Source file tcheck.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
(** Type inference and checker for ASL language *)
module PE = PPrintEngine
module PC = PPrintCombinators
module PP = Asl_parser_pp
module AST = Asl_ast
module Visitor = Asl_visitor
open PE
open AST
open Utils
open Asl_utils
open Printf
let verbose = false
(** {3 Exceptions thrown by typechecker} *)
exception UnknownObject of (l * string * string)
exception DoesNotMatch of (l * string * string * string)
exception IsNotA of (l * string * string)
exception Ambiguous of (l * string * string)
exception TypeError of (l * string)
exception InternalError of (string)
(** {3 AST construction utilities} *)
let type_unit = Type_Tuple([])
let type_integer = Type_Constructor(Ident "integer")
let type_bool = Type_Constructor(Ident "boolean")
let type_real = Type_Constructor(Ident "real")
let type_string = Type_Constructor(Ident "string")
let type_bits (n: expr) = Type_Bits(n)
let type_exn = Type_Constructor(Ident "__Exception")
let type_bitsK (k: intLit): AST.ty = type_bits(Expr_LitInt(k))
(** Construct expression "eq_int(x, y)" *)
let mk_eq_int (x: AST.expr) (y: AST.expr): AST.expr =
Expr_TApply (FIdent ("eq_int",0), [], [x; y])
(** Construct expression "add_int(x, y)" *)
let mk_add_int (x: AST.expr) (y: AST.expr): AST.expr =
Expr_TApply (FIdent ("add_int",0), [], [x; y])
(** Construct expression "sub_int(x, y)" *)
let mk_sub_int (x: AST.expr) (y: AST.expr): AST.expr =
Expr_TApply (FIdent ("sub_int",0), [], [x; y])
(** Construct expression "(0 + x1) + ... + xn" *)
let mk_add_ints (xs: AST.expr list): AST.expr =
List.fold_left mk_add_int (Expr_LitInt "0") xs
let mk_concat_ty (x: AST.ty) (y: AST.ty): AST.ty =
(match (x, y) with
| (Type_Bits(e1), Type_Bits(e2)) ->
type_bits (mk_add_int e1 e2)
| _ ->
Printf.printf "Can't concatenate types %s and %s\n" (pp_type x) (pp_type y);
raise (InternalError "mk_concat_ty")
)
let mk_concat_tys (xs: AST.ty list): AST.ty =
List.fold_left mk_concat_ty (type_bitsK "0") xs
let slice_width (x: AST.slice): AST.expr =
(match x with
| Slice_Single(e) -> Expr_LitInt "1"
| Slice_HiLo(hi, lo) -> mk_add_int (mk_sub_int hi lo) (Expr_LitInt "1")
| Slice_LoWd(lo, wd) -> wd
)
let slices_width (xs: AST.slice list): AST.expr =
mk_add_ints (List.map slice_width xs)
let ixtype_basetype (ty: AST.ixtype): AST.ty =
(match ty with
| Index_Enum tc -> Type_Constructor tc
| Index_Range _ -> type_integer
)
(** {3 Prettyprinting support} *)
(** Table of binary operators used for resugaring expressions when printing
error messages.
*)
let binop_table : AST.binop Bindings.t ref = ref Bindings.empty
let add_binop (op: binop) (x: ident): unit =
binop_table := Bindings.add x op !binop_table
(** Very pretty print expression (resugaring expressions) *)
let ppp_expr (x: expr): string =
pp_expr (resugar_expr !binop_table x)
(** Very pretty print type (resugaring expressions) *)
let ppp_type (x: AST.ty): string =
pp_type (resugar_type !binop_table x)
(** {2 Environment representing global and local objects} *)
type typedef
= Type_Builtin of ident
| Type_Forward
| Type_Record of (ty * ident) list
| Type_Enumeration of ident list
| Type_Abbreviation of ty
let pp_typedef (x: typedef): string =
(match x with
| Type_Builtin t -> "builtin " ^ pprint_ident t
| Type_Forward -> "forward"
| Type_Record fs -> "record { " ^ String.concat "; " (List.map (fun (ty, f) -> pp_type ty ^" "^ pprint_ident f) fs) ^ "}"
| Type_Enumeration es -> "enumeration {" ^ String.concat ", " (List.map pprint_ident es) ^ "}"
| Type_Abbreviation ty -> pp_type ty
)
type funtype = (AST.ident * bool * AST.ident list * AST.expr list * (AST.ty * AST.ident) list * AST.ty)
let ft_id ((f, _, _, _, _, _): funtype): AST.ident = f
let pp_funtype ((f, isArr, tvs, cs, atys, rty): funtype): document =
PP.pp_ident f
^^ string " :: " ^^
(if tvs = [] then
string ""
else
(string "∀ " ^^ (PC.separate (string ", ") (List.map PP.pp_ident tvs))
^^ string " . ")
)
^^
(if cs = [] then
string ""
else
((PC.separate (string ", ") (List.map PP.pp_expr cs))
^^ string " => "
)
)
^^ (if isArr then PC.brackets else PC.parens)
(PC.separate (string ", ") (List.map PP.pp_formal atys))
^^ string " -> "
^^ PP.pp_ty rty
let fv_funtype ((_, _, tvs, _, atys, rty): funtype): IdentSet.t =
IdentSet.union (IdentSet.of_list tvs) (IdentSet.union (fv_args atys) (fv_type rty))
type sfuntype = (AST.ident * AST.ident list * AST.expr list * AST.sformal list * AST.ty)
let sft_id ((f, _, _, _, _): sfuntype): AST.ident = f
let pp_sfuntype ((f, tvs, cs, atys, vty): sfuntype): document =
PP.pp_ident f
^^ string " :: " ^^
(if tvs = [] then
string ""
else
(string "∀ " ^^ (PC.separate (string ", ") (List.map PP.pp_ident tvs))
^^ string " . ")
)
^^
(if cs = [] then
string ""
else
((PC.separate (string ", ") (List.map PP.pp_expr cs))
^^ string " => "
)
)
^^ PC.parens (PC.separate (string ", ") (List.map PP.pp_sformal atys))
^^ string " <- "
^^ PP.pp_ty vty
let sformal_var (x: sformal): AST.ident =
( match x with
| Formal_In (_, v) -> v
| Formal_InOut (_, v) -> v
)
let sformal_type (x: sformal): AST.ty =
( match x with
| Formal_In (ty, _) -> ty
| Formal_InOut (ty, _) -> ty
)
let formal_of_sformal (x: AST.sformal): (AST.ty * AST.ident) =
( match x with
| Formal_In (ty, v) -> (ty, v)
| Formal_InOut (ty, v) -> (ty, v)
)
let funtype_of_sfuntype ((f, tvs, cs, atys, vty): sfuntype): funtype =
(f, true, tvs, cs, List.map formal_of_sformal atys, vty)
module Operator1 = struct
type t = AST.unop
let compare x y = Stdlib.compare x y
end
module Operators1 = Map.Make(Operator1)
module Operator2 = struct
type t = AST.binop
let compare x y = Stdlib.compare x y
end
module Operators2 = Map.Make(Operator2)
(** {3 Global Environment (aka the Global Symbol Table)} *)
module GlobalEnv : sig
type t
val mkempty : unit -> t
val addType : t -> AST.l -> AST.ident -> typedef -> unit
val getType : t -> AST.ident -> typedef option
val isType : t -> AST.ident -> bool
val isTycon : t -> AST.ident -> bool
val isEnum : t -> AST.ident -> bool
val addFuns : t -> AST.l -> AST.ident -> funtype list -> unit
val getFuns : t -> AST.ident -> funtype list
val addSetterFuns : t -> AST.ident -> sfuntype list -> unit
val getSetterFun : t -> AST.ident -> sfuntype list
val addOperators1 : t -> AST.l -> AST.unop -> funtype list -> unit
val getOperators1 : t -> AST.l -> AST.unop -> funtype list
val addOperators2 : t -> AST.l -> AST.binop -> funtype list -> unit
val getOperators2 : t -> AST.l -> AST.binop -> funtype list
val addEncoding : t -> AST.ident -> unit
val isEncoding : t -> AST.ident -> bool
val addGlobalVar : t -> AST.l -> AST.ident -> AST.ty -> bool -> unit
val getGlobalVar : t -> AST.ident -> AST.ty option
val addConstant : t -> AST.ident -> AST.expr -> unit
val getConstant : t -> AST.ident -> AST.expr option
end = struct
type t = {
mutable types : typedef Bindings.t;
mutable functions : (funtype list) Bindings.t;
mutable setters : (sfuntype list) Bindings.t;
mutable operators1 : (funtype list) Operators1.t;
mutable operators2 : (funtype list) Operators2.t;
mutable encodings : IdentSet.t;
mutable globals : AST.ty Bindings.t;
mutable constants : AST.expr Bindings.t;
}
let mkempty _: t = {
types = Bindings.empty;
functions = Bindings.empty;
setters = Bindings.empty;
operators1 = Operators1.empty;
operators2 = Operators2.empty;
encodings = IdentSet.empty;
globals = Bindings.empty;
constants = Bindings.empty;
}
let addType (env: t) (loc: AST.l) (qid: AST.ident) (t: typedef): unit =
let t' = (match (Bindings.find_opt qid env.types, t) with
| (None, _) -> t
| (Some Type_Forward, _) -> t
| (Some p, Type_Forward) -> p
| (Some p, _) when p <> t ->
raise (DoesNotMatch (loc, "type definition", pp_typedef t, pp_typedef p))
| _ -> t
) in
env.types <- Bindings.add qid t' env.types
let getType (env: t) (qid: AST.ident): typedef option =
Bindings.find_opt qid env.types
let isType (env: t) (qid: AST.ident): bool = true
let isTycon (env: t) (qid: AST.ident): bool = true
let isEnum (env: t) (qid: AST.ident): bool = true
let addFuns (env: t) (loc: AST.l) (qid: AST.ident) (ftys: funtype list): unit =
env.functions <- Bindings.add qid ftys env.functions
let getFuns (env: t) (qid: AST.ident): funtype list =
(match Bindings.find_opt qid env.functions with
| None -> []
| Some tys -> tys
)
let addSetterFuns (env: t) (qid: AST.ident) (ftys: sfuntype list): unit =
env.setters <- Bindings.add qid ftys env.setters
let getSetterFun (env: t) (qid: AST.ident): sfuntype list =
(match Bindings.find_opt qid env.setters with
| None -> []
| Some tys -> tys
)
let addOperators1 (env: t) (loc: AST.l) (op: AST.unop) (funs: funtype list): unit =
env.operators1 <- Operators1.update op (fun ov ->
let old = from_option ov (fun _ -> []) in
Some (List.append funs old)
) env.operators1
let getOperators1 (env: t) (loc: AST.l) (op: AST.unop): funtype list =
from_option (Operators1.find_opt op (env.operators1)) (fun _ -> [])
let addOperators2 (env: t) (loc: AST.l) (op: AST.binop) (funs: funtype list): unit =
List.iter (function fty -> add_binop op (ft_id fty)) funs;
env.operators2 <- Operators2.update op (fun ov ->
let old = from_option ov (fun _ -> []) in
Some (List.append funs old)
) env.operators2
let getOperators2 (env: t) (loc: AST.l) (op: AST.binop): funtype list =
from_option (Operators2.find_opt op (env.operators2)) (fun _ -> [])
let addEncoding (env: t) (qid: AST.ident): unit =
env.encodings <- IdentSet.add qid env.encodings
let isEncoding (env: t) (qid: AST.ident): bool =
IdentSet.mem qid env.encodings
let addGlobalVar (env: t) (loc: AST.l) (qid: AST.ident) (ty: AST.ty) (isConstant: bool): unit =
env.globals <- Bindings.add qid ty env.globals
let getGlobalVar (env: t) (v: AST.ident): AST.ty option =
Bindings.find_opt v env.globals
let getConstant (env: t) (v: AST.ident): AST.expr option =
Bindings.find_opt v env.constants
let addConstant (env: t) (v: AST.ident) (e: AST.expr): unit =
let e' = subst_fun_expr (getConstant env) e in
env.constants <- Bindings.add v e' env.constants
end
let subst_consts_expr (env: GlobalEnv.t) (e: AST.expr): AST.expr =
subst_fun_expr (GlobalEnv.getConstant env) e
let subst_consts_type (env: GlobalEnv.t) (ty: AST.ty): AST.ty =
subst_fun_type (GlobalEnv.getConstant env) ty
let isConstant (env: GlobalEnv.t) (v: AST.ident): bool =
GlobalEnv.getConstant env v <> None
let removeConsts (env: GlobalEnv.t) (ids: IdentSet.t): IdentSet.t =
IdentSet.filter (fun v -> not (isConstant env v)) ids
(** dereference typedef *)
let rec derefType (env: GlobalEnv.t) (ty: AST.ty): AST.ty =
(match ty with
| Type_Constructor tc
| Type_App (tc, _) ->
(match GlobalEnv.getType env tc with
| Some (Type_Abbreviation ty') -> derefType env ty'
| _ -> ty
)
| _ -> ty
)
(** compare index types *)
let cmp_ixtype (ty1: AST.ixtype) (ty2: AST.ixtype): bool =
(match (ty1, ty2) with
| (Index_Enum tc1, Index_Enum tc2) -> tc1 = tc2
| (Index_Range _, Index_Range _) -> true
| _ -> false
)
(** structural match on two types - ignoring the dependent type part *)
let rec cmp_type (env: GlobalEnv.t) (ty1: AST.ty) (ty2: AST.ty): bool =
(match (derefType env ty1, derefType env ty2) with
| (Type_Constructor c1, Type_Constructor c2) -> c1 = c2
| (Type_Bits(e1), Type_Bits(e2)) -> true
| (Type_App (c1, es1), Type_App (c2, es2)) -> c1 = c2
| (Type_OfExpr e1, Type_OfExpr e2) -> raise (InternalError "cmp_type: typeof")
| (Type_Bits(e1), Type_Register (w2, _)) -> true
| (Type_Register (w1, _), Type_Bits(e2)) -> true
| (Type_Register (w1, _), Type_Register (w2, _)) -> true
| (Type_Array (ixty1, elty1), Type_Array (ixty2, elty2)) -> cmp_ixtype ixty1 ixty2 && cmp_type env elty1 elty2
| (Type_Tuple tys1, Type_Tuple tys2) ->
(List.length tys1 = List.length tys2) && List.for_all2 (cmp_type env) tys1 tys2
| _ -> false
)
(** {3 Field typechecking support} *)
(** Field accesses can be either record fields or fields of registers
This type captures the information needed to typecheck either of these
- a list of fieldname/type pairs for records
- a list of fieldname/slice pairs for registers
*)
type fieldtypes
= FT_Record of (ty * ident) list
| FT_Register of (AST.slice list * ident) list
(** Get fieldtype information for a record/register type *)
let rec typeFields (env: GlobalEnv.t) (loc: AST.l) (x: ty): fieldtypes =
(match derefType env x with
| Type_Constructor tc
| Type_App (tc, _) ->
(match GlobalEnv.getType env tc with
| Some(Type_Record fs) -> FT_Record fs
| Some(Type_Abbreviation ty') -> typeFields env loc ty'
| _ -> raise (IsNotA(loc, "record", pprint_ident tc))
)
| Type_Register (wd, fs) -> FT_Register fs
| Type_OfExpr(e) -> raise (InternalError ("typeFields: Type_OfExpr " ^ ppp_expr e))
| _ -> raise (IsNotA(loc, "record/register", pp_type x))
)
(** Get fieldtype information for a named field of a record *)
let get_recordfield (loc: AST.l) (rfs: (ty * ident) list) (f: ident): AST.ty =
(match List.filter (fun (_, fnm) -> fnm = f) rfs with
| [(fty, _)] -> fty
| [] -> raise (UnknownObject(loc, "field", pprint_ident f))
| fs -> raise (Ambiguous (loc, "field", pprint_ident f))
)
(** Get fieldtype information for a named field of a slice *)
let get_regfield_info (loc: AST.l) (rfs: (AST.slice list * ident) list) (f: ident): AST.slice list =
(match List.filter (fun (_, fnm) -> fnm = f) rfs with
| [(ss, _)] -> ss
| [] -> raise (UnknownObject(loc, "field", pprint_ident f))
| fs -> raise (Ambiguous (loc, "field", pprint_ident f))
)
(** Get named field of a register and calculate type *)
let get_regfield (loc: AST.l) (rfs: (AST.slice list * ident) list) (f: ident): (AST.slice list * AST.ty) =
let ss = get_regfield_info loc rfs f in
(ss, type_bits (slices_width ss))
(** Get named fields of a register and calculate type of concatenating them *)
let get_regfields (loc: AST.l) (rfs: (AST.slice list * ident) list) (fs: ident list): (AST.slice list * AST.ty) =
let ss = List.flatten (List.map (get_regfield_info loc rfs) fs) in
(ss, type_bits (slices_width ss))
(** {3 Environment (aka the Local+Global Symbol Table)} *)
type implicitVars = (AST.ident * AST.ty) list
let declare_implicits (loc: AST.l) (imps: implicitVars): AST.stmt list =
List.map (fun (v, ty) -> Stmt_VarDeclsNoInit(ty, [v], loc)) imps
module Env : sig
type t
val mkEnv : GlobalEnv.t -> t
val globals : t -> GlobalEnv.t
val nest : (t -> 'a) -> (t -> 'a)
val nest_with_bindings : (t -> 'a) -> (t -> ('a * (AST.ident * AST.ty) list))
val addLocalVar : t -> AST.l -> AST.ident -> AST.ty -> unit
val addLocalImplicitVar : t -> AST.l -> AST.ident -> AST.ty -> unit
val getAllImplicits : t -> implicitVars
val getImplicits : t -> implicitVars
val getVar : t -> AST.ident -> (AST.ident * AST.ty) option
val markModified : t -> AST.ident -> unit
val addConstraint : t -> AST.l -> AST.expr -> unit
val getConstraints : t -> AST.expr list
val setReturnType : t -> AST.ty -> unit
val getReturnType : t -> AST.ty option
end = struct
type t = {
globals : GlobalEnv.t;
mutable rty : AST.ty option;
mutable locals : AST.ty Bindings.t list;
mutable modified : IdentSet.t;
mutable implicits : AST.ty Bindings.t ref;
mutable constraints : AST.expr list;
}
let mkEnv (globalEnv: GlobalEnv.t) = {
globals = globalEnv;
rty = None;
locals = [Bindings.empty];
modified = IdentSet.empty;
implicits = ref Bindings.empty;
constraints = [];
}
let globals (env: t): GlobalEnv.t =
env.globals
let nest (k: t -> 'a) (parent: t): 'a =
let child = {
globals = parent.globals;
rty = parent.rty;
locals = Bindings.empty :: parent.locals;
modified = IdentSet.empty;
implicits = parent.implicits;
constraints = parent.constraints;
} in
let r = k child in
parent.modified <- IdentSet.union parent.modified child.modified;
r
let nest_with_bindings (k: t -> 'a) (parent: t): ('a * (AST.ident * AST.ty) list) =
let child = {
globals = parent.globals;
rty = parent.rty;
locals = Bindings.empty :: parent.locals;
modified = IdentSet.empty;
implicits = parent.implicits;
constraints = parent.constraints;
} in
let r = k child in
parent.modified <- IdentSet.union parent.modified child.modified;
let locals = Bindings.bindings (List.hd child.locals) in
let implicits = Bindings.bindings !(child.implicits) in
(r, List.append implicits locals)
let addLocalVar (env: t) (loc: AST.l) (v: AST.ident) (ty: AST.ty): unit =
if (GlobalEnv.getConstant (env.globals) v <> None) then begin
raise (TypeError (loc, pprint_ident v ^ " already declared as global constant"))
end;
(match env.locals with
| (bs :: bss) -> env.locals <- (Bindings.add v ty bs) :: bss
| [] -> raise (InternalError "addLocalVar")
);
env.modified <- IdentSet.add v env.modified
let addLocalImplicitVar (env: t) (loc: AST.l) (v: AST.ident) (ty: AST.ty): unit =
assert (GlobalEnv.getConstant (env.globals) v = None);
env.implicits := Bindings.add v ty !(env.implicits);
env.modified <- IdentSet.add v env.modified
let getAllImplicits (env: t): implicitVars =
let imps = !(env.implicits) in
env.implicits := Bindings.empty;
Bindings.bindings imps
let getImplicits (env: t): implicitVars =
let unconflicted _ (ty: AST.ty): bool =
let deps = fv_type ty in
IdentSet.is_empty (IdentSet.inter deps env.modified)
in
let (good, conflicts) = Bindings.partition unconflicted !(env.implicits) in
env.implicits := good;
Bindings.bindings conflicts
let getVar (env: t) (v: AST.ident): (AST.ident * AST.ty) option =
let rec search (bss : AST.ty Bindings.t list): AST.ty option =
(match bss with
| (bs :: bss') ->
orelse_option (Bindings.find_opt v bs) (fun _ ->
search bss')
| [] ->
orelse_option (Bindings.find_opt v !(env.implicits)) (fun _ ->
GlobalEnv.getGlobalVar env.globals v)
)
in
map_option (fun ty -> (v, ty)) (search env.locals)
let markModified (env: t) (v: AST.ident): unit =
env.modified <- IdentSet.add v env.modified
let addConstraint (env: t) (loc: AST.l) (c: AST.expr): unit =
env.constraints <- c :: env.constraints
let getConstraints (env: t): AST.expr list =
env.constraints
let setReturnType (env: t) (ty: AST.ty): unit =
env.rty <- Some ty
let getReturnType (env: t): AST.ty option =
env.rty
end
(** {2 Unification} *)
(** {3 Expression simplification} *)
(** Perform simple constant folding of expression
It's primary role is to enable the 'DIV' hacks in
z3_of_expr which rely on shallow syntactic transforms.
It has a secondary benefit of sometimes causing constraints
to become so trivial that we don't even need to invoke Z3
which gives a performance benefit.
*)
let rec simplify_expr (x: AST.expr): AST.expr =
let eval (x: AST.expr): Z.t option =
(match x with
| Expr_LitInt x' -> Some (Z.of_string x')
| _ -> None
)
in
let to_expr (x: Z.t): AST.expr =
Expr_LitInt (Z.to_string x)
in
(match x with
| Expr_TApply (f, tes, es) ->
let es' = List.map simplify_expr es in
(match (f, flatten_map_option eval es') with
| (FIdent ("add_int",_), Some [a; b]) -> to_expr (Z.add a b)
| (FIdent ("sub_int",_), Some [a; b]) -> to_expr (Z.sub a b)
| (FIdent ("mul_int",_), Some [a; b]) -> to_expr (Z.mul a b)
| _ -> Expr_TApply (f, tes, es')
)
| _ -> x
)
(** Perform simple constant folding of expressions within a type *)
let simplify_type (x: AST.ty): AST.ty =
let repl = new replaceExprClass (fun e -> Some (simplify_expr e)) in
Asl_visitor.visit_type repl x
(** {3 Z3 support code} *)
(** Convert ASL expression to Z3 expression.
This only copes with a limited set of operations: ==, +, -, * and DIV.
(It is possible that we will need to extend this list in the future but
it is sufficient for the current ASL specifications.)
The support for DIV is not sound - it is a hack needed to cope with
the way ASL code is written and generally needs a side condition
that the division is exact (no remainder).
ufs is a mutable list of conversions used to handle subexpressions
that cannot be translated. We treat such subexpressions as
uninterpreted functions and add them to the 'ufs' list so that
we can reason that "F(x) == F(x)" without knowing "F".
*)
let rec z3_of_expr (ctx: Z3.context) (ufs: (AST.expr * Z3.Expr.expr) list ref) (x: AST.expr): Z3.Expr.expr =
(match x with
| Expr_Var(v) ->
let intsort = Z3.Arithmetic.Integer.mk_sort ctx in
Z3.Expr.mk_const_s ctx (pprint_ident v) intsort
| Expr_Parens y -> z3_of_expr ctx ufs y
| Expr_LitInt i -> Z3.Arithmetic.Integer.mk_numeral_s ctx i
| Expr_TApply (FIdent ("mul_int",_), [], [Expr_TApply (FIdent ("fdiv_int",_), [], [a; b]); c]) when b = c -> z3_of_expr ctx ufs a
| Expr_TApply (FIdent ("mul_int",_), [], [a; Expr_TApply (FIdent ("fdiv_int",_), [], [b; c])]) when a = c -> z3_of_expr ctx ufs b
| Expr_TApply (FIdent ("add_int",_), [], [Expr_TApply (FIdent ("fdiv_int",_), [], [a1; b1]);
Expr_TApply (FIdent ("fdiv_int",_), [], [a2; b2])])
when a1 = a2 && b1 = b2 && b1 = Expr_LitInt "2"
-> z3_of_expr ctx ufs a1
| Expr_TApply (FIdent ("eq_int",_), [], [a; Expr_TApply (FIdent ("fdiv_int",_), [], [b; c])]) ->
Z3.Boolean.mk_eq ctx
(Z3.Arithmetic.mk_mul ctx [z3_of_expr ctx ufs c; z3_of_expr ctx ufs a])
(z3_of_expr ctx ufs b)
| Expr_TApply (FIdent ("add_int",_), [], xs) -> Z3.Arithmetic.mk_add ctx (List.map (z3_of_expr ctx ufs) xs)
| Expr_TApply (FIdent ("sub_int",_), [], xs) -> Z3.Arithmetic.mk_sub ctx (List.map (z3_of_expr ctx ufs) xs)
| Expr_TApply (FIdent ("mul_int",_), [], xs) -> Z3.Arithmetic.mk_mul ctx (List.map (z3_of_expr ctx ufs) xs)
| Expr_TApply (FIdent ("fdiv_int",_), [], [a;b]) -> Z3.Arithmetic.mk_div ctx (z3_of_expr ctx ufs a) (z3_of_expr ctx ufs b)
| Expr_TApply (FIdent ("eq_int",_), [], [a;b]) -> Z3.Boolean.mk_eq ctx (z3_of_expr ctx ufs a) (z3_of_expr ctx ufs b)
| _ ->
if verbose then Printf.printf " Unable to translate %s - using as uninterpreted function\n" (pp_expr x);
let intsort = Z3.Arithmetic.Integer.mk_sort ctx in
(match List.assoc_opt x !ufs with
| None ->
let uf = Z3.Expr.mk_fresh_const ctx "UNINTERPRETED" intsort in
ufs := (x, uf) :: !ufs;
uf
| Some uf ->
uf
)
)
(** check that bs => cs *)
let check_constraints (bs: expr list) (cs: expr list): bool =
let z3_ctx = Z3.mk_context [] in
let solver = Z3.Solver.mk_simple_solver z3_ctx in
let ufs = ref [] in
let bs' = List.map (z3_of_expr z3_ctx ufs) bs in
let cs' = List.map (z3_of_expr z3_ctx ufs) cs in
let p = Z3.Boolean.mk_implies z3_ctx (Z3.Boolean.mk_and z3_ctx bs') (Z3.Boolean.mk_and z3_ctx cs') in
if verbose then Printf.printf " - Checking %s\n" (Z3.Expr.to_string p);
Z3.Solver.add solver [Z3.Boolean.mk_not z3_ctx p];
let q = Z3.Solver.check solver [] in
if q = SATISFIABLE then Printf.printf "Failed property %s\n" (Z3.Expr.to_string p);
q = UNSATISFIABLE
(** {3 Unification support code} *)
(** Unifier
This class supports collecting all the constraints introduced while
typechecking an expression, checking those constraints
and synthesizing a solution.
This is the most complex part of the entire typechecker.
Most of that complexity is the result of having to support
code like
bits(64) x = ZeroExtend(R[i]);
where the width of the ZeroExtend call is determined by
the context that it occurs in.
*)
class unifier (loc: AST.l) (assumptions: expr list) = object (self)
val mutable renamings = new equivalences
val mutable bindings : AST.expr Bindings.t = Bindings.empty
val mutable constraints : AST.expr list = []
val mutable next = 0
method fresh: ident =
let v = genericTyvar next in
ignore (renamings#canonicalize v);
next <- next + 1;
v
method isFresh (x: ident): bool =
isGenericTyvar x
method addEquality (x: AST.expr) (y: AST.expr): unit =
(match (x, y) with
| (Expr_Var v, Expr_Var w) when self#isFresh v && self#isFresh w ->
renamings#merge v w
| (Expr_Var v, _) when self#isFresh v && not (Bindings.mem v bindings) ->
bindings <- Bindings.add v y bindings
| (_, Expr_Var w) when self#isFresh w && not (Bindings.mem w bindings) ->
bindings <- Bindings.add w x bindings
| _ ->
constraints <- mk_eq_int x y :: constraints
)
method addEqualities (xs: AST.expr list) (ys: AST.expr list) =
if List.length xs = List.length ys then
List.iter2 self#addEquality xs ys
method checkConstraints: expr Bindings.t = begin
let rns = renamings#mapping in
let classes = renamings#classes in
let binds = Bindings.map (fun vs -> flatmap_option (fun v -> Bindings.find_opt v bindings) (IdentSet.elements vs)) classes in
if verbose then begin
Printf.printf " - Checking Constraints at %s\n" (pp_loc loc);
Bindings.iter (fun v e -> Printf.printf " Old Bind: %s -> %s\n" (pprint_ident v) (ppp_expr e)) bindings;
Bindings.iter (fun v es -> List.iter (fun e -> Printf.printf " binds: %s -> %s\n" (pprint_ident v) (ppp_expr e)) es) binds;
renamings#pp " Renaming: ";
Bindings.iter (fun v w -> Printf.printf " - renaming: %s -> %s\n" (pprint_ident v) (pprint_ident w)) rns
end;
let isClosed (x: expr): bool =
IdentSet.is_empty (IdentSet.filter self#isFresh (fv_expr x))
in
let rec close_ident (x: ident): expr =
let x' = renamings#canonicalize x in
(match bind_option (Bindings.find_opt x' binds) (fun es -> first_option close_expr es) with
| Some e -> e
| None ->
Printf.printf "Type Error at %s\n" (pp_loc loc);
if verbose then begin
List.iter (fun v -> Printf.printf " Related to: %s\n" (pprint_ident v)) (IdentSet.elements (Bindings.find x' classes));
List.iter (fun e -> Printf.printf " Candidate: %s\n" (pp_expr e)) (Bindings.find x' binds);
renamings#pp " Renaming: ";
Bindings.iter (fun v e -> Printf.printf " Bind: %s -> %s\n" (pprint_ident v) (ppp_expr e)) bindings
end;
raise (TypeError (loc, "Unable to infer value of type parameter "^ pprint_ident x'))
)
and close_expr (x: expr): expr option =
let subst = new substFunClass (fun x -> if self#isFresh x then Some (close_ident x) else None) in
let x' = Asl_visitor.visit_expr subst x in
if isClosed x' then
Some x'
else
None
in
let pre_closed = Bindings.mapi (fun k _ -> close_ident k) classes in
let closed = Bindings.map (fun v -> Bindings.find v pre_closed) rns in
if verbose then begin
Bindings.iter (fun v e -> Printf.printf " PreClosed Bind: %s -> %s\n" (pprint_ident v) (ppp_expr e)) pre_closed;
Bindings.iter (fun v e -> Printf.printf " Closed Bind: %s -> %s\n" (pprint_ident v) (ppp_expr e)) closed
end;
constraints <- List.map (subst_expr closed) constraints;
let new_constraints = List.map (fun (v, e) -> mk_eq_int (Bindings.find v closed) (subst_expr closed e)) (Bindings.bindings bindings) in
constraints <- new_constraints @ constraints;
bindings <- closed;
if verbose then begin
List.iter (fun c -> Printf.printf " OldConstraint: %s\n" (ppp_expr c)) constraints;
List.iter (fun c -> Printf.printf " NewConstraint: %s\n" (ppp_expr c)) new_constraints;
List.iter (fun c -> Printf.printf " Constraint: %s\n" (ppp_expr c)) constraints
end;
constraints <- List.map simplify_expr constraints;
constraints <- List.filter (function Expr_TApply(FIdent ("eq_int",_), [], [x; y]) -> x <> y | _ -> true) constraints;
if constraints <> [] && not (check_constraints assumptions constraints) then begin
Printf.printf "Type Error at %s\n" (pp_loc loc);
if verbose then begin
renamings#pp " Renaming: ";
Bindings.iter (fun v e -> Printf.printf " Bind: %s -> %s\n" (pprint_ident v) (ppp_expr e)) bindings
end;
List.iter (fun c -> Printf.printf " Constraint: %s\n" (ppp_expr c)) constraints;
flush stdout;
raise (TypeError (loc, "Type mismatch"))
end;
bindings
end
end
(** Create a fresh unifier, invoke a function that uses the unifier and check
that the constraints are satisfied.
Returns the synthesized bindings and result of function
*)
let with_unify (env: Env.t) (loc: AST.l) (f: unifier -> 'a): (expr Bindings.t * 'a) =
let u = new unifier loc (Env.getConstraints env) in
let r = f u in
let bs = u#checkConstraints in
(bs, r)
(** {3 Type Unification} *)
(** Notes on how type inference works:
- we use structural matching (ignoring the dependent type)
to disambiguate each binop/unop/function/procedure call/getter/setter
- as we construct each TApply node,
- we insert fresh type variables $0, $1, ... for each of the type arguments
(these are things we are going to solve for)
- unification generates two kinds of constraints:
1. bindings for type variables whenever unification requires "$i == e" or "e == $i"
for some type variable $i
2. constraints where there are multiple bindings for a single variable
3. constraints on type variables whenever unification requires "e1 == e2"
where e1 is not a variable
- after scanning an entire assignment/expression, we check:
1. do we have at least one binding for each variable?
2. are the bindings consistent with the constraints?
Note that we could potentially give better (more localized) type errors if
we check for consistency as we go along and if we check that a variable
is bound as soon as the result type could not possibly involve the variable.
(e.g., when checking "(e1 == e2 && Q) || R", any type variables associated
with the equality check do not impact the && or || because "boolean" does
not have any type parameters.)
Note that there is a choice of what type arguments to add to a function
bits(N) ZeroExtend(bits(M) x, integer N)
We can either:
- add only the missing information "M"
In effect, we are saying that missing type parameters are implicit parameters that are
added by the type inference process and that the "type parameters" are basically just
value expressions that are added by type inference.
- add type arguments for both "M" and "N".
In effect we are saying that type parameters are distinct from value parameters
and we are in the strange situation that a function could have both a value
parameter M and a type parameter N and they might be bound to different (but
equivalent) arguments.
This is what archex does.
*)
(** Unify two index types *)
let unify_ixtype (u: unifier) (ty1: AST.ixtype) (ty2: AST.ixtype): unit =
(match (ty1, ty2) with
| (Index_Enum tc1, Index_Enum tc2) -> ()
| (Index_Range (lo1, hi1), Index_Range (lo2, hi2)) ->
u#addEquality lo1 lo2;
u#addEquality hi1 hi2
| _ -> ()
)
(** Unify two types
This performs a structural match on two types - ignoring the dependent type part
*)
let rec unify_type (env: GlobalEnv.t) (u: unifier) (ty1: AST.ty) (ty2: AST.ty): unit =
let subst_consts = new substFunClass (GlobalEnv.getConstant env) in
let ty1' = Asl_visitor.visit_type subst_consts ty1 in
let ty2' = Asl_visitor.visit_type subst_consts ty2 in
(match (derefType env ty1', derefType env ty2') with
| (Type_Constructor c1, Type_Constructor c2) -> ()
| (Type_Bits(e1), Type_Bits(e2)) -> u#addEquality e1 e2
| (Type_App (c1, es1), Type_App (c2, es2)) -> u#addEqualities es1 es2
| (Type_OfExpr e1, Type_OfExpr e2) -> raise (InternalError "unify_type: typeof")
| (Type_Bits(e1), Type_Register (w2, _)) -> u#addEquality e1 (Expr_LitInt w2)
| (Type_Register (w1, _), Type_Bits(e2)) -> u#addEquality (Expr_LitInt w1) e2
| (Type_Register (w1, _), Type_Register (w2, _)) -> u#addEquality (Expr_LitInt w1) (Expr_LitInt w2)
| (Type_Array (ixty1, elty1), Type_Array (ixty2, elty2)) -> unify_ixtype u ixty1 ixty2; unify_type env u elty1 elty2
| (Type_Tuple tys1, Type_Tuple tys2) -> List.iter2 (unify_type env u) tys1 tys2
| _ -> ()
)
(** Apply substitutions to an expression *)
let unify_subst_e (s: expr Bindings.t) (x: AST.expr): AST.expr =
subst_expr s x
(** Apply substitutions to an L-expression *)
let unify_subst_le (s: expr Bindings.t) (x: AST.lexpr): AST.lexpr =
subst_lexpr s x
(** Apply substitutions to a type *)
let unify_subst_ty (s: expr Bindings.t) (x: AST.ty): AST.ty =
subst_type s x
(** Replace all type variables in function type with fresh variables *)
let mkfresh_funtype (u: unifier) (fty: funtype): funtype =
let (f, isArr, tvs, cs, atys, rty) = fty in
let rns = List.map (fun tv -> (tv, u#fresh)) tvs in
let s = mk_bindings (List.map (fun (v, w) -> (v, Expr_Var w)) rns) in
let tvs' = List.map snd rns in
let atys' = List.map (fun (ty, a) ->
let ty' = subst_type s ty in
let a' = from_option (List.assoc_opt a rns) (fun _ -> a) in
(ty', a')
) atys in
let cs' = List.map (subst_expr s) cs in
let rty' = subst_type s rty in
(f, isArr, tvs', cs', atys', rty')
(** Replace all type variables in setter function type with fresh variables *)
let mkfresh_sfuntype (u: unifier) (fty: sfuntype): sfuntype =
let (f, tvs, cs, atys, vty) = fty in
let rns = List.map (fun tv -> (tv, u#fresh)) tvs in
let s = mk_bindings (List.map (fun (v, w) -> (v, Expr_Var w)) rns) in
let tvs' = List.map snd rns in
let atys' = List.map (fun aty ->
(match aty with
| Formal_In(ty, a) ->
let ty' = subst_type s ty in
let a' = from_option (List.assoc_opt a rns) (fun _ -> a) in
Formal_In(ty', a')
| Formal_InOut(ty, a) ->
let ty' = subst_type s ty in
let a' = from_option (List.assoc_opt a rns) (fun _ -> a) in
Formal_InOut(ty', a')
)
) atys in
let cs' = List.map (subst_expr s) cs in
let vty' = subst_type s vty in
(f, tvs', cs', atys', vty')
(** Check that ty2 is a subtype of ty1: ty1 >= ty2 *)
let check_type (env: Env.t) (u: unifier) (loc: AST.l) (ty1: AST.ty) (ty2: AST.ty): unit =
if not (cmp_type (Env.globals env) ty1 ty2) then
raise (DoesNotMatch(loc, "type", pp_type ty1, pp_type ty2))
else
unify_type (Env.globals env) u ty1 ty2
(** Check that ty1 is identical to ty2 *)
let check_type_exact (env: Env.t) (loc: AST.l) (ty1: AST.ty) (ty2: AST.ty): unit =
ignore (with_unify env loc (fun u ->
check_type env u loc ty1 ty2
))
(** {2 Disambiguation of functions and operators} *)
(** Generate error message when function disambiguation fails *)
let reportChoices (loc: AST.l) (what: string) (nm: string) (tys: AST.ty list) (funs: funtype list): unit =
if funs = [] then
Printf.printf "%s: Can't find matching %s for %s\n" (pp_loc loc) what nm
else
Printf.printf "%s: Ambiguous choice for %s %s\n" (pp_loc loc) what nm;
List.iter (fun ty -> Printf.printf " Arg : %s\n" (pp_type ty)) tys;
List.iter (fun (f, _, _, _, atys, rty) ->
Printf.printf " Choice : %s : %s -> %s\n"
(pprint_ident f)
(Utils.to_string (PPrintCombinators.separate (PPrintEngine.string " ")
(List.map (fun (ty, _) -> PP.pp_ty ty) atys)))
(pp_type rty)
) funs
(** Check whether a list of function argument types is compatible with the
type of a function.
One function type is compatible with another if they have the same number
of arguments and each argument has the same base type
*)
let isCompatibleFunction (env: GlobalEnv.t) (isArr: bool) (tys: AST.ty list) (ft: funtype): bool =
let nargs = List.length tys in
let (_, isArr', _, _, atys, _) = ft in
isArr = isArr' && List.length atys = nargs && List.for_all2 (cmp_type env) (List.map fst atys) tys
(** Disambiguate a function name based on the number and type of arguments *)
let chooseFunction (env: GlobalEnv.t) (loc: AST.l) (what: string) (nm: string) (isArr: bool) (tys: AST.ty list) (funs: funtype list): funtype option =
let funs' = List.filter (isCompatibleFunction env isArr tys) funs in
(match nub funs' with
| [] -> None
| [r] -> Some r
| fs ->
reportChoices loc what nm tys fs;
raise (Ambiguous (loc, what, nm))
)
(** Check whether a list of function argument types is compatible with the
type of a setter function.
One function type is compatible with another if they have the same number
of arguments and each argument has the same base type
*)
let isCompatibleSetterFunction (env: GlobalEnv.t) (tys: AST.ty list) (ft: sfuntype): bool =
let nargs = List.length tys in
let (_, _, _, atys, _) = ft in
(List.length atys = nargs) && List.for_all2 (cmp_type env) (List.map sformal_type atys) tys
(** Disambiguate a setter function name based on the number and type of arguments *)
let chooseSetterFunction (env: GlobalEnv.t) (loc: AST.l) (what: string) (nm: ident) (tys: AST.ty list) (funs: sfuntype list): sfuntype option =
let funs' = List.filter (isCompatibleSetterFunction env tys) funs in
(match nub funs' with
| [] -> None
| [r] -> Some r
| fs ->
reportChoices loc what (pprint_ident nm) tys (List.map funtype_of_sfuntype fs);
raise (Ambiguous (loc, what, pprint_ident nm))
)
(** Instantiate type of function using unifier 'u' *)
let instantiate_fun (env: GlobalEnv.t) (u: unifier) (loc: AST.l) (fty: funtype) (es: AST.expr list) (tys: AST.ty list): (AST.ident * AST.expr list * AST.ty) =
let (f, _, tvs, cs, atys, rty) = mkfresh_funtype u fty in
assert ((List.length atys) == (List.length es));
List.iter2 (fun (_, v) e -> if List.mem v tvs then u#addEquality (Expr_Var v) (subst_consts_expr env e)) atys es;
assert ((List.length atys) == (List.length tys));
List.iter2 (unify_type env u) (List.map fst atys) tys;
let tes = List.map (fun tv -> Expr_Var tv) tvs in
(f, tes, rty)
(** Instantiate type of setter function using unifier 'u' *)
let instantiate_sfun (env: GlobalEnv.t) (u: unifier) (loc: AST.l) (fty: sfuntype) (es: AST.expr list) (tys: AST.ty list) (ty: AST.ty): (AST.ident * AST.expr list) =
let (f, tvs, cs, atys, vty) = mkfresh_sfuntype u fty in
assert ((List.length atys) == (List.length es));
List.iter2 (fun aty e ->
let v = sformal_var aty in
if List.mem v tvs then u#addEquality (Expr_Var v) (subst_consts_expr env e)
) atys es;
List.iter2 (unify_type env u) (List.map sformal_type atys) tys;
unify_type env u vty ty;
let tes = List.map (fun tv -> Expr_Var tv) tvs in
(f, tes)
(** Disambiguate and typecheck application of a function to a list of arguments *)
let tc_apply (env: GlobalEnv.t) (u: unifier) (loc: AST.l) (what: string) (f: AST.ident) (es: AST.expr list) (tys: AST.ty list): (AST.ident * AST.expr list * AST.ty) =
let funs = GlobalEnv.getFuns env f in
let nm = pprint_ident f in
(match chooseFunction env loc "function" nm false tys funs with
| None ->
reportChoices loc what nm tys funs;
raise (UnknownObject(loc, what, nm))
| Some fty ->
if verbose then Printf.printf " - Found matching %s at %s for %s = %s\n" what (pp_loc loc) nm (Utils.to_string (pp_funtype fty));
instantiate_fun env u loc fty es tys
)
(** Disambiguate and typecheck application of a unary operator to argument *)
let tc_unop (env: GlobalEnv.t) (u: unifier) (loc: AST.l) (op: unop) (x: AST.expr) (ty: AST.ty): (AST.ident * AST.expr list * AST.ty) =
let what = "unary operator" in
let nm = Utils.to_string (PP.pp_unop op) in
let tys = [ty] in
let ops = GlobalEnv.getOperators1 env loc op in
(match chooseFunction env loc what nm false [ty] ops with
| None ->
reportChoices loc what nm tys ops;
raise (UnknownObject(loc, what, nm))
| Some fty ->
instantiate_fun env u loc fty [x] tys
)
(** Disambiguate and typecheck application of a binary operator to arguments *)
let tc_binop (env: GlobalEnv.t) (u: unifier) (loc: AST.l) (op: binop) (x1: AST.expr) (x2: AST.expr) (ty1: AST.ty) (ty2: AST.ty): (AST.ident * AST.expr list * AST.ty) =
let what = "binary operator" in
let nm = Utils.to_string (PP.pp_binop op) in
let tys = [ty1; ty2] in
let ops = GlobalEnv.getOperators2 env loc op in
(match chooseFunction env loc what nm false tys ops with
| None ->
reportChoices loc "binary operator" nm tys ops;
raise (UnknownObject(loc, what, nm))
| Some fty ->
instantiate_fun env u loc fty [x1; x2] tys
)
(** {2 Typecheck expressions} *)
(** Lookup a variable in environment *)
let check_var (env: Env.t) (loc: AST.l) (v: AST.ident): (AST.ident * AST.ty) =
(match Env.getVar env v with
| None -> raise (UnknownObject(loc, "variable", pprint_ident v))
| Some (v', ty') -> (v', ty')
)
(** Typecheck list of expressions *)
let rec tc_exprs (env: Env.t) (u: unifier) (loc: AST.l) (xs: AST.expr list): (AST.expr * AST.ty) list =
List.map (tc_expr env u loc) xs
(** Typecheck expression and check that it is a subtype of ty *)
and check_expr (env: Env.t) (loc: AST.l) (ty: AST.ty) (x: AST.expr): AST.expr =
let (s, x') = with_unify env loc (fun u ->
let (x', ty') = tc_expr env u loc x in
if verbose then Printf.printf " - Typechecking %s : %s\n" (pp_expr x') (pp_type ty');
check_type env u loc ty ty';
x'
) in
unify_subst_e s x'
(** Typecheck 'if c then expr' *)
and tc_e_elsif (env: Env.t) (u: unifier) (loc: AST.l) (x: AST.e_elsif): (AST.e_elsif * AST.ty) =
(match x with
| E_Elsif_Cond(c, e) ->
let c' = check_expr env loc type_bool c in
let (e', ty) = tc_expr env u loc e in
(E_Elsif_Cond(c', e'), ty)
)
(** Typecheck bitslice indices *)
and tc_slice (env: Env.t) (u: unifier) (loc: AST.l) (x: AST.slice): (AST.slice * AST.ty) =
(match x with
| Slice_Single(e) ->
let (e', ty) = tc_expr env u loc e in
(Slice_Single(e'), ty)
| Slice_HiLo(hi, lo) ->
let hi' = check_expr env loc type_integer hi in
let lo' = check_expr env loc type_integer lo in
(Slice_HiLo(hi', lo'), type_integer)
| Slice_LoWd(lo, wd) ->
let lo' = check_expr env loc type_integer lo in
let wd' = check_expr env loc type_integer wd in
(Slice_LoWd(lo', wd'), type_integer)
)
(** Typecheck pattern against type ty *)
and tc_pattern (env: Env.t) (loc: AST.l) (ty: AST.ty) (x: AST.pattern): AST.pattern =
( match x with
| Pat_LitInt(l) ->
check_type_exact env loc ty type_integer;
Pat_LitInt(l)
| Pat_LitHex(l) ->
check_type_exact env loc ty type_integer;
Pat_LitHex(l)
| Pat_LitBits(l) ->
check_type_exact env loc ty (type_bitsK (string_of_int (masklength l)));
Pat_LitBits(l)
| Pat_LitMask(l) ->
check_type_exact env loc ty (type_bitsK (string_of_int (masklength l)));
Pat_LitMask(l)
| Pat_Const(l) ->
let (c, cty) = check_var env loc l in
check_type_exact env loc ty cty;
Pat_Const(c)
| Pat_Wildcard ->
Pat_Wildcard
| Pat_Tuple(ps) ->
let ps' = (match ty with
| Type_Tuple tys when List.length ps = List.length tys ->
List.map2 (tc_pattern env loc) tys ps
| _ -> raise (IsNotA(loc, "tuple of length ?", pp_type ty))
) in
Pat_Tuple(ps')
| Pat_Set(ps) ->
let ps' = List.map (tc_pattern env loc ty) ps in
Pat_Set(ps')
| Pat_Single(Expr_LitMask m) ->
tc_pattern env loc ty (Pat_LitMask m)
| Pat_Single(e) ->
let e' = check_expr env loc ty e in
Pat_Single(e')
| Pat_Range(lo, hi) ->
let lo' = check_expr env loc ty lo in
let hi' = check_expr env loc ty hi in
check_type_exact env loc ty type_integer;
Pat_Range(lo', hi')
)
(** Typecheck bitslice syntax
This primarily consists of disambiguating between array indexing and bitslicing
Note that this function is almost identical to tc_slice_lexpr
*)
and tc_slice_expr (env: Env.t) (u: unifier) (loc: AST.l) (x: expr) (ss: (AST.slice * AST.ty) list): (AST.expr * AST.ty) =
if List.length ss == 0 then begin
raise (TypeError (loc, "empty list of subscripts"))
end;
let ss' = List.map fst ss in
let (x', ty) = tc_expr env u loc x in
(match derefType (Env.globals env) ty with
| Type_Array(ixty, elty) ->
(match ss with
| [(Slice_Single i, ity)] ->
check_type env u loc (ixtype_basetype ixty) ity;
(Expr_Array(x', i), elty)
| _ -> raise (TypeError (loc, "multiple subscripts for array"))
)
| Type_Bits(n) ->
(Expr_Slices(x', ss'), type_bits (slices_width ss'))
| Type_Register (wd, _) ->
(Expr_Slices(x', ss'), type_bits (slices_width ss'))
| Type_Constructor tc when tc = Ident "integer" ->
(Expr_Slices(x', ss'), type_bits (slices_width ss'))
| _ -> raise (TypeError (loc, "slice of expr"))
)
(** Typecheck expression *)
and tc_expr (env: Env.t) (u: unifier) (loc: AST.l) (x: AST.expr): (AST.expr * AST.ty) =
(match x with
| Expr_If(c, t, els, e) ->
let c' = check_expr env loc type_bool c in
let (t', tty) = tc_expr env u loc t in
let (els', eltys) = List.split (List.map (tc_e_elsif env u loc) els) in
let (e', ety) = tc_expr env u loc e in
List.iter (fun elty -> check_type env u loc tty elty) eltys;
check_type env u loc tty ety;
(Expr_If(c', t', els', e'), tty)
| Expr_Binop(x, Binop_Eq, Expr_LitMask(y)) ->
tc_expr env u loc (Expr_In(x, Pat_LitMask y))
| Expr_Binop(x, Binop_NtEq, Expr_LitMask(y)) ->
tc_expr env u loc (Expr_Unop (Unop_BoolNot, (Expr_In(x, Pat_LitMask y))))
| Expr_Binop(x, op, y) ->
let (x', xty) = tc_expr env u loc x in
let (y', yty) = tc_expr env u loc y in
let (f, tes, ty) = tc_binop (Env.globals env) u loc op x' y' xty yty in
(Expr_TApply(f, tes, [x'; y']), ty)
| Expr_Field(e, f) ->
let (e', ty) = tc_expr env u loc e in
(match typeFields (Env.globals env) loc ty with
| FT_Record rfs ->
(Expr_Field(e', f), get_recordfield loc rfs f)
| FT_Register rfs ->
let (ss, ty') = get_regfield loc rfs f in
(Expr_Slices(e', ss), ty')
)
| Expr_Fields(e, fs) ->
let (e', ty) = tc_expr env u loc e in
(match typeFields (Env.globals env) loc ty with
| FT_Record rfs ->
let tys = List.map (get_recordfield loc rfs) fs in
(Expr_Fields(e', fs), mk_concat_tys tys)
| FT_Register rfs ->
let (ss, ty') = get_regfields loc rfs fs in
(Expr_Slices(e', ss), ty')
)
| Expr_Slices(e, ss) ->
let all_single = List.for_all (function (Slice_Single _) -> true | _ -> false) ss in
let ss' = List.map (tc_slice env u loc) ss in
(match e with
| Expr_Var(a) ->
let tys = List.map (function (_, ty) -> ty) ss' in
let getters = GlobalEnv.getFuns (Env.globals env) (addSuffix a "read") in
let ogetters = chooseFunction (Env.globals env) loc "getter function" (pprint_ident a) true tys getters in
(match ogetters with
| Some fty when all_single ->
let es = List.map (function (Slice_Single a, _) -> a | _ -> raise (InternalError "Expr_Slices")) ss' in
let (f', tes', rty) = instantiate_fun (Env.globals env) u loc fty es tys in
(Expr_TApply (f', tes', es), rty)
| _ ->
tc_slice_expr env u loc e ss'
)
| _ ->
tc_slice_expr env u loc e ss'
)
| Expr_In(e, p) ->
let (s, (e', ety')) = with_unify env loc (fun u -> tc_expr env u loc e) in
let e'' = unify_subst_e s e' in
let ety'' = unify_subst_ty s ety' in
if verbose then Printf.printf " - Typechecking %s IN ... : %s\n" (pp_expr e') (pp_type ety');
let p' = tc_pattern env loc ety'' p in
(Expr_In(e'', p'), type_bool)
| Expr_Var(v) ->
(match Env.getVar env v with
| Some (v', ty') ->
(Expr_Var(v'), ty')
| None ->
let getters = GlobalEnv.getFuns (Env.globals env) (addSuffix v "read") in
(match chooseFunction (Env.globals env) loc "getter function" (pprint_ident v) false [] getters with
| Some fty ->
let (f', tes', rty) = instantiate_fun (Env.globals env) u loc fty [] [] in
(Expr_TApply (f', tes', []), rty)
| None -> raise (UnknownObject(loc, "variable or getter functions", pprint_ident v))
)
)
| Expr_Parens(e) ->
let (e', ty) = tc_expr env u loc e in
(Expr_Parens(e'), ty)
| Expr_TApply(f, tes, es) ->
let (es', tys) = List.split (tc_exprs env u loc es) in
let (f', tes'', ty) = tc_apply (Env.globals env) u loc "function" f es' tys in
(Expr_TApply(f', tes'', es'), ty)
| Expr_Tuple(es) ->
let (es', tys) = List.split (List.map (tc_expr env u loc) es) in
(Expr_Tuple(es'), Type_Tuple(tys))
| Expr_Unop(op, e) ->
let (e', ety) = tc_expr env u loc e in
let (f, tes, ty) = tc_unop (Env.globals env) u loc op e ety in
(Expr_TApply(f, tes, [e']), ty)
| Expr_Unknown(t) ->
let ty' = tc_type env loc t in
(Expr_Unknown(ty'), ty')
| Expr_ImpDef(t, os) ->
let ty' = tc_type env loc t in
(Expr_ImpDef(ty', os), ty')
| Expr_Array(a, e) ->
let (a', ty) = tc_expr env u loc a in
(match derefType (Env.globals env) ty with
| Type_Array(ixty, elty) ->
let e' = check_expr env loc (ixtype_basetype ixty) e in
(Expr_Array(a', e'), elty)
| _ -> raise (TypeError (loc, "subscript of non-array"))
)
| Expr_LitInt(i) ->
(Expr_LitInt(i), type_integer)
| Expr_LitHex(i) ->
(Expr_LitHex(i), type_integer)
| Expr_LitReal(r) ->
(Expr_LitReal(r), type_real)
| Expr_LitBits(b) ->
(Expr_LitBits(b), type_bitsK (string_of_int (masklength b)))
| Expr_LitMask(b) ->
raise (InternalError "tc_expr: litmask")
| Expr_LitString(s) ->
(Expr_LitString(s), type_string)
)
(** Typecheck list of types *)
and tc_types (env: Env.t) (loc: AST.l) (xs: AST.ty list): AST.ty list =
List.map (tc_type env loc) xs
(** Typecheck type *)
and tc_type (env: Env.t) (loc: AST.l) (x: AST.ty): AST.ty =
( match x with
| Type_Constructor(tc) ->
if not (GlobalEnv.isType (Env.globals env) tc) then raise (IsNotA (loc, "type constructor", pprint_ident tc));
(match GlobalEnv.getType (Env.globals env) tc with
| Some (Type_Abbreviation ty') -> derefType (Env.globals env) ty'
| _ -> Type_Constructor(tc)
)
| Type_Bits(n) ->
let n' = check_expr env loc type_integer n in
Type_Bits(n')
| Type_App(tc, es) ->
if not (GlobalEnv.isTycon (Env.globals env) tc) then raise (IsNotA (loc, "type constructor", pprint_ident tc));
let es' = List.map (check_expr env loc type_integer) es in
Type_App(tc, es')
| Type_OfExpr(e) ->
let (s, (_, ty)) = with_unify env loc (fun u -> tc_expr env u loc e) in
unify_subst_ty s ty
| Type_Register(wd, fs) ->
let fs' = List.map (fun (ss, f) ->
let (s, ss') = with_unify env loc (fun u -> List.map (fun s -> fst (tc_slice env u loc s)) ss)
in
let ss'' = List.map (subst_slice s) ss' in
(ss'', f)
) fs in
Type_Register (wd, fs')
| Type_Array(Index_Enum(tc),ety) ->
if not (GlobalEnv.isEnum (Env.globals env) tc) then raise (IsNotA (loc, "enumeration type", pprint_ident tc));
let ety' = tc_type env loc ety in
Type_Array(Index_Enum(tc),ety')
| Type_Array(Index_Range(lo,hi),ety) ->
let lo' = check_expr env loc type_integer lo in
let hi' = check_expr env loc type_integer hi in
let ety' = tc_type env loc ety in
Type_Array(Index_Range(lo',hi'),ety')
| Type_Tuple(tys) ->
let tys' = tc_types env loc tys in
Type_Tuple(tys')
)
(** {2 Typecheck L-expressions} *)
(** Typecheck bitslice syntax
This primarily consists of disambiguating between array indexing and bitslicing
Note that this function is almost identical to tc_slice_expr
*)
let rec tc_slice_lexpr (env: Env.t) (u: unifier) (loc: AST.l) (x: lexpr) (ss: (AST.slice * AST.ty) list): (AST.lexpr * AST.ty) =
if List.length ss == 0 then begin
raise (TypeError (loc, "empty list of subscripts"))
end;
let ss' = List.map fst ss in
let (x', ty) = tc_lexpr2 env u loc x in
(match derefType (Env.globals env) ty with
| Type_Array(ixty, elty) ->
(match ss with
| [(Slice_Single i, ity)] ->
check_type env u loc (ixtype_basetype ixty) ity;
(LExpr_Array (x', i), elty)
| _ -> raise (TypeError (loc, "multiple subscripts for array"))
)
| Type_Bits(n) ->
(LExpr_Slices(x', ss'), type_bits (slices_width ss'))
| Type_Register (wd, _) ->
(LExpr_Slices(x', ss'), type_bits (slices_width ss'))
| Type_Constructor tc when tc = Ident "integer" ->
if false then printf "Warning: slice assignment of integer at %s\n" (pp_loc loc);
(LExpr_Slices(x', ss'), type_bits (slices_width ss'))
| _ -> raise (TypeError (loc, "slice of lexpr"))
)
(** Typecheck left hand side of expression in context where
type of right hand side is not yet known
*)
and tc_lexpr2 (env: Env.t) (u: unifier) (loc: AST.l) (x: AST.lexpr): (AST.lexpr * AST.ty) =
( match x with
| LExpr_Wildcard ->
raise (TypeError (loc, "wildcard in lexpr2"))
| LExpr_Var(v) ->
(match Env.getVar env v with
| Some (v', ty') ->
Env.markModified env v;
(LExpr_Var(v'), ty')
| None ->
let getters = GlobalEnv.getFuns (Env.globals env) (addSuffix v "read") in
let setters = GlobalEnv.getFuns (Env.globals env) (addSuffix v "write") in
let ogetter = chooseFunction (Env.globals env) loc "var getter function" (pprint_ident v) false [] getters in
(match ogetter with
| Some fty ->
let (_, _, _, _, _, rty) = fty in
let gty = (match chooseFunction (Env.globals env) loc "var setter function" (pprint_ident v) false [rty] setters with
| Some gty -> gty
| None -> raise (UnknownObject(loc, "var setter function", pprint_ident v))
) in
let (f', tes', rty) = instantiate_fun (Env.globals env) u loc fty [] [] in
(LExpr_ReadWrite (f', ft_id gty, tes', []), rty)
| None ->
raise (UnknownObject(loc, "variable", pprint_ident v))
)
)
| LExpr_Field(l, f) ->
let (l', ty) = tc_lexpr2 env u loc l in
(match typeFields (Env.globals env) loc ty with
| FT_Record rfs ->
(LExpr_Field(l', f), get_recordfield loc rfs f)
| FT_Register rfs ->
let (ss, ty') = get_regfield loc rfs f in
(LExpr_Slices(l', ss), ty')
)
| LExpr_Fields(l, fs) ->
let (l', ty) = tc_lexpr2 env u loc l in
(match typeFields (Env.globals env) loc ty with
| FT_Record rfs ->
let tys = List.map (get_recordfield loc rfs) fs in
(LExpr_Fields(l', fs), mk_concat_tys tys)
| FT_Register rfs ->
let (ss, ty') = get_regfields loc rfs fs in
(LExpr_Slices(l', ss), ty')
)
| LExpr_Slices(e, ss) ->
let all_single = List.for_all (function (Slice_Single _) -> true | _ -> false) ss in
let ss' = List.map (tc_slice env u loc) ss in
(match e with
| LExpr_Var(a) ->
let tys = List.map (function (_, ty) -> ty) ss' in
let getters = GlobalEnv.getFuns (Env.globals env) (addSuffix a "read") in
let setters = GlobalEnv.getSetterFun (Env.globals env) (addSuffix a "set") in
let ogetters = chooseFunction (Env.globals env) loc "getter function" (pprint_ident a) true tys getters in
let osetters = chooseSetterFunction (Env.globals env) loc "setter function" a tys setters in
(match (ogetters, osetters) with
| (Some fty, Some gty) when all_single ->
let es = List.map (function (Slice_Single a, _) -> a | _ -> raise (InternalError "Expr_Slices")) ss' in
let (f', tes', rty) = instantiate_fun (Env.globals env) u loc fty es tys in
(LExpr_ReadWrite(f', sft_id gty, tes', es), rty)
| (None, Some _) -> raise (UnknownObject(loc, "getter function", pprint_ident a))
| (Some _, None) -> raise (UnknownObject(loc, "setter function", pprint_ident a))
| _ -> tc_slice_lexpr env u loc e ss'
)
| _ ->
tc_slice_lexpr env u loc e ss'
)
| LExpr_BitTuple(ls) ->
let (ls', tys) = List.split (List.map (tc_lexpr2 env u loc) ls) in
let ty = mk_concat_tys tys in
(LExpr_BitTuple(ls'), ty)
| LExpr_Tuple(ls) ->
let (ls', tys) = List.split (List.map (tc_lexpr2 env u loc) ls) in
(LExpr_Tuple(ls'), Type_Tuple(tys))
| LExpr_Array(a, e) ->
let (a', ty) = tc_lexpr2 env u loc a in
(match derefType (Env.globals env) ty with
| Type_Array(ixty, elty) ->
let e' = check_expr env loc (ixtype_basetype ixty) e in
(LExpr_Array(a', e'), elty)
| _ -> raise (TypeError (loc, "subscript of non-array"))
)
| _ -> raise (InternalError "tc_lexpr2")
)
(** {2 Typecheck statements} *)
(** Typecheck left hand side of expression and check that rhs type 'ty' is compatible.
Return set of variables assigned to in this expression
*)
let rec tc_lexpr (env: Env.t) (u: unifier) (loc: AST.l) (ty: AST.ty) (x: AST.lexpr): (AST.lexpr * implicitVars) =
( match x with
| LExpr_Wildcard ->
(LExpr_Wildcard, [])
| LExpr_Var(v) when v == Ident "_" ->
(LExpr_Wildcard, [])
| LExpr_Var(v) ->
(match Env.getVar env v with
| Some (_, ty') ->
check_type env u loc ty' ty;
Env.markModified env v;
(LExpr_Var v, [])
| None ->
let setters = GlobalEnv.getFuns (Env.globals env) (addSuffix v "write") in
let osetter = chooseFunction (Env.globals env) loc "var setter function" (pprint_ident v) false [ty] setters in
(match osetter with
| Some gty ->
let dummy_arg = Expr_LitInt("42") in
let (g', tes', rty) = instantiate_fun (Env.globals env) u loc gty [dummy_arg] [ty] in
(LExpr_Write (ft_id gty, tes', []), [])
| None ->
Env.markModified env v;
(LExpr_Var v, [(v, ty)])
)
)
| LExpr_Field(l, f) ->
let (l', rty) = tc_lexpr2 env u loc l in
let (r, ty') = (match typeFields (Env.globals env) loc rty with
| FT_Record rfs ->
(LExpr_Field(l', f), get_recordfield loc rfs f)
| FT_Register rfs ->
let (ss, ty') = get_regfield loc rfs f in
(LExpr_Slices(l', ss), ty')
)
in
check_type env u loc ty' ty;
(r, [])
| LExpr_Fields(l, fs) ->
let (l', lty) = tc_lexpr2 env u loc l in
let (r, ty') = (match typeFields (Env.globals env) loc lty with
| FT_Record rfs ->
let tys = List.map (get_recordfield loc rfs) fs in
(LExpr_Fields(l', fs), mk_concat_tys tys)
| FT_Register rfs ->
let (ss, ty') = get_regfields loc rfs fs in
(LExpr_Slices(l', ss), ty')
)
in
check_type env u loc ty' ty;
(r, [])
| LExpr_Slices(e, ss) ->
let all_single = List.for_all (function (Slice_Single _) -> true | _ -> false) ss in
let ss' = List.map (tc_slice env u loc) ss in
let (e', ty') = (match e with
| LExpr_Var(a) ->
let tys = List.map (function (_, ty) -> ty) ss' in
let setters = GlobalEnv.getSetterFun (Env.globals env) (addSuffix a "set") in
let osetters = chooseSetterFunction (Env.globals env) loc "setter function" a tys setters in
(match osetters with
| Some gty when all_single ->
let es = List.map (function (Slice_Single a, _) -> a | _ -> raise (InternalError "Expr_Slices1")) ss' in
let (g', tes') = instantiate_sfun (Env.globals env) u loc gty es tys ty in
(LExpr_Write(sft_id gty, tes', es), ty)
| _ ->
let getters = GlobalEnv.getFuns (Env.globals env) (addSuffix a "read") in
let setters = GlobalEnv.getFuns (Env.globals env) (addSuffix a "write") in
let vty = type_bitsK "0" in
let ogetter = chooseFunction (Env.globals env) loc "var getter function" (pprint_ident a) false [] getters in
let osetter = chooseFunction (Env.globals env) loc "var setter function" (pprint_ident a) false [vty] setters in
(match (ogetter, osetter) with
| (Some fty, Some (g, _, tvs, _, ftys, rty)) ->
let wr = LExpr_ReadWrite(ft_id fty, g, [], []) in
let ss'' = List.map fst ss' in
(LExpr_Slices(wr, ss''), type_bits (slices_width ss''))
| (None, Some _) -> raise (UnknownObject(loc, "var getter function", pprint_ident a))
| (Some _, None) -> raise (UnknownObject(loc, "var setter function", pprint_ident a))
| (None, None) -> tc_slice_lexpr env u loc e ss'
)
)
| _ ->
tc_slice_lexpr env u loc e ss'
) in
check_type env u loc ty' ty;
(e', [])
| LExpr_BitTuple(ls) ->
let (ls', tys) = List.split (List.map (tc_lexpr2 env u loc) ls) in
let ty' = mk_concat_tys tys in
check_type env u loc ty' ty;
(LExpr_BitTuple(ls'), [])
| LExpr_Tuple(ls) ->
let (ls', iss) = (match ty with
| Type_Tuple tys when List.length ls = List.length tys ->
List.split (List.map2 (tc_lexpr env u loc) tys ls)
| _ -> raise (IsNotA(loc, "tuple of length ?", pp_type ty))
) in
(LExpr_Tuple(ls'), List.concat iss)
| LExpr_Array(a, e) ->
let (a', ty) = tc_lexpr2 env u loc a in
(match derefType (Env.globals env) ty with
| Type_Array(ixty, elty) ->
let (e', ety) = tc_expr env u loc e in
check_type env u loc (ixtype_basetype ixty) ety;
(LExpr_Array(a', e'), [])
| _ -> raise (TypeError (loc, "subscript of non-array"))
)
| _ -> raise (InternalError "tc_lexpr")
)
(** Typecheck list of statements *)
let rec tc_stmts (env: Env.t) (loc: AST.l) (xs: AST.stmt list): AST.stmt list =
let = Env.nest (fun env' -> List.map (fun s ->
let s' = tc_stmt env' s in
let imps = Env.getImplicits env' in
List.iter (fun (v, ty) -> Env.addLocalVar env' loc v ty) imps;
let decls = declare_implicits loc imps in
if verbose && decls <> [] then Printf.printf "Implicit decls: %s %s" (pp_loc loc) (Utils.to_string (PP.pp_indented_block decls));
List.append decls [s']
) xs
) env in
List.concat rss
(** Typecheck 'if expr then stmt' *)
and tc_s_elsif (env: Env.t) (loc: AST.l) (x: AST.s_elsif): AST.s_elsif =
(match x with
| S_Elsif_Cond(c, s) ->
let c' = check_expr env loc type_bool c in
let s' = tc_stmts env loc s in
S_Elsif_Cond(c', s')
)
(** Typecheck case alternative *)
and tc_alt (env: Env.t) (loc: AST.l) (ty: AST.ty) (x: AST.alt): AST.alt =
(match x with
| Alt_Alt(ps, oc, b) ->
let ps' = List.map (tc_pattern env loc ty) ps in
let oc' = map_option (fun c -> check_expr env loc type_bool c) oc in
let b' = tc_stmts env loc b in
Alt_Alt(ps', oc', b')
)
(** Typecheck exception catcher 'when expr stmt' *)
and tc_catcher (env: Env.t) (loc: AST.l) (x: AST.catcher): AST.catcher =
(match x with
| Catcher_Guarded(c, b) ->
let c' = check_expr env loc type_bool c in
let b' = tc_stmts env loc b in
Catcher_Guarded(c', b')
)
(** Typecheck statement *)
and tc_stmt (env: Env.t) (x: AST.stmt): AST.stmt =
(match x with
| Stmt_VarDeclsNoInit(ty, vs, loc) ->
let ty' = tc_type env loc ty in
List.iter (fun v -> Env.addLocalVar env loc v ty') vs;
Stmt_VarDeclsNoInit(ty', vs, loc)
| Stmt_VarDecl(ty, v, i, loc) ->
let ty' = tc_type env loc ty in
let i' = check_expr env loc ty' i in
Env.addLocalVar env loc v ty';
Stmt_VarDecl(ty', v, i', loc)
| Stmt_ConstDecl(ty, v, i, loc) ->
let ty' = tc_type env loc ty in
let i' = check_expr env loc ty' i in
Env.addLocalVar env loc v ty';
if ty' = type_integer then Env.addConstraint env loc (mk_eq_int (Expr_Var v) i');
Stmt_ConstDecl(ty', v, i', loc)
| Stmt_Assign(l, r, loc) ->
let (s, (r', rty, l', imps)) = with_unify env loc (fun u ->
let (r', rty) = tc_expr env u loc r in
let (l', imps) = tc_lexpr env u loc rty l in
if verbose then Printf.printf " - Typechecking %s <- %s : %s\n" (pp_lexpr l') (pp_expr r') (pp_type rty);
(r', rty, l', imps)
) in
let l'' = unify_subst_le s l' in
let r'' = unify_subst_e s r' in
List.iter (fun (v, ty) ->
let ty' = unify_subst_ty s ty in
Env.addLocalImplicitVar env loc v ty'
) imps;
Stmt_Assign(l'', r'', loc)
| Stmt_TCall(f, tes, es, loc) ->
let (s, (f', tes'', es')) = with_unify env loc (fun u ->
let (es', tys) = List.split (tc_exprs env u loc es) in
let (f', tes'', ty) = tc_apply (Env.globals env) u loc "procedure" f es' tys in
check_type env u loc ty type_unit;
(f', tes'', es')
) in
let es'' = List.map (unify_subst_e s) es' in
let tes''' = List.map (unify_subst_e s) tes'' in
Stmt_TCall(f', tes''', es'', loc)
| Stmt_FunReturn(e, loc) ->
let rty = (match Env.getReturnType env with
| Some ty -> ty
| None -> raise (InternalError "Stmt_FunReturn")
) in
let e' = check_expr env loc rty e in
Stmt_FunReturn(e', loc)
| Stmt_ProcReturn(loc) ->
(match Env.getReturnType env with
| None -> ()
| Some (Type_Tuple []) -> ()
| _ -> raise (InternalError "return type should be None")
);
Stmt_ProcReturn(loc)
| Stmt_Assert(e, loc) ->
let e' = check_expr env loc type_bool e in
Stmt_Assert(e', loc)
| Stmt_Unpred(loc) ->
Stmt_Unpred(loc)
| Stmt_ConstrainedUnpred(loc) ->
Stmt_ConstrainedUnpred(loc)
| Stmt_ImpDef(s, loc) ->
Stmt_ImpDef(s, loc)
| Stmt_Undefined(loc) ->
Stmt_Undefined(loc)
| Stmt_ExceptionTaken(loc) ->
Stmt_ExceptionTaken(loc)
| Stmt_Dep_Unpred(loc) ->
Stmt_Dep_Unpred(loc)
| Stmt_Dep_ImpDef(s, loc) ->
Stmt_Dep_ImpDef(s, loc)
| Stmt_Dep_Undefined(loc) ->
Stmt_Dep_Undefined(loc)
| Stmt_See(e, loc) ->
Stmt_See(e, loc)
| Stmt_Throw(v, loc) ->
let _ = with_unify env loc (fun u ->
let (v', ty) = check_var env loc v in
check_type env u loc type_exn ty
) in
Stmt_Throw(v, loc)
| Stmt_DecodeExecute(i, e, loc) ->
let ty = ( match pprint_ident i with
| "A64" | "A32" | "T32" -> type_bitsK("32")
| "T16" -> type_bitsK("16")
| _ -> raise (UnknownObject(loc, "instruction set", pprint_ident i))
) in
let e' = check_expr env loc ty e in
Stmt_DecodeExecute(i, e', loc)
| Stmt_If(c, t, els, e, loc) ->
let c' = check_expr env loc type_bool c in
let t' = tc_stmts env loc t in
let els' = List.map (tc_s_elsif env loc) els in
let e' = tc_stmts env loc e in
Stmt_If(c', t', els', e', loc)
| Stmt_Case(e, alts, odefault, loc) ->
let (s, (e', ty')) = with_unify env loc (fun u -> tc_expr env u loc e) in
let e'' = unify_subst_e s e' in
let ty'' = unify_subst_ty s ty' in
let alts' = List.map (tc_alt env loc ty'') alts in
let odefault' = map_option (fun b -> tc_stmts env loc b) odefault in
Stmt_Case(e'', alts', odefault', loc)
| Stmt_For(v, start, dir, stop, b, loc) ->
let start' = check_expr env loc type_integer start in
let stop' = check_expr env loc type_integer stop in
let b' = Env.nest (fun env' ->
Env.addLocalVar env' loc v type_integer;
tc_stmts env' loc b
) env in
let b'' = List.append (declare_implicits loc (Env.getImplicits env)) b' in
Stmt_For(v, start', dir, stop', b'', loc)
| Stmt_While(c, b, loc) ->
let c' = check_expr env loc type_bool c in
let b' = tc_stmts env loc b in
Stmt_While(c', b', loc)
| Stmt_Repeat(b, c, loc) ->
let b' = tc_stmts env loc b in
let c' = check_expr env loc type_bool c in
Stmt_Repeat(b', c', loc)
| Stmt_Try(tb, ev, catchers, odefault, loc) ->
let tb' = tc_stmts env loc tb in
Env.nest (fun env' ->
Env.addLocalVar env' loc ev type_exn;
let catchers' = List.map (tc_catcher env' loc) catchers in
let odefault' = map_option (fun b -> tc_stmts env loc b) odefault in
Stmt_Try(tb', ev, catchers', odefault', loc)
) env
)
(** {2 Typecheck function definition} *)
(** Typecheck function body (list of statements) *)
let tc_body (env: Env.t) (loc: AST.l) (xs: AST.stmt list): AST.stmt list =
let xs' = tc_stmts env loc xs in
let imps = Env.getAllImplicits env in
let decls = declare_implicits loc imps in
if verbose && decls <> [] then Printf.printf "Implicit decls: %s %s" (pp_loc loc) (Utils.to_string (PP.pp_indented_block decls));
List.append decls xs'
(** Typecheck function argument *)
let tc_argument (env: Env.t) (loc: AST.l) ((ty, arg): (AST.ty * AST.ident)): (AST.ty * AST.ident) =
let ty' = tc_type env loc ty in
Env.addLocalVar env loc arg ty';
(ty', arg)
(** Typecheck list of function arguments *)
let tc_arguments (env: Env.t) (loc: AST.l) (xs: (AST.ty * AST.ident) list): (AST.ty * AST.ident) list =
List.map (tc_argument env loc) xs
(** Typecheck setter procedure argument *)
let tc_sformal (env: Env.t) (loc: AST.l) (x: sformal): sformal =
( match x with
| Formal_In(ty,v) ->
let ty' = tc_type env loc ty in
Env.addLocalVar env loc v ty';
Formal_In(ty', v)
| Formal_InOut(ty,v) ->
let ty' = tc_type env loc ty in
Env.addLocalVar env loc v ty';
Formal_InOut(ty', v)
)
(** Typecheck list of setter procedure arguments *)
let tc_sformals (env: Env.t) (loc: AST.l) (xs: sformal list): sformal list =
List.map (tc_sformal env loc) xs
(** Add function definition to environment *)
let addFunction (env: GlobalEnv.t) (loc: AST.l) (qid: AST.ident) (isArr: bool) (tvs: IdentSet.t) (args: (AST.ty * AST.ident) list) (rty: AST.ty): funtype =
let argtys = List.map (fun (ty, _) -> ty) args in
let funs = GlobalEnv.getFuns env qid in
let num_funs = List.length funs in
(match List.filter (isCompatibleFunction env isArr argtys) funs with
| [] ->
let tag = num_funs in
let qid' = addTag qid tag in
let fty: funtype = (qid', isArr, IdentSet.elements tvs, [], args, rty) in
GlobalEnv.addFuns env loc qid (fty :: funs);
fty
| [fty] ->
fty
| ftys ->
failwith "addFunction"
)
let addSetterFunction (env: GlobalEnv.t) (loc: AST.l) (qid: AST.ident) (tvs: IdentSet.t) (args: AST.sformal list) (vty: AST.ty): sfuntype =
let argtys = List.map sformal_type args in
let funs = GlobalEnv.getSetterFun env qid in
let num_funs = List.length funs in
(match List.filter (isCompatibleSetterFunction env argtys) funs with
| [] ->
let tag = num_funs in
let qid' = addTag qid tag in
let fty: sfuntype = (qid', IdentSet.elements tvs, [], args, vty) in
GlobalEnv.addSetterFuns env qid (fty :: funs);
fty
| [fty] ->
fty
| ftys ->
failwith "addFunction"
)
(** {2 Typecheck instruction} *)
(** Typecheck instruction encoding *)
let tc_encoding (env: Env.t) (x: encoding): (encoding * ((AST.ident * AST.ty) list)) =
(match x with
| Encoding_Block (nm, iset, fields, opcode, guard, unpreds, b, loc) ->
GlobalEnv.addEncoding (Env.globals env) nm;
List.iter (fun (IField_Field (fnm, lo, wd)) ->
Env.addLocalVar env loc fnm (type_bits (Expr_LitInt (string_of_int wd)))
) fields;
let guard' = check_expr env loc type_bool guard in
let (b', bs) = Env.nest_with_bindings (fun env' ->
let b' = List.map (tc_stmt env') b in
let imps = Env.getAllImplicits env in
List.iter (fun (v, ty) -> Env.addLocalVar env' loc v ty) imps;
let decls = declare_implicits loc imps in
if verbose && decls <> [] then Printf.printf "Implicit decls: %s %s" (pp_loc loc) (Utils.to_string (PP.pp_indented_block decls));
List.append decls b'
) env in
(Encoding_Block (nm, iset, fields, opcode, guard', unpreds, b', loc), bs)
)
(** Typecheck bitslice of instruction opcode *)
let tc_decode_slice (env: int Bindings.t) (loc: AST.l) (x: AST.decode_slice): (AST.decode_slice * int) =
(match x with
| DecoderSlice_Slice (lo, wd) -> (DecoderSlice_Slice(lo, wd), wd)
| DecoderSlice_FieldName f ->
let wd = (match Bindings.find_opt f env with
| Some wd -> wd
| None -> raise (UnknownObject (loc, "instruction field", pprint_ident f))
) in
(DecoderSlice_FieldName f, wd)
| DecoderSlice_Concat fs ->
let wds = List.map (fun f -> Bindings.find f env) fs in
let sum xs = List.fold_left (fun a b -> a + b) 0 xs in
(DecoderSlice_Concat fs, sum wds)
)
let check_width (loc: AST.l) (wd1: int) (wd2: int): unit =
if wd1 != wd2 then
raise (DoesNotMatch(loc, "width of field", string_of_int wd1, string_of_int wd2))
(** Typecheck instruction decode pattern match *)
let rec tc_decode_pattern (loc: AST.l) (wd: int) (x: decode_pattern): decode_pattern =
(match x with
| DecoderPattern_Bits b -> check_width loc wd (masklength b); x
| DecoderPattern_Mask m -> check_width loc wd (masklength m); x
| DecoderPattern_Wildcard _ -> x
| DecoderPattern_Not p ->
let p' = tc_decode_pattern loc wd p in
DecoderPattern_Not p'
)
(** Typecheck instruction decode body *)
let rec tc_decode_body (env: GlobalEnv.t) (x: decode_body): decode_body =
(match x with
| DecoderBody_UNPRED _ -> x
| DecoderBody_UNALLOC _ -> x
| DecoderBody_NOP _ -> x
| DecoderBody_Encoding (enc, loc) ->
if not (GlobalEnv.isEncoding env enc) then
raise (UnknownObject(loc, "encoding", pprint_ident enc));
x
| DecoderBody_Decoder (fs, case, loc) ->
let case'= tc_decode_case env loc fs case in
DecoderBody_Decoder (fs, case', loc)
)
(** Typecheck instruction decode case alternative *)
and tc_decode_alt (env: GlobalEnv.t) (loc: AST.l) (wds: int list) (x: decode_alt): decode_alt =
(match x with
| DecoderAlt_Alt (pats, body) ->
let pats' = List.map2 (tc_decode_pattern loc) wds pats in
let body' = tc_decode_body env body in
DecoderAlt_Alt (pats', body')
)
(** Typecheck instruction decode case *)
and tc_decode_case (env: GlobalEnv.t) (floc: AST.l) (fs: instr_field list) (x: decode_case): decode_case =
(match x with
| DecoderCase_Case (slices, alts, loc) ->
let fenv = List.fold_left (fun r (IField_Field (fnm, lo, wd)) ->
Bindings.add fnm wd r) Bindings.empty fs
in
let (slices', wds) = List.split (List.map (tc_decode_slice fenv loc) slices) in
let alts' = List.map (tc_decode_alt env loc wds) alts in
DecoderCase_Case (slices', alts', loc)
)
(** {2 Typecheck global declaration} *)
(** Typecheck global declaration, extending environment as needed *)
let tc_declaration (env: GlobalEnv.t) (d: AST.declaration): AST.declaration list =
( match d with
| Decl_BuiltinType(qid, loc) ->
GlobalEnv.addType env loc qid (Type_Builtin(qid));
[d]
| Decl_Forward(qid, loc) ->
GlobalEnv.addType env loc qid Type_Forward;
[d]
| Decl_Record(qid, fs, loc) ->
let env' = Env.mkEnv env in
let fs' = List.map (fun (ty, f) ->
(tc_type env' loc ty, f)
) fs
in
GlobalEnv.addType env loc qid (Type_Record(fs'));
[Decl_Record(qid, fs', loc)]
| Decl_Typedef(qid, ty, loc) ->
let ty' = tc_type (Env.mkEnv env) loc ty in
GlobalEnv.addType env loc qid (Type_Abbreviation(ty'));
[Decl_Typedef(qid, ty', loc)]
| Decl_Enum(qid, es, loc) ->
GlobalEnv.addType env loc qid (Type_Enumeration(es));
List.iter (fun e -> GlobalEnv.addGlobalVar env loc e (Type_Constructor(qid)) true) es;
let ty = Type_Constructor(qid) in
let cmp_args = [(ty, Ident "x"); (ty, Ident "y")] in
let eq = addFunction env loc (Ident "eq_enum") false IdentSet.empty cmp_args type_bool in
let ne = addFunction env loc (Ident "ne_enum") false IdentSet.empty cmp_args type_bool in
GlobalEnv.addOperators2 env loc Binop_Eq [eq];
GlobalEnv.addOperators2 env loc Binop_NtEq [ne];
let deq = Decl_BuiltinFunction(ty, ft_id eq, [], loc) in
let dne = Decl_BuiltinFunction(ty, ft_id ne, [], loc) in
[d; deq; dne]
| Decl_Var(ty, qid, loc) ->
let ty' = tc_type (Env.mkEnv env) loc ty in
GlobalEnv.addGlobalVar env loc qid ty' false;
[Decl_Var(ty', qid, loc)]
| Decl_Const(ty, qid, i, loc) ->
let ty' = tc_type (Env.mkEnv env) loc ty in
let i' = check_expr (Env.mkEnv env) loc ty' i in
GlobalEnv.addGlobalVar env loc qid ty' true;
GlobalEnv.addConstant env qid (simplify_expr i');
[Decl_Const(ty', qid, i', loc)]
| Decl_BuiltinFunction(rty, qid, atys, loc) ->
let locals = Env.mkEnv env in
let tvs = fv_funtype (qid, false, [], [], atys, rty) |> removeConsts env in
IdentSet.iter (fun tv -> Env.addLocalVar locals loc tv type_integer) tvs;
let rty' = tc_type locals loc rty in
let atys' = tc_arguments locals loc atys in
let qid' = ft_id (addFunction env loc qid false tvs atys' rty') in
[Decl_BuiltinFunction(rty', qid', atys', loc)]
| Decl_FunType(rty, qid, atys, loc) ->
let locals = Env.mkEnv env in
let tvs = fv_funtype (qid, false, [], [], atys, rty) |> removeConsts env in
IdentSet.iter (fun tv -> Env.addLocalVar locals loc tv type_integer) tvs;
let rty' = tc_type locals loc rty in
let atys' = tc_arguments locals loc atys in
let qid' = ft_id (addFunction env loc qid false tvs atys' rty') in
[Decl_FunType(rty', qid', atys', loc)]
| Decl_FunDefn(rty, qid, atys, b, loc) ->
let locals = Env.mkEnv env in
let tvs = fv_funtype (qid, false, [], [], atys, rty) |> removeConsts env in
IdentSet.iter (fun tv -> Env.addLocalVar locals loc tv type_integer) tvs;
let rty' = tc_type locals loc rty in
let atys' = tc_arguments locals loc atys in
Env.setReturnType locals rty';
let b' = tc_body locals loc b in
let qid' = ft_id (addFunction env loc qid false tvs atys' rty') in
[Decl_FunDefn(rty', qid', atys', b', loc)]
| Decl_ProcType(qid, atys, loc) ->
let locals = Env.mkEnv env in
let tvs = fv_args atys |> removeConsts env in
IdentSet.iter (fun tv -> Env.addLocalVar locals loc tv type_integer) tvs;
let atys' = tc_arguments locals loc atys in
let qid' = ft_id (addFunction env loc qid false tvs atys' type_unit) in
[Decl_ProcType(qid', atys', loc)]
| Decl_ProcDefn(qid, atys, b, loc) ->
let locals = Env.mkEnv env in
let tvs = fv_args atys |> removeConsts env in
IdentSet.iter (fun tv -> Env.addLocalVar locals loc tv type_integer) tvs;
let atys' = tc_arguments locals loc atys in
let b' = tc_body locals loc b in
let qid' = ft_id (addFunction env loc qid false tvs atys' type_unit) in
[Decl_ProcDefn(qid', atys', b', loc)]
| Decl_VarGetterType(rty, qid, loc) ->
let locals = Env.mkEnv env in
let tvs = fv_type rty |> removeConsts env in
IdentSet.iter (fun tv -> Env.addLocalVar locals loc tv type_integer) tvs;
let rty' = tc_type locals loc rty in
let qid' = ft_id (addFunction env loc (addSuffix qid "read") false tvs [] rty') in
[Decl_VarGetterType(rty', qid', loc)]
| Decl_VarGetterDefn(rty, qid, b, loc) ->
let locals = Env.mkEnv env in
let tvs = fv_type rty |> removeConsts env in
IdentSet.iter (fun tv -> Env.addLocalVar locals loc tv type_integer) tvs;
let rty' = tc_type locals loc rty in
let qid' = ft_id (addFunction env loc (addSuffix qid "read") false tvs [] rty') in
Env.setReturnType locals rty';
let b' = tc_body locals loc b in
[Decl_VarGetterDefn(rty', qid', b', loc)]
| Decl_ArrayGetterType(rty, qid, atys, loc) ->
let locals = Env.mkEnv env in
let tvs = fv_funtype (qid, false, [], [], atys, rty) |> removeConsts env in
IdentSet.iter (fun tv -> Env.addLocalVar locals loc tv type_integer) tvs;
let rty' = tc_type locals loc rty in
let atys' = tc_arguments locals loc atys in
let qid' = ft_id (addFunction env loc (addSuffix qid "read") true tvs atys' rty') in
[Decl_ArrayGetterType(rty', qid', atys', loc)]
| Decl_ArrayGetterDefn(rty, qid, atys, b, loc) ->
let locals = Env.mkEnv env in
let tvs = fv_funtype (qid, false, [], [], atys, rty) |> removeConsts env in
IdentSet.iter (fun tv -> Env.addLocalVar locals loc tv type_integer) tvs;
let rty' = tc_type locals loc rty in
let atys' = tc_arguments locals loc atys in
Env.setReturnType locals rty';
let qid' = ft_id (addFunction env loc (addSuffix qid "read") true tvs atys' rty') in
let b' = tc_body locals loc b in
[Decl_ArrayGetterDefn(rty', qid', atys', b', loc)]
| Decl_VarSetterType(qid, ty, v, loc) ->
let locals = Env.mkEnv env in
let tvs = fv_type ty |> removeConsts env in
IdentSet.iter (fun tv -> Env.addLocalVar locals loc tv type_integer) tvs;
let ty' = tc_type locals loc ty in
Env.addLocalVar locals loc v ty';
let qid' = ft_id (addFunction env loc (addSuffix qid "write") false tvs [(ty', v)] type_unit) in
[Decl_VarSetterType(qid', ty', v, loc)]
| Decl_VarSetterDefn(qid, ty, v, b, loc) ->
let locals = Env.mkEnv env in
let tvs = fv_type ty |> removeConsts env in
IdentSet.iter (fun tv -> Env.addLocalVar locals loc tv type_integer) tvs;
let ty' = tc_type locals loc ty in
Env.addLocalVar locals loc v ty';
let qid' = ft_id (addFunction env loc (addSuffix qid "write") false tvs [(ty', v)] type_unit) in
let b' = tc_body locals loc b in
[Decl_VarSetterDefn(qid', ty', v, b', loc)]
| Decl_ArraySetterType(qid, atys, ty, v, loc) ->
let locals = Env.mkEnv env in
let tvs = IdentSet.union (fv_sformals atys) (fv_type ty) |> removeConsts env in
IdentSet.iter (fun tv -> Env.addLocalVar locals loc tv type_integer) tvs;
let atys' = tc_sformals locals loc atys in
let ty' = tc_type locals loc ty in
Env.addLocalVar locals loc v ty';
let qid' = addSetterFunction env loc (addSuffix qid "set") tvs atys' ty' in
[Decl_ArraySetterType(sft_id qid', atys', ty', v, loc)]
| Decl_ArraySetterDefn(qid, atys, ty, v, b, loc) ->
let locals = Env.mkEnv env in
let tvs = IdentSet.union (fv_sformals atys) (fv_type ty) |> removeConsts env in
IdentSet.iter (fun tv -> Env.addLocalVar locals loc tv type_integer) tvs;
let atys' = tc_sformals locals loc atys in
let ty' = tc_type locals loc ty in
let qid' = addSetterFunction env loc (addSuffix qid "set") tvs atys' ty' in
Env.addLocalVar locals loc v ty';
let b' = tc_body locals loc b in
[Decl_ArraySetterDefn(sft_id qid', atys', ty', v, b', loc)]
| Decl_InstructionDefn(nm, encs, opost, conditional, exec, loc) ->
let locals = Env.mkEnv env in
let (encs', vss) = List.split (List.map (tc_encoding locals) encs) in
List.iter (fun vs -> List.iter (fun (v, ty) -> Env.addLocalVar locals loc v ty) vs) vss;
let (opost', pvs) = (match opost with
| Some b ->
let (b', vs) = Env.nest_with_bindings (fun env' -> List.map (tc_stmt env') b) locals in
(Some b', vs)
| None ->
(None, []))
in
List.iter (fun (v, ty) -> Env.addLocalVar locals loc v ty) pvs;
let exec' = tc_body locals loc exec in
[Decl_InstructionDefn(nm, encs', opost', conditional, exec', loc)]
| Decl_DecoderDefn(nm, case, loc) ->
let case' = tc_decode_case env loc [] case in
[Decl_DecoderDefn(nm, case', loc)]
| Decl_Operator1(op, funs, loc) ->
let funs' = List.concat (List.map (fun f ->
let fs = GlobalEnv.getFuns env f in
if fs = [] then raise (UnknownObject(loc, "unary operator implementation", pprint_ident f));
fs
) funs) in
GlobalEnv.addOperators1 env loc op funs';
[Decl_Operator1(op, List.map ft_id funs', loc)]
| Decl_Operator2(op, funs, loc) ->
let funs' = List.concat (List.map (fun f ->
let fs = GlobalEnv.getFuns env f in
if fs = [] then raise (UnknownObject(loc, "binary operator implementation", pprint_ident f));
fs
) funs) in
GlobalEnv.addOperators2 env loc op funs';
[Decl_Operator2(op, List.map ft_id funs', loc)]
| Decl_NewEventDefn(qid, atys, loc) ->
let locals = Env.mkEnv env in
let tvs = fv_args atys |> removeConsts env in
IdentSet.iter (fun tv -> Env.addLocalVar locals loc tv type_integer) tvs;
let atys' = tc_arguments locals loc atys in
let qid' = ft_id (addFunction env loc qid false tvs atys' type_unit) in
[Decl_NewEventDefn(qid', atys', loc)]
| Decl_EventClause(nm, b, loc) ->
(match GlobalEnv.getFuns env nm with
| [(_, _, _, _, atys, _) as ft] ->
let locals = Env.mkEnv env in
let tvs = fv_funtype ft |> removeConsts env in
IdentSet.iter (fun tv -> Env.addLocalVar locals loc tv type_integer) tvs;
let _ = tc_arguments locals loc atys in
let b' = tc_body locals loc b in
[Decl_EventClause(ft_id ft, b', loc)]
| [] ->
raise (UnknownObject(loc, "event", pprint_ident nm))
| fs ->
reportChoices loc "event" (pprint_ident nm) [] fs;
raise (Ambiguous (loc, "event", pprint_ident nm))
)
| Decl_NewMapDefn(rty, qid, atys, b, loc) ->
let locals = Env.mkEnv env in
let tvs = fv_funtype (qid, false, [], [], atys, rty) |> removeConsts env in
IdentSet.iter (fun tv -> Env.addLocalVar locals loc tv type_integer) tvs;
let rty' = tc_type locals loc rty in
Env.setReturnType locals rty';
let atys' = tc_arguments locals loc atys in
let qid' = ft_id (addFunction env loc qid false tvs atys' rty') in
let b' = tc_body locals loc b in
[Decl_NewMapDefn(rty', qid', atys', b', loc)]
| Decl_MapClause(nm, fs, oc, b, loc) ->
(match GlobalEnv.getFuns env nm with
| [((nm', _, _, _, atys, rty) as ft)] ->
let locals = Env.mkEnv env in
let tvs = fv_funtype ft |> removeConsts env in
IdentSet.iter (fun tv -> Env.addLocalVar locals loc tv type_integer) tvs;
let rty' = tc_type locals loc rty in
Env.setReturnType locals rty';
let _ = tc_arguments locals loc atys in
let tc_mapfield (MapField_Field (id, pat)) =
match Env.getVar locals id with
| Some (_, ty) ->
(MapField_Field (id, tc_pattern locals loc ty pat))
| None ->
raise (UnknownObject(loc, "mapfield", pprint_ident id))
in
let fs' = List.map tc_mapfield fs in
let oc' = Utils.map_option (check_expr locals loc type_bool) oc in
let b' = tc_stmts locals loc b in
[Decl_MapClause(nm', fs', oc', b', loc)]
| [] ->
raise (UnknownObject(loc, "map", pprint_ident nm))
| fs ->
reportChoices loc "map" (pprint_ident nm) [] fs;
raise (Ambiguous (loc, "map", pprint_ident nm))
)
| Decl_Config(ty, qid, i, loc) ->
let locals = Env.mkEnv env in
let ty' = tc_type locals loc ty in
let i' = check_expr locals loc ty' i in
GlobalEnv.addGlobalVar env loc qid ty' true;
[Decl_Config(ty', qid, i', loc)]
)
(** Generate function prototype declarations.
This allows function declarations within a translation unit to be
placed in any order.
*)
let genPrototypes (ds: AST.declaration list): (AST.declaration list * AST.declaration list) =
let pre : (AST.declaration list) ref = ref [] in
let post : (AST.declaration list) ref = ref [] in
List.iter (fun d ->
(match d with
| Decl_FunDefn(rty, qid, atys, _, loc) ->
post := d :: !post;
pre := Decl_FunType(rty, qid, atys, loc) :: !pre
| Decl_ProcDefn(qid, atys, _, loc) ->
post := d :: !post;
pre := Decl_ProcType(qid, atys, loc) :: !pre
| Decl_VarGetterDefn(rty, qid, _, loc) ->
post := d :: !post;
pre := Decl_VarGetterType(rty, qid, loc) :: !pre
| Decl_ArrayGetterDefn(rty, qid, atys, _, loc) ->
post := d :: !post;
pre := Decl_ArrayGetterType(rty, qid, atys, loc) :: !pre
| Decl_VarSetterDefn(qid, ty, v, _, loc) ->
post := d :: !post;
pre := Decl_VarSetterType(qid, ty, v, loc) :: !pre
| Decl_ArraySetterDefn(qid, atys, ty, v, _, loc) ->
post := d :: !post;
pre := Decl_ArraySetterType(qid, atys, ty, v, loc) :: !pre
| Decl_NewEventDefn(qid, atys, loc) ->
post := d :: !post;
pre := Decl_ProcType(qid, atys, loc) :: !pre
| Decl_NewMapDefn(rty, qid, atys, b, loc) ->
post := d :: !post;
pre := Decl_FunType(rty, qid, atys, loc) :: !pre
| Decl_EventClause(nm, b, loc) ->
post := d :: !post;
| Decl_MapClause(nm, fs, oc, b, loc) ->
post := d :: !post;
| _ ->
pre := d :: !pre
)
) ds;
(List.rev !pre, List.rev !post)
(** Overall typechecking environment shared by all invocations of typechecker *)
let env0 = GlobalEnv.mkempty ()
(** Typecheck a list of declarations - main entrypoint into typechecker *)
let tc_declarations (isPrelude: bool) (ds: AST.declaration list): AST.declaration list =
if verbose then Printf.printf " - Using Z3 %s\n" Z3.Version.to_string;
let (pre, post) = if isPrelude then (ds, []) else genPrototypes ds in
if verbose then Printf.printf " - Typechecking %d phase 1 declarations\n" (List.length pre);
let pre' = List.map (tc_declaration env0) pre in
let post' = List.map (tc_declaration env0) post in
if verbose then List.iter (fun ds -> List.iter (fun d -> Printf.printf "\nTypechecked %s\n" (Utils.to_string (PP.pp_declaration d))) ds) post';
if verbose then Printf.printf " - Typechecking %d phase 2 declarations\n" (List.length post);
List.append (List.concat pre') (List.concat post')