package asli
Interpreter for Arm's Architecture Specification Language (ASL)
Install
Dune Dependency
Authors
Maintainers
Sources
0.2.0.tar.gz
md5=f4581fd209256823fa4d569ac96c8cee
sha512=fd4a74294beb9eeeafa80c9224b5dc30f5e5ebde4d53fa601929d283b6ca72154de313874321774914f738ac6f0d640e59452f7d03cb1db7b3a019b48b82e0d4
doc/src/asli.libASL/asl_ast.ml.html
Source file asl_ast.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
(* generated by Ott 0.30 from: asl.ott *) type id = string type typeid = string type intLit = string type bitsLit = string type maskLit = string type realLit = string type hexLit = string type i = int (** Location tracking *) type l = | Unknown | Int of string * l option | Generated of l | Range of Lexing.position * Lexing.position type 'a annot = l * 'a let pp_lexing_position (p: Lexing.position): string = Printf.sprintf "file \"%s\" line %d char %d" p.Lexing.pos_fname p.Lexing.pos_lnum (p.Lexing.pos_cnum - p.Lexing.pos_bol) let rec pp_loc (l: l): string = match l with | Unknown -> "no location information available" | Generated l -> Printf.sprintf "Generated: %s" (pp_loc l) | Range(p1, p2) -> if String.equal p1.Lexing.pos_fname p2.Lexing.pos_fname then begin if p1.Lexing.pos_lnum = p2.Lexing.pos_lnum then Printf.sprintf "file \"%s\" line %d char %d - %d" p1.Lexing.pos_fname p1.Lexing.pos_lnum (p1.Lexing.pos_cnum - p1.Lexing.pos_bol) (p2.Lexing.pos_cnum - p2.Lexing.pos_bol) else Printf.sprintf "file \"%s\" line %d char %d - line %d char %d" p1.Lexing.pos_fname p1.Lexing.pos_lnum (p1.Lexing.pos_cnum - p1.Lexing.pos_bol) p2.Lexing.pos_lnum (p2.Lexing.pos_cnum - p2.Lexing.pos_bol) end else begin Printf.sprintf "file \"%s\" line %d char %d - file \"%s\" line %d char %d" p1.Lexing.pos_fname p1.Lexing.pos_lnum (p1.Lexing.pos_cnum - p1.Lexing.pos_bol) p2.Lexing.pos_fname p2.Lexing.pos_lnum (p2.Lexing.pos_cnum - p2.Lexing.pos_bol) end | Int(s,lo) -> Printf.sprintf "%s %s" s (match lo with Some l -> pp_loc l | None -> "none") (** Parsing exceptions (1/2) *) exception Parse_error_locn of l * string (** Identifiers used for variable names, function names, etc. There are two kinds of identifier: - Ident is generated by the parser - it is just a string - FIdent is generated by the disambiguation part of the typechecker and includes a unique label to distinguish different entities with the same name in the source syntax. *) type ident = | Ident of string | FIdent of string * int let pprint_ident (x: ident): string = (match x with | Ident(s) -> s | FIdent(s,t) -> s ^"."^ string_of_int t ) let addTag (x: ident) (tag: int): ident = (match x with | Ident(s) -> FIdent (s, tag) | FIdent(_,_) -> failwith "addTag" ) let stripTag (x: ident): ident = (match x with | Ident(s) | FIdent(s,_) -> Ident (s) ) let name_of_FIdent (x: ident): string = (match x with | Ident(_) -> failwith "name_of_FIdent" | FIdent(s,_) -> s ) let addQualifier (p: string) (x: ident): ident = (match x with | Ident(s) -> Ident (p ^ "." ^ s) | FIdent(_,_) -> failwith "addQualifier" ) let addPrefix (p: string) (x: ident): ident = (match x with | Ident(q) -> Ident (p ^ "." ^ q) | FIdent(_,_) -> failwith "addQualifier" ) let addSuffix (x: ident) (s: string): ident = (match x with | Ident(p) -> Ident (p ^ "." ^ s) | FIdent(_,_) -> failwith "addQualifier" ) let genericTyvar (i: int): ident = let v = "$" ^ string_of_int i in Ident v let isGenericTyvar (x: ident): bool = (match x with | Ident(s) -> s.[0] = '$' | FIdent(_,_) -> failwith "addQualifier" ) module Id = struct type t = ident let compare (x: ident) (y: ident): int = (match (x, y) with | (Ident x, Ident y) -> String.compare x y | (FIdent (x,i), FIdent (y,j)) -> let cx = String.compare x y in if cx <> 0 then cx else compare i j | (Ident _, FIdent (_, _)) -> -1 | (FIdent (_, _), Ident _) -> 1 ) end (** Type Identifiers *) module StringSet = Set.Make(String) let typeIdents = ref StringSet.empty let addTypeIdent (x: ident): unit = begin (* ignore (Printf.printf "New type identifier %s\n" (pprint_ident x)); *) typeIdents := StringSet.add (pprint_ident x) !typeIdents end let isTypeIdent (x: string): bool = StringSet.mem x !typeIdents type binop = Binop_Eq | Binop_NtEq | Binop_Gt | Binop_GtEq | Binop_Lt | Binop_LtEq | Binop_Plus | Binop_Minus | Binop_Multiply | Binop_Divide | Binop_Power | Binop_Quot | Binop_Rem | Binop_Div | Binop_Mod | Binop_ShiftL | Binop_ShiftR | Binop_BoolAnd | Binop_BoolOr | Binop_BoolIff | Binop_BoolImplies | Binop_BitOr | Binop_BitEor | Binop_BitAnd | Binop_Append | Binop_Concat | Binop_DUMMY type unop = Unop_Negate | Unop_BoolNot | Unop_BitsNot type ixtype = Index_Enum of ident | Index_Range of expr * expr and ty = Type_Constructor of ident | Type_Bits of expr | Type_App of ident * (expr) list | Type_OfExpr of expr | Type_Register of intLit * (slice list * ident) list | Type_Array of ixtype * ty | Type_Tuple of (ty) list and pattern = Pat_LitInt of intLit | Pat_LitHex of hexLit | Pat_LitBits of bitsLit | Pat_LitMask of maskLit | Pat_Const of ident | Pat_Wildcard | Pat_Tuple of (pattern) list | Pat_Set of (pattern) list | Pat_Range of expr * expr | Pat_Single of expr and expr = Expr_If of expr * expr * (e_elsif) list * expr | Expr_Binop of expr * binop * expr | Expr_Unop of unop * expr (* unary operator *) | Expr_Field of expr * ident (* field selection *) | Expr_Fields of expr * (ident) list (* multiple field selection *) | Expr_Slices of expr * (slice) list (* bitslice *) | Expr_In of expr * pattern (* pattern match *) | Expr_Var of ident | Expr_Parens of expr | Expr_Tuple of (expr) list (* tuple *) | Expr_Unknown of ty | Expr_ImpDef of ty * string option | Expr_TApply of ident * (expr) list * (expr) list (* spice for desugaring function call with explicit type parameters *) | Expr_Array of expr * expr (* spice for desugaring array accesses *) | Expr_LitInt of intLit (* literal decimal integer *) | Expr_LitHex of hexLit (* literal hexadecimal integer *) | Expr_LitReal of realLit (* literal real *) | Expr_LitBits of bitsLit (* literal bitvector *) | Expr_LitMask of maskLit (* literal bitmask *) | Expr_LitString of string (* literal string *) and e_elsif = E_Elsif_Cond of expr * expr and slice = Slice_Single of expr | Slice_HiLo of expr * expr | Slice_LoWd of expr * expr type direction = Direction_Up | Direction_Down type lexpr = LExpr_Wildcard | LExpr_Var of ident | LExpr_Field of lexpr * ident | LExpr_Fields of lexpr * (ident) list | LExpr_Slices of lexpr * (slice) list | LExpr_BitTuple of (lexpr) list | LExpr_Tuple of (lexpr) list | LExpr_Array of lexpr * expr (* spice for desugaring array assignment *) | LExpr_Write of ident * (expr) list * (expr) list (* spice for desugaring setter procedure call *) | LExpr_ReadWrite of ident * ident * (expr) list * (expr) list (* spice for desugaring read-modify-write function+procedure call *) type stmt = Stmt_VarDeclsNoInit of ty * (ident) list * l | Stmt_VarDecl of ty * ident * expr * l | Stmt_ConstDecl of ty * ident * expr * l | Stmt_Assign of lexpr * expr * l | Stmt_FunReturn of expr * l (* function return *) | Stmt_ProcReturn of l (* procedure return *) | Stmt_Assert of expr * l (* assertion *) | Stmt_Unpred of l (* underspecified behaviour *) | Stmt_ConstrainedUnpred of l | Stmt_ImpDef of ident * l (* underspecified behaviour *) | Stmt_Undefined of l | Stmt_ExceptionTaken of l | Stmt_Dep_Unpred of l (* DEPRECATED *) | Stmt_Dep_ImpDef of string * l (* DEPRECATED *) | Stmt_Dep_Undefined of l (* DEPRECATED *) | Stmt_See of expr * l | Stmt_Throw of ident * l | Stmt_DecodeExecute of ident * expr * l (* decode and execute instruction *) | Stmt_TCall of ident * (expr) list * (expr) list * l (* spice for procedure call with explicit type parameters *) | Stmt_If of expr * stmt list * (s_elsif) list * stmt list * l | Stmt_Case of expr * (alt) list * (stmt list) option * l | Stmt_For of ident * expr * direction * expr * stmt list * l | Stmt_While of expr * stmt list * l | Stmt_Repeat of stmt list * expr * l | Stmt_Try of stmt list * ident * (catcher) list * (stmt list) option * l and s_elsif = S_Elsif_Cond of expr * stmt list and alt = Alt_Alt of (pattern) list * expr option * stmt list and catcher = Catcher_Guarded of expr * stmt list type instr_field = IField_Field of ident * int * int type opcode_value = Opcode_Bits of bitsLit | Opcode_Mask of maskLit type decode_pattern = DecoderPattern_Bits of bitsLit | DecoderPattern_Mask of maskLit | DecoderPattern_Wildcard of ident (* todo: wildcard should be underscore *) | DecoderPattern_Not of decode_pattern type decode_slice = DecoderSlice_Slice of int * int | DecoderSlice_FieldName of ident | DecoderSlice_Concat of (ident) list type sformal = Formal_In of ty * ident | Formal_InOut of ty * ident type encoding = Encoding_Block of ident * ident * (instr_field) list * opcode_value * expr * ((int * bitsLit)) list * stmt list * l type decode_case = DecoderCase_Case of (decode_slice) list * (decode_alt) list * l and decode_alt = DecoderAlt_Alt of (decode_pattern) list * decode_body and decode_body = DecoderBody_UNPRED of l | DecoderBody_UNALLOC of l | DecoderBody_NOP of l | DecoderBody_Encoding of ident * l | DecoderBody_Decoder of (instr_field) list * decode_case * l type mapfield = MapField_Field of ident * pattern type declaration = Decl_BuiltinType of ident * l | Decl_Forward of ident * l | Decl_Record of ident * (ty * ident) list * l | Decl_Typedef of ident * ty * l | Decl_Enum of ident * (ident) list * l | Decl_Var of ty * ident * l | Decl_Const of ty * ident * expr * l | Decl_BuiltinFunction of ty * ident * (ty * ident) list * l | Decl_FunType of ty * ident * (ty * ident) list * l | Decl_FunDefn of ty * ident * (ty * ident) list * stmt list * l | Decl_ProcType of ident * (ty * ident) list * l | Decl_ProcDefn of ident * (ty * ident) list * stmt list * l | Decl_VarGetterType of ty * ident * l | Decl_VarGetterDefn of ty * ident * stmt list * l | Decl_ArrayGetterType of ty * ident * (ty * ident) list * l | Decl_ArrayGetterDefn of ty * ident * (ty * ident) list * stmt list * l | Decl_VarSetterType of ident * ty * ident * l | Decl_VarSetterDefn of ident * ty * ident * stmt list * l | Decl_ArraySetterType of ident * (sformal) list * ty * ident * l | Decl_ArraySetterDefn of ident * (sformal) list * ty * ident * stmt list * l | Decl_InstructionDefn of ident * (encoding) list * (stmt list) option * bool * stmt list * l | Decl_DecoderDefn of ident * decode_case * l | Decl_Operator1 of unop * (ident) list * l | Decl_Operator2 of binop * (ident) list * l | Decl_NewEventDefn of ident * (ty * ident) list * l | Decl_EventClause of ident * stmt list * l | Decl_NewMapDefn of ty * ident * (ty * ident) list * stmt list * l | Decl_MapClause of ident * (mapfield) list * expr option * stmt list * l | Decl_Config of ty * ident * expr * l type leadingblank = LeadingBlank | LeadingNothing type factor = Factor_BinOp of binop * expr type impdef_command = CLI_Impdef of string * expr let associativeOperators: binop list = [ Binop_Plus ; Binop_Multiply ; Binop_BoolAnd ; Binop_BoolOr ; Binop_BitOr ; Binop_BitEor ; Binop_BitAnd ; Binop_Concat ; Binop_Append ] (* boolean operators bind least tightly *) let booleanOperators: binop list = [ Binop_BoolAnd ; Binop_BoolOr ; Binop_BoolIff ; Binop_BoolImplies ] (* comparision operators bind less tightly than arithmetic, etc. *) let comparisionOperators: binop list = [ Binop_Eq ; Binop_NtEq ; Binop_Gt ; Binop_GtEq ; Binop_Lt ; Binop_LtEq ] (* arithmetic and similar operations bind more tightly than comparisions and &&/|| *) let miscOperators: binop list = [ Binop_Plus ; Binop_Minus ; Binop_Multiply ; Binop_Divide ; Binop_Power ; Binop_Quot ; Binop_Rem ; Binop_Div ; Binop_Mod ; Binop_ShiftL ; Binop_ShiftR ; Binop_BitOr ; Binop_BitEor ; Binop_BitAnd ; Binop_Concat ] let isAssociative (x: binop): bool = List.mem x associativeOperators let isBoolean (x: binop): bool = List.mem x booleanOperators let isComparision (x: binop): bool = List.mem x comparisionOperators let isMisc (x: binop): bool = List.mem x miscOperators (* Is operator x higher priority than y * (Binop_DUMMY acts as the lowest priority operation - see below) *) let higherPriorityThan (x: binop) (y: binop): bool option = if y = Binop_DUMMY then Some(true) else if x = Binop_Power && y = Binop_Multiply then Some(true) else if x = Binop_Power && y = Binop_Divide then Some(true) else if x = Binop_Power && y = Binop_Plus then Some(true) else if x = Binop_Power && y = Binop_Minus then Some(true) else if x = Binop_Multiply && y = Binop_Plus then Some(true) else if x = Binop_Multiply && y = Binop_Minus then Some(true) else if x = Binop_Plus && y = Binop_Minus then Some(true) else if isMisc x && isBoolean y then Some(true) else if isMisc x && isComparision y then Some(true) else if isComparision x && isBoolean y then Some(true) else if x = Binop_DUMMY then Some(false) else if y = Binop_Power && x = Binop_Multiply then Some(false) else if y = Binop_Power && x = Binop_Divide then Some(false) else if y = Binop_Power && x = Binop_Plus then Some(false) else if y = Binop_Power && x = Binop_Minus then Some(false) else if y = Binop_Multiply && x = Binop_Plus then Some(false) else if y = Binop_Multiply && x = Binop_Minus then Some(false) else if isMisc y && isBoolean x then Some(false) else if isMisc y && isComparision x then Some(false) else if isComparision y && isBoolean x then Some(false) (* The following rules might be a mistake - though they do seem * to match common usage. *) else if x = Binop_Minus && y = Binop_Plus then Some(true) else if x = Binop_Minus && y = Binop_Minus then Some(true) else None (** Parsing exceptions (2/2) *) exception PrecedenceError of l * binop * binop (* Support function for parsing expression trees of the form * * ... op x op_1 y_1 op_2 y_2 ... op_n y_n * * Consumes input until it finds an operator y_i of lower precedence * than op returning * * 1) an expression representing "x op_1 ... y_i-1" * 2) the remainder if the input "op_i y_i ... op_n y_n" * * As in Dijkstra's "Shunting Yard" algorithm, we work left to right across * the expression comparing the next two operators: * - op1 > op2 => (x op1 y1) op2 ... * - op1 < op2 => x op1 (y1 op2 ...) ... * - op1 = op2 => (x op1 y1) op2 ... if op1 is associative * - _ => error *) let rec buildExpr (op: binop) (x: expr) (ys: factor list) (loc: l): (expr * factor list) = ( match ys with | [] -> (x, []) | (Factor_BinOp(op1, y1) :: ys1) -> ( match higherPriorityThan op op1 with | Some(false) -> ( match ys1 with | (Factor_BinOp(op2, _) :: _) -> ( match higherPriorityThan op1 op2 with | Some(true) -> buildExpr op (Expr_Binop(x, op1, y1)) ys1 loc | Some(false) -> let (r, rs) = buildExpr op1 y1 ys1 loc in buildExpr op (Expr_Binop(x, op1, r)) rs loc | None -> if op1 = op2 && isAssociative(op1) then buildExpr op (Expr_Binop(x, op1, y1)) ys1 loc else raise (PrecedenceError(loc, op1, op2)) ) | [] -> (Expr_Binop(x, op1, y1), []) ) | _ -> (x, ys) ) ) (* Construct an expression tree based on precedence rules * * Given parser output of the form x op_1 y_1 op_2 y_2 ...op_n y_n, * construct a tree based on the relative priorities of op1, ... opn. * If any adjacent operators op_i, op_i+1 are unordered, report * a parsing ambiguity. * * We use a recursive variant on Dijkstra's Shunting Yard algorithm to * parse a list of operator-expression pairs into an expression tree * based on operator precedences * All operators are treated as left-associative *) let buildExpression (x: expr) (fs: factor list) (loc: l): expr = ( match buildExpr Binop_DUMMY x fs loc with | (e, []) -> e | (_, _) -> raise (Parse_error_locn(loc, "Impossible: unable to resolve precedence")) )
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>