl_of_t m))
let to_seq m = Concrete.to_seq (impl_of_t m)
let to_rev_seq m = Concrete.to_rev_seq (impl_of_t m)
let to_seq_from k m = Concrete.to_seq_from Ord.compare k (impl_of_t m)
let add_to_list x data m =
let add = function None -> Some [data] | Some l -> Some (data :: l) in
update_stdlib x add m
let to_list = bindings
let of_list bs = List.fold_left (fun m (k, v) -> add k v m) empty bs
module Exceptionless =
struct
let find k t = try Some (find k t) with Not_found -> None
let choose t = try Some (choose t) with Not_found -> None
let any t = try Some (any t) with Not_found -> None
end
module Infix =
struct
let (-->) map key = find key map
let (<--) map (key, value) = add key value map
end
module Labels =
struct
let add ~key ~data t = add key data t
let iter ~f t = iter (fun key data -> f ~key ~data) t
let map ~f t = map f t
let mapi ~f t = mapi (fun key data -> f ~key ~data) t
let fold ~f t ~init = fold (fun key data acc -> f ~key ~data acc) t init
let compare ~cmp a b = compare cmp a b
let equal ~cmp a b = equal cmp a b
let filterv ~f = filterv f
let filter ~f = filter f
end
end
module Int = Make (BatInt)
module Int32 = Make (BatInt32)
module Int64 = Make (BatInt64)
module Nativeint = Make (BatNativeint)
module Float = Make (BatFloat)
module Char = Make (BatChar)
module String = Make (BatString)
(**
* PMap - Polymorphic maps
*)
type ('k, 'v) t = ('k, 'v) Concrete.map
let empty = Concrete.empty
let is_empty = Concrete.is_empty
let add x d m = Concrete.add x d Pervasives.compare m
let update k1 k2 v2 m = Concrete.update k1 k2 v2 Pervasives.compare m
let update_stdlib k f m = Concrete.update_stdlib k f Pervasives.compare m
let find x m = Concrete.find x Pervasives.compare m
let find_opt x m = Concrete.find_option x Pervasives.compare m
let find_default def x m =
Concrete.find_default def x Pervasives.compare m
let find_first f map = Concrete.find_first f map
let find_first_opt f map = Concrete.find_first_opt f map
let find_last f map = Concrete.find_last f map
let find_last_opt f map = Concrete.find_last_opt f map
let remove x m = Concrete.remove x Pervasives.compare m
let remove_exn x m = Concrete.remove_exn x Pervasives.compare m
let mem x m = Concrete.mem x Pervasives.compare m
let iter = Concrete.iter
let map = Concrete.map
let mapi = Concrete.mapi
let fold = Concrete.fold
let foldi = Concrete.foldi
let at_rank_exn = Concrete.at_rank_exn
let enum = Concrete.enum
let backwards = Concrete.backwards
let keys t = BatEnum.map fst (enum t)
let values t = BatEnum.map snd (enum t)
let of_enum e = Concrete.of_enum Pervasives.compare e
let print = Concrete.print
let filterv f t = Concrete.filterv f t Pervasives.compare
let filter f t = Concrete.filter f t Pervasives.compare
let filter_map f t = Concrete.filter_map f t Pervasives.compare
let choose = Concrete.choose
let choose_opt = Concrete.choose_opt
let any = Concrete.any
let max_binding = Concrete.max_binding
let min_binding = Concrete.min_binding
let max_binding_opt = Concrete.max_binding_opt
let min_binding_opt = Concrete.min_binding_opt
let pop_min_binding = Concrete.pop_min_binding
let pop_max_binding = Concrete.pop_max_binding
let of_seq s =
Concrete.of_seq Pervasives.compare s
let add_seq s m =
Concrete.add_seq Pervasives.compare s m
let to_seq = Concrete.to_seq
let to_rev_seq = Concrete.to_rev_seq
let to_seq_from x m =
Concrete.to_seq_from Pervasives.compare x m
let union_stdlib f m1 m2 = Concrete.union_stdlib f Pervasives.compare m1 Pervasives.compare m2
let singleton k v = Concrete.singleton k v
let for_all = Concrete.for_all
let exists = Concrete.exists
let partition f m = Concrete.partition f Pervasives.compare m
let cardinal = Concrete.cardinal
let split k m = Concrete.split k Pervasives.compare m
let add_carry x d m = Concrete.add_carry x d Pervasives.compare m
let modify x f m = Concrete.modify x f Pervasives.compare m
let modify_def v0 x f m = Concrete.modify_def v0 x f Pervasives.compare m
let modify_opt x f m = Concrete.modify_opt x f Pervasives.compare m
let extract x m = Concrete.extract x Pervasives.compare m
let pop = Concrete.pop
let split k m = Concrete.split k Pervasives.compare m
let union m1 m2 =
let comp = Pervasives.compare in
Concrete.union comp m1 comp m2
let union_stdlib f m1 m2 =
Concrete.union_stdlib f Pervasives.compare m1 Pervasives.compare m2
let diff m1 m2 =
let comp = Pervasives.compare in
Concrete.diff comp m1 comp m2
let intersect merge m1 m2 =
let comp = Pervasives.compare in
Concrete.intersect merge comp m1 comp m2
let merge f m1 m2 = Concrete.merge f Pervasives.compare m1 m2
let bindings = Concrete.bindings
let compare cmp_val m1 m2 =
Concrete.compare Pervasives.compare cmp_val m1 m2
let equal eq_val m1 m2 = Concrete.equal Pervasives.compare eq_val m1 m2
module Exceptionless =
struct
let find k m = try Some (find k m) with Not_found -> None
let choose m = try Some (choose m) with Not_found -> None
let any m = try Some (any m) with Not_found -> None
end
module Infix =
struct
let (-->) map key = find key map
let (<--) map (key, value) = add key value map
end
include Infix
module PMap = struct
(**
* PMap - Polymorphic maps
*)
type ('k, 'v) t =
{
cmp : 'k -> 'k -> int;
map : ('k, 'v) Concrete.map;
}
let create cmp = { cmp = cmp; map = Concrete.empty }
let get_cmp {cmp; _} = cmp
let empty = { cmp = Pervasives.compare; map = Concrete.empty }
let get_cmp {cmp; _} = cmp
let is_empty x = x.map = Concrete.Empty
let add x d m =
let newmap = Concrete.add x d m.cmp m.map in
if newmap == m.map
then m
else { m with map = newmap }
let update k1 k2 v2 m =
let newmap = Concrete.update k1 k2 v2 m.cmp m.map in
if newmap == m.map
then m
else { m with map = newmap }
let update_stdlib k f m =
let newmap = Concrete.update_stdlib k f m.cmp m.map in
if newmap == m.map
then m
else { m with map = newmap }
let find x m =
Concrete.find x m.cmp m.map
let find_opt x m =
Concrete.find_option x m.cmp m.map
let find_default def x m =
Concrete.find_default def x m.cmp m.map
let find_first f map = Concrete.find_first f map.map
let find_first_opt f map = Concrete.find_first_opt f map.map
let find_last f map = Concrete.find_last f map.map
let find_last_opt f map = Concrete.find_last_opt f map.map
let remove x m =
{ m with map = Concrete.remove x m.cmp m.map }
let remove_exn x m =
{ m with map = Concrete.remove_exn x m.cmp m.map }
let mem x m =
Concrete.mem x m.cmp m.map
let iter f m =
Concrete.iter f m.map
let map f m =
{ m with map = Concrete.map f m.map }
let mapi f m =
{ m with map = Concrete.mapi f m.map }
let fold f m acc =
Concrete.fold f m.map acc
let foldi f m acc =
Concrete.foldi f m.map acc
let at_rank_exn i m =
Concrete.at_rank_exn i m.map
let enum t = Concrete.enum t.map
let backwards t = Concrete.backwards t.map
let keys t = BatEnum.map fst (enum t)
let values t = BatEnum.map snd (enum t)
let of_enum ?(cmp = Pervasives.compare) e =
{ cmp = cmp; map = Concrete.of_enum cmp e }
let print ?first ?last ?sep ?kvsep print_k print_v out t =
Concrete.print ?first ?last ?sep ?kvsep print_k print_v out t.map
let filterv f t = { t with map = Concrete.filterv f t.map t.cmp }
let filter_map f t = { t with map = Concrete.filter_map f t.map t.cmp }
let filter f t =
let newmap = Concrete.filter f t.map t.cmp in
if newmap == t.map
then t
else { t with map = newmap }
let max_binding t = Concrete.max_binding t.map
let min_binding t = Concrete.min_binding t.map
let max_binding_opt t = Concrete.max_binding_opt t.map
let min_binding_opt t = Concrete.min_binding_opt t.map
let pop_min_binding m =
let mini, rest = Concrete.pop_min_binding m.map in
(mini, { m with map = rest })
let pop_max_binding m =
let maxi, rest = Concrete.pop_max_binding m.map in
(maxi, { m with map = rest })
let singleton ?(cmp = Pervasives.compare) k v =
{ cmp = cmp; map = Concrete.singleton k v }
let for_all f m = Concrete.for_all f m.map
let exists f m = Concrete.exists f m.map
let partition f m =
let l, r = Concrete.partition f m.cmp m.map in
{ m with map = l }, { m with map = r }
let cardinal m = Concrete.cardinal m.map
let choose m = Concrete.choose m.map
let choose_opt m = Concrete.choose_opt m.map
let any m = Concrete.any m.map
let split k m =
let (l, v, r) = Concrete.split k m.cmp m.map in
{ m with map = l }, v, { m with map = r }
let add_carry x d m =
let map', carry = Concrete.add_carry x d m.cmp m.map in
{ m with map = map' }, carry
let modify x f m =
{ m with map = Concrete.modify x f m.cmp m.map }
let modify_def v0 x f m =
{ m with map = Concrete.modify_def v0 x f m.cmp m.map }
let modify_opt x f m =
{ m with map = Concrete.modify_opt x f m.cmp m.map }
extract x m =
let out, map' = Concrete.extract x m.cmp m.map in
out, { m with map = map' }
let pop m =
let out, map' = Concrete.pop m.map in
out, { m with map = map' }
let split k m =
let (l, v, r) = Concrete.split k m.cmp m.map in
{ m with map = l }, v, { m with map = r }
let union m1 m2 =
{ m1 with map = Concrete.union m1.cmp m1.map m2.cmp m2.map }
let diff m1 m2 =
{ m1 with map = Concrete.diff m1.cmp m1.map m2.cmp m2.map }
let intersect merge m1 m2 =
{ m1 with map = Concrete.intersect merge m1.cmp m1.map m2.cmp m2.map }
let merge f m1 m2 =
{ m1 with map = Concrete.heuristic_merge f m1.cmp m1.map m2.cmp m2.map }
let merge_unsafe f m1 m2 =
{ m1 with map = Concrete.merge f m1.cmp m1.map m2.map }
let of_seq ?(cmp = Pervasives.compare) s =
{ map = Concrete.of_seq cmp s; cmp = cmp }
let to_seq m = Concrete.to_seq m.map
let to_rev_seq m = Concrete.to_rev_seq m.map
let to_seq_from k m =
Concrete.to_seq_from m.cmp k m.map
let add_seq s m =
{ m with map = Concrete.add_seq m.cmp s m.map }
let union_stdlib f m1 m2 =
{ m1 with map = Concrete.union_stdlib f m1.cmp m1.map m2.cmp m2.map }
let bindings m =
Concrete.bindings m.map
let compare cmp_val m1 m2 = Concrete.compare m1.cmp cmp_val m1.map m2.map
let equal eq_val m1 m2 = Concrete.equal m1.cmp eq_val m1.map m2.map
module Exceptionless =
struct
let find k m = try Some (find k m) with Not_found -> None
let choose m = try Some (choose m) with Not_found -> None
let any m = try Some (any m) with Not_found -> None
end
module Infix =
struct
let (-->) map key = find key map
let (<--) map (key, value) = add key value map
end
include Infix
end