package asli
Interpreter for Arm's Architecture Specification Language (ASL)
Install
Dune Dependency
Authors
Maintainers
Sources
0.2.0.tar.gz
md5=f4581fd209256823fa4d569ac96c8cee
sha512=fd4a74294beb9eeeafa80c9224b5dc30f5e5ebde4d53fa601929d283b6ca72154de313874321774914f738ac6f0d640e59452f7d03cb1db7b3a019b48b82e0d4
doc/src/asli.libASL/primops.ml.html
Source file primops.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
(**************************************************************** * ASL primitive types and operations * * Copyright Arm Limited (c) 2017-2019 * SPDX-Licence-Identifier: BSD-3-Clause ****************************************************************) (** ASL primitive types and operations *) module AST = Asl_ast (****************************************************************) (** {2 Boolean primops} *) (****************************************************************) let prim_eq_bool (x: bool) (y: bool): bool = x = y let prim_ne_bool (x: bool) (y: bool): bool = x <> y let prim_and_bool (x: bool) (y: bool): bool = x && y let prim_or_bool (x: bool) (y: bool): bool = x || y let prim_equiv_bool (x: bool) (y: bool): bool = x = y let prim_not_bool (x: bool): bool = not x (****************************************************************) (** {2 Integer primops} *) (****************************************************************) type bigint = Z.t let prim_eq_int (x: bigint) (y: bigint): bool = Z.equal x y let prim_ne_int (x: bigint) (y: bigint): bool = not (Z.equal x y) let prim_le_int (x: bigint) (y: bigint): bool = Z.leq x y let prim_lt_int (x: bigint) (y: bigint): bool = Z.lt x y let prim_ge_int (x: bigint) (y: bigint): bool = Z.geq x y let prim_gt_int (x: bigint) (y: bigint): bool = Z.gt x y let prim_is_pow2_int (x: bigint): bool = Z.equal (Z.logand x (Z.sub x Z.one)) Z.zero let prim_neg_int (x: bigint): bigint = Z.neg x let prim_add_int (x: bigint) (y: bigint): bigint = Z.add x y let prim_sub_int (x: bigint) (y: bigint): bigint = Z.sub x y let prim_shl_int (x: bigint) (y: bigint): bigint = Z.shift_left x (Z.to_int y) let prim_shr_int (x: bigint) (y: bigint): bigint = Z.shift_right x (Z.to_int y) let prim_mul_int (x: bigint) (y: bigint): bigint = Z.mul x y let prim_zdiv_int (x: bigint) (y: bigint): bigint = Z.div x y let prim_zrem_int (x: bigint) (y: bigint): bigint = Z.rem x y let prim_fdiv_int (x: bigint) (y: bigint): bigint = Z.fdiv x y let prim_frem_int (x: bigint) (y: bigint): bigint = Z.sub x (Z.mul y (Z.fdiv x y)) let prim_mod_pow2_int (x: bigint) (y: bigint): bigint = let mask = Z.sub (Z.shift_left Z.one (Z.to_int y)) Z.one in Z.logand x mask let prim_align_int (x: bigint) (y: bigint): bigint = let y' = Z.to_int y in (* todo: not very efficient *) Z.shift_left (Z.shift_right_trunc x y') y' let prim_pow2_int (x: bigint): bigint = Z.shift_left Z.one (Z.to_int x) let prim_pow_int_int (x: bigint) (y: bigint): bigint = let y' = Z.to_int y in assert (y' >= 0); Z.pow x y' (****************************************************************) (** {2 Real primops} *) (****************************************************************) type real = Q.t let prim_cvt_int_real (x: bigint): real = Q.of_bigint x let prim_eq_real (x: real) (y: real): bool = Q.equal x y let prim_ne_real (x: real) (y: real): bool = not (Q.equal x y) let prim_le_real (x: real) (y: real): bool = Q.leq x y let prim_lt_real (x: real) (y: real): bool = Q.lt x y let prim_ge_real (x: real) (y: real): bool = Q.geq x y let prim_gt_real (x: real) (y: real): bool = Q.gt x y let prim_neg_real (x: real): real = Q.neg x let prim_add_real (x: real) (y: real): real = Q.add x y let prim_sub_real (x: real) (y: real): real = Q.sub x y let prim_mul_real (x: real) (y: real): real = Q.mul x y let prim_div_real (x: real) (y: real): real = Q.div x y let prim_pow2_real (x: bigint): real = let x' = Z.to_int x in if x' >= 0 then Q.mul_2exp Q.one x' else Q.div_2exp Q.one (-x') let prim_round_tozero_real (x: real): bigint = Q.to_bigint x let prim_round_down_real (x: real): bigint = if Q.sign x >= 0 then begin Q.to_bigint x end else if Z.equal Z.one (Q.den x) then begin (* exact int *) Q.to_bigint x end else begin Z.sub Z.one (Q.to_bigint x) end let prim_round_up_real (x: real): bigint = if Q.sign x <= 0 then begin Q.to_bigint x end else if Z.equal Z.one (Q.den x) then begin (* exact int *) Q.to_bigint x end else begin Z.add Z.one (Q.to_bigint x) end let prim_sqrt_real (x: real): real = failwith "prim_sqrt_real" (****************************************************************) (** {2 Bitvector primops} *) (****************************************************************) (** Invariants: - the bigint part of a bitvector is positive - the bigint part of an N-bit bitvector is less than 2^N *) type bitvector = { n: int; v: Z.t } let empty_bits = { n = 0; v = Z.zero } (* workaround: ZArith library doesn't like zero-length extracts *) let checked_extract f v off len = if len > 0 then f v off len else Z.zero let z_extract = checked_extract Z.extract let z_signed_extract = checked_extract Z.signed_extract (* primary way of creating bitvector satisfying invariants *) let mkBits (n: int) (v: bigint): bitvector = ( assert (n >= 0); { n; v = z_extract v 0 n } ) (* utility function for use in implementing binary operators * that checks that size of left operand and of right operand were the same *) let mkBits2 (n1: int) (n2: int) (v: bigint): bitvector = ( assert (n1 = n2); assert (n1 >= 0); { n = n1; v = z_extract v 0 n1 } ) let prim_length_bits (x: bitvector): int = x.n let prim_cvt_int_bits (n: bigint) (i: bigint): bitvector = ( assert (Z.geq n Z.zero); let n' = Z.to_int n in { n = n'; v = z_extract i 0 n' } ) let prim_cvt_bits_sint (x: bitvector): bigint = z_signed_extract x.v 0 x.n let prim_cvt_bits_uint (x: bitvector): bigint = z_extract x.v 0 x.n let prim_eq_bits (x: bitvector) (y: bitvector): bool = assert (x.n = y.n); Z.equal x.v y.v let prim_ne_bits (x: bitvector) (y: bitvector): bool = assert (x.n = y.n); not (Z.equal x.v y.v) let prim_add_bits (x: bitvector) (y: bitvector): bitvector = mkBits2 x.n y.n (Z.add x.v y.v) let prim_sub_bits (x: bitvector) (y: bitvector): bitvector = mkBits2 x.n y.n (Z.sub x.v y.v) (* Note that because mul_bits produces the same size result as its inputs, the * result is the same whether you consider bits to be signed or unsigned *) let prim_mul_bits (x: bitvector) (y: bitvector): bitvector = mkBits2 x.n y.n (Z.mul x.v y.v) let prim_and_bits (x: bitvector) (y: bitvector): bitvector = mkBits x.n (Z.logand x.v y.v) let prim_or_bits (x: bitvector) (y: bitvector): bitvector = mkBits x.n (Z.logor x.v y.v) let prim_eor_bits (x: bitvector) (y: bitvector): bitvector = mkBits x.n (Z.logxor x.v y.v) let prim_not_bits (x: bitvector): bitvector = mkBits x.n (Z.lognot x.v) let prim_zeros_bits (x: bigint): bitvector = mkBits (Z.to_int x) Z.zero let prim_ones_bits (x: bigint): bitvector = mkBits (Z.to_int x) Z.minus_one let prim_append_bits (x: bitvector) (y: bitvector): bitvector = mkBits (x.n+y.n) (Z.logor (Z.shift_left x.v y.n) y.v) let prim_replicate_bits (x: bitvector) (y: bigint): bitvector = (* Tail recursive helper to calculate "x : ... : x : r" with c copies of x *) let rec power x c r = if c = 0 then r else let r' = if (c land 1) = 0 then r else prim_append_bits x r in power (prim_append_bits x x) (c / 2) r' in assert (Z.sign y >= 0); power x (Z.to_int y) empty_bits let prim_extract (x: bitvector) (i: bigint) (w: bigint): bitvector = let i' = Z.to_int i in let w' = Z.to_int w in assert (0 <= i'); assert (0 <= w'); assert (i' + w' <= x.n); mkBits w' (z_extract x.v i' w') let prim_extract_int (x: Z.t) (i: bigint) (w: bigint): bitvector = let i' = Z.to_int i in let w' = Z.to_int w in assert (0 <= i'); assert (0 <= w'); mkBits w' (z_extract x i' w') let prim_insert (x: bitvector) (i: bigint) (w: bigint) (y: bitvector): bitvector = let i' = Z.to_int i in let w' = Z.to_int w in assert (0 <= i'); assert (0 <= w'); assert (i' + w' <= x.n); assert (w' = y.n); let msk = (Z.sub (Z.shift_left Z.one (i'+w')) (Z.shift_left Z.one i')) in let nmsk = Z.lognot msk in let y' = Z.shift_left (z_extract y.v 0 w') i' in mkBits x.n (Z.logor (Z.logand nmsk x.v) (Z.logand msk y')) (****************************************************************) (** {2 Mask primops} *) (****************************************************************) type mask = { n: int; v: Z.t; m: Z.t } let mkMask (n: int) (v: Z.t) (m: Z.t): mask = assert (Z.equal v (Z.logand v m)); { n; v; m } let prim_in_mask (x: bitvector) (m: mask): bool = Z.equal (Z.logand x.v m.m) m.v let prim_notin_mask (x: bitvector) (m: mask): bool = not (prim_in_mask x m) (****************************************************************) (** {2 Exception primops} *) (****************************************************************) type exc = | Exc_ConstrainedUnpredictable | Exc_ExceptionTaken | Exc_ImpDefined of string | Exc_SEE of string | Exc_Undefined | Exc_Unpredictable let prim_is_cunpred_exc (x: exc): bool = (match x with Exc_ConstrainedUnpredictable -> true | _ -> false) let prim_is_exctaken_exc (x: exc): bool = (match x with Exc_ExceptionTaken -> true | _ -> false) let prim_is_impdef_exc (x: exc): bool = (match x with Exc_ImpDefined _ -> true | _ -> false) let prim_is_see_exc (x: exc): bool = (match x with Exc_SEE _ -> true | _ -> false) let prim_is_undefined_exc (x: exc): bool = (match x with Exc_Undefined -> true | _ -> false) let prim_is_unpred_exc (x: exc): bool = (match x with Exc_Unpredictable -> true | _ -> false) (****************************************************************) (** {2 String primops} *) (****************************************************************) let prim_eq_str (x: string) (y: string): bool = x = y let prim_ne_str (x: string) (y: string): bool = x <> y let prim_append_str (x: string) (y: string): string = x ^ y let prim_cvt_int_hexstr (x: bigint): string = Z.format "%x" x let prim_cvt_int_decstr (x: bigint): string = Z.to_string x let prim_cvt_bool_str (x: bool): string = if x then "TRUE" else "FALSE" let prim_cvt_bits_str (n: bigint) (x: bitvector): string = if Z.equal n Z.zero then begin "''" end else begin let s = Z.format "%0b" x.v in let pad = String.make (Z.to_int n - String.length s) '0' in Z.to_string n ^ "'" ^ pad ^ s ^ "'" end let prim_cvt_real_str (x: real): string = let r = Q.to_string x in if String.contains r '/' then r else r ^ "/1" (****************************************************************) (** {2 Immutable Array type} *) (****************************************************************) module Index = struct type t = int let compare x y = Stdlib.compare x y end module ImmutableArray = Map.Make(Index) let prim_empty_array: 'a ImmutableArray.t = ImmutableArray.empty let prim_read_array (x: 'a ImmutableArray.t) (i: int) (default: 'a): 'a = (match ImmutableArray.find_opt i x with | Some r -> r | None -> default ) let prim_write_array (x: 'a ImmutableArray.t) (i: int) (v: 'a): 'a ImmutableArray.t = ImmutableArray.add i v x (****************************************************************) (** {2 Mutable RAM type} *) (****************************************************************) (** RAM is implemented as a paged data structure and pages are allocated on demand and initialized with a specified default value. *) module Pages = struct include Map.Make(struct type t = bigint let compare = Z.compare end) end type ram = { mutable contents: Bytes.t Pages.t; mutable default: char } let logPageSize = 16 let pageSize = 1 lsl logPageSize let pageMask = Z.of_int (pageSize - 1) let pageIndexOfAddr (a: bigint): bigint = Z.shift_right a logPageSize let pageOffsetOfAddr (a: bigint): bigint = Z.logand a pageMask let init_ram (d: char): ram = { contents = Pages.empty; default = d } let clear_ram (mem: ram) (d: char): unit = mem.contents <- Pages.empty; mem.default <- d let readByte_ram (mem: ram) (addr: bigint): char = let index = pageIndexOfAddr addr in let offset = pageOffsetOfAddr addr in (match Pages.find_opt index mem.contents with | Some bs -> Bytes.get bs (Z.to_int offset) | None -> mem.default ) let writeByte_ram (mem: ram) (addr: bigint) (v: char): unit = let index = pageIndexOfAddr addr in let offset = pageOffsetOfAddr addr in let bs = (match Pages.find_opt index mem.contents with | Some bs -> bs | None -> let bs = Bytes.make pageSize mem.default in mem.contents <- Pages.add index bs mem.contents; bs ) in Bytes.set bs (Z.to_int offset) v let prim_init_ram (asz: bigint) (dsz: bigint) (mem: ram) (init: bitvector): unit = clear_ram mem (char_of_int (Z.to_int init.v)) let prim_read_ram (asz: bigint) (dsz: bigint) (mem: ram) (addr: bigint): bitvector = let r = ref Z.zero in let rec read (i: int): unit = if i < (Z.to_int dsz) then let b = readByte_ram mem (Z.add addr (Z.of_int i)) in r := Z.logor (Z.shift_left (Z.of_int (int_of_char b)) (8 * i)) !r; read (i+1) in read 0; if false then Printf.printf "Read %Lx from address %Lx\n" (Z.to_int64 !r) (Z.to_int64 addr); mkBits (8 * (Z.to_int dsz)) !r let prim_write_ram (asz: bigint) (dsz: bigint) (mem: ram) (addr: bigint) (v: bitvector): unit = let rec write (i: int): unit = if i < (Z.to_int dsz) then let b = char_of_int (Z.to_int (z_extract v.v (i*8) 8)) in writeByte_ram mem (Z.add addr (Z.of_int i)) b; write (i+1) in write 0 (****************************************************************) (** {2 File primops} *) (****************************************************************) (** These are not part of the official ASL language but they are useful when implementing the infrastructure needed in simulators. *) let prim_open_file (name: string) (mode: string): bigint = failwith "open_file" let prim_write_file (fd: bigint) (data: string): unit = failwith "write_file" let prim_getc_file (fd: bigint): bigint = failwith "getc_file" let prim_print_str (data: string): unit = Printf.printf "%s" data let prim_print_char (data: bigint): unit = Printf.printf "%c" (char_of_int (Z.to_int data)) (****************************************************************) (** {2 Trace primops} *) (****************************************************************) (** These are not part of the official ASL language but they are useful when implementing the infrastructure needed in simulators. *) let prim_trace_memory_read (asz: bigint) (dsz: bigint) (mem: ram) (addr: bigint) (v: bitvector): unit = () let prim_trace_memory_write (asz: bigint) (dsz: bigint) (mem: ram) (addr: bigint) (v: bitvector): unit = () let prim_trace_event (msg: string): unit = () (**************************************************************** * End ****************************************************************)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>