Source file simplex.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
open AltErgoLib
open Format
open Numbers
module H = Hashtbl
type pred = Eq | Ge | Le | Gt
let dsimplex = ref false
module type Coef_Type = sig
type t = Q.t
val zero : t
val one : t
val m_one : t
val is_zero : t -> bool
val is_one : t -> bool
val compare : t -> t -> int
val equal : t -> t -> bool
val to_string : t -> string
val add : t -> t -> t
val sub : t -> t -> t
val mult : t -> t -> t
val div : t -> t -> t
val minus : t -> t
end
type t_c2 = Q.t * Q.t
type t1 = { mutable a : (int * Q.t) array; mutable c : Q.t * Q.t}
type t2 = { mutable a2 : Q.t array; mutable c2 : Q.t * Q.t}
type rich_result =
{ vof : t_c2;
vals : (int * t_c2) list;
ctx : (int * t2) list;
distr : int array;
order : int Queue.t}
type result =
| Unsat of rich_result
| Unbound of rich_result
| Max of rich_result
| Eq_unsat
module Simplex (C : Coef_Type) = struct
exception Out of int
module C2 = struct
type t = C.t * C.t
let zero = C.zero, C.zero
let concrete c = c, C.zero
let abstract c = c, C.m_one
let to_string (c,k) =
"(" ^ (C.to_string c) ^ " + " ^ (C.to_string k) ^ "*e)"
let add (c1,k1) (c2,k2) = C.add c1 c2, C.add k1 k2
let mult c1 (c2,k2) = C.mult c1 c2, C.mult c1 k2
let is_zero (c, k) = C.is_zero c && C.is_zero k
let is_one (c, k) = C.is_one c && C.is_one k
let compare (c1,k1) (c2,k2) =
let r = C.compare c1 c2 in if r <> 0 then r else C.compare k1 k2
let div (c1,k1) c = C.div c1 c, C.div k1 c
let minus (c,k) = C.minus c, C.minus k
end
type sbt = {old_lhs:int; lhs:int; rhs:t2}
let boung_ghost = -1
module D = struct
open Printer
let matrix_stats matrix co =
if !dsimplex then begin
print_dbg ~flushed:false "taille: %d x %d@ "
(Array.length co.a2) (List.length matrix);
let z = ref 0 in
let nz = ref 0 in
List.iter
(fun (_, { a2 ; _ }) ->
Array.iter (fun v -> incr (if Q.is_zero v then z else nz)) a2
)matrix;
print_dbg ~flushed:false ~header:false "zero-cells: %d@ " !z;
print_dbg ~header:false "non-zero-cells: %d" !nz
end
let expand s n =
let rec exrec s n = if n <= -1 then s else exrec (" "^s) (n-1) in
exrec s (n-(String.length s))
let poly0 fmt l =
List.iter (fun (si,c) -> fprintf fmt "%sL%d + " (C.to_string c) si) l;
fprintf fmt "0"
let poly fmt { a; c} =
Array.iter (fun (si,c) -> fprintf fmt "%sL%d + " (C.to_string c) si) a;
fprintf fmt "%s" (C2.to_string c)
let poly01 fmt { a; _ } =
for i = 1 to Array.length a - 2 do
fprintf fmt "%s" (expand (C.to_string (snd a.(i))) 2)
done
let pred = function
| Eq -> "="
| Ge -> ">="
| Gt -> ">"
| Le -> "<="
let sep = "----------------------------------------------------------------"
let given_problem co eqs s_neq nb_vars =
if !dsimplex then begin
print_dbg ~flushed:false
"%s@ \
I am given a problem of size %d:@ \
@[<v 2> max: %a;@ "
sep nb_vars poly0 co;
List.iter
(fun (_,(pp, pn, ctt)) ->
print_dbg ~flushed:false ~header:false
"(%a) + (%a) + %s = 0;@ "
poly0 pp poly0 pn (Q.to_string ctt)
) eqs;
print_dbg ~header:false "@]%a > 0;@ %s" poly0 s_neq sep;
end
let max_poly { a2 ; _ } =
Array.fold_left (fun n v -> max n (String.length (C.to_string v))) 0 a2
let max_sys ctx = List.fold_left (fun n (_,p) -> max n (max_poly p)) 0 ctx
let expand s n =
let rec exrec s n = if n <= -1 then s else exrec (" "^s) (n-1) in
exrec s (n-(String.length s))
let ppoly sp fmt {a2=a2; c2=c2} =
Array.iter (fun c -> fprintf fmt "%s" (expand (C.to_string c) sp)) a2;
fprintf fmt " %s@." (C2.to_string c2)
let auxiliary_problem sbt s_neq co h_i_s =
if !dsimplex then begin
print_dbg ~flushed:false "%s@ @[<v 2>Associations:@ " sep;
H.iter(fun i j ->
print_dbg ~flushed:false ~header:false "L(%d) -> %d@ " j i
) h_i_s;
print_dbg ~flushed:false ~header:false "@]@[<v 2>subst:@ ";
List.iter
(fun ((s,i),p) ->
print_dbg ~flushed:false ~header:false
"(L%d,%d) |-> %a@ " s i poly p) sbt;
let (s, i), pneq = s_neq in
print_dbg ~header:false
"@]s_neq:@ (L%d,%d) |-> %a@ cost:@ %a@ %s"
s i poly pneq poly co sep
end
let compacted_problem basic non_basic matrix co =
if !dsimplex then begin
let sp = max (max_sys matrix) (max_poly co) in
print_dbg ~flushed:false
"%s@ compacted_problem:@ @[<v 2> non_basic vars:@ " sep;
H.iter (fun i s ->
print_dbg ~flushed:false ~header:false
"L%i |-> %d@ " s i) non_basic;
print_dbg ~flushed:false ~header:false
"@]@[<v 2> basic vars:@ ";
H.iter (fun i s ->
print_dbg ~flushed:false ~header:false
"L%i |-> %d@ " s i) basic;
print_dbg ~header:false "@]@[<v 2> matrix:@ ";
List.iter (fun (i,p) ->
print_dbg ~flushed:false ~header:false
"%d |-> %a@ " i (ppoly sp) p) matrix;
print_dbg ~header:false "@]> cost: %a@ %s" (ppoly sp) co sep;
end
let psystem fmt (ctx, co, distr) =
fprintf fmt "@ tbl: ";
Array.iteri (fun i s -> fprintf fmt "%d -> L%d | " i s) distr;
fprintf fmt "@ ";
let sp = max (max_sys ctx) (max_poly co) in
List.iter
(fun (i,p) -> fprintf fmt "%d = %a" i (ppoly sp) p) ctx;
fprintf fmt "cost = %a" (ppoly sp) co
let report_unsat ctx co distr =
if !dsimplex then
print_dbg
"%s@ pb aux's result:(E_unsat)@ %a@ %s"
sep psystem (ctx,co,distr) sep
let report_max ctx co distr =
if !dsimplex then
print_dbg
"%s@ pb aux's result:(E_max)@ %a@ %s"
sep psystem (ctx,co,distr) sep
let given_problem2 ctx co distr =
if !dsimplex then
print_dbg
"%s@ [solve] given pb:@ %a@ %s" sep psystem (ctx,co, distr) sep
let in_simplex ctx co distr =
if !dsimplex then
print_dbg
"%s@ [simplex] I start with:@ %a@ %s" sep psystem (ctx,co, distr) sep
let status ctx co distr =
if !dsimplex then
print_dbg
"::RESULT EXTRACTION FROM::::::::::::::::::::::::::::::::::::::@ \
The problem is %s@
%a@ \
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::"
status psystem (ctx,co, distr)
let retrieved_cost co =
if !dsimplex then
print_dbg
"retrieved_const: %a" (ppoly 4) co
let pline fmt (i,p) =
let sp = max_poly p in
fprintf fmt "x%d = %a" i (ppoly sp) p
let psbt fmt sbt =
let sp = max_poly sbt.rhs in
fprintf fmt "%d |-> %a / (old %d)"
sbt.lhs (ppoly sp)sbt.rhs sbt.old_lhs
let choosed_var ch_vr =
if !dsimplex then
print_dbg "choosed var's index: %d" ch_vr
let choosed_eq ch_eq =
if !dsimplex then
print_dbg "choosed eq: %a" pline ch_eq
let pivot_result sbt =
if !dsimplex then
print_dbg "pivot's result: %a" psbt sbt
let change_pivot ch_vr old_vr =
if !dsimplex then
print_dbg "ch_vr: %d et old_vr: %d" ch_vr old_vr
let init_simplex_pb ctx co distr ghost line =
if !dsimplex then
print_dbg
"%s@ \
init_simplex: pb_aux@ %a@ \
choosed var's index: %d@ \
choosed eq: %a@ \
%s" sep psystem (ctx,co,distr) ghost pline line sep
end
module Normalizer = struct
exception Trivial
exception Inconsistent
exception Pivot of int * int * C.t
let array_is_null ar =
let len = Array.length ar in
let is_null = ref true in
let i = ref 0 in
while !i < len && !is_null do
is_null := C.is_zero ar.(!i);
incr i;
done;
!is_null
let coefs_have_mem_sign ar =
let len = Array.length ar in
let nb_pos = ref 0 in
let nb_neg = ref 0 in
let i = ref 0 in
while !i < len && (!nb_pos = 0 || !nb_neg = 0) do
let c = C.compare (snd ar.(!i)) C.zero in
if c > 0 then incr nb_pos;
if c < 0 then decr nb_neg;
incr i;
done;
match !nb_pos, !nb_neg with
| 0, 0 -> Some 0
| 0, ng -> Some ng
| ps, 0 -> Some ps
| _ -> None
let create len (lpos, lneg, ctt) _tbl_i_s =
let a = Array.init len (fun i -> i, Q.zero) in
let f1 (i,c)= a.(i) <- i,c in
List.iter f1 lpos;
List.iter f1 lneg;
a.(0) <- -1, C.zero;
a.(len-1) <- 1-len, C.zero;
{ a = a; c = C2.concrete ctt }
let create_strict len s_neq tbl_i_s =
{ (create len (s_neq,[],Q.zero) tbl_i_s) with c = C2.abstract C.zero }
let mult_const a c v =
let f2 i (s,_) = a.(i) <- s, C.zero in
let g2 _ _ = () in
let h2 i (s,cs) = a.(i) <- s, C.mult v cs in
let k = if C.is_zero v then f2 else if C.is_one v then g2 else h2 in
Array.iteri k a;
{a=a ; c = C2.mult v c}
let pivot_in_p len {a=a; c=c} =
try
for i = 0 to len - 1 do
let s, v = a.(i) in
if not (C.is_zero v) then raise (Pivot (s,i,v))
done;
if C2.is_zero c then raise Trivial else raise Inconsistent
with Pivot (s,ind,v) ->
a.(ind) <- s, C.zero;
(s, ind), mult_const a c (C.div C.m_one v)
let subst_in_p ({a=a ; c=c} as pp) ((s,lhs), {a=rhs_a; c=rhs_c}) =
let _, v = a.(lhs) in
if not (C.is_zero v) then begin
a.(lhs) <- s, C.zero;
let f6a j (_,w) =
let sj, vj = rhs_a.(j) in
if not (C.is_zero vj) then a.(j) <- sj, C.add vj w
in
let f6b j (_,w) =
let sj, vj = rhs_a.(j) in
if not (C.is_zero vj) then a.(j) <- sj, C.add (C.mult v vj) w
in
let f6 = if C.is_one v then f6a else f6b in
Array.iteri f6 a;
pp.c <- C2.add c (C2.mult v rhs_c)
end
let z_subst_in_p p s = p.a.(s) <- s, C.zero
let normalize_poly p sbt zsbt =
Vec.iter (subst_in_p p) sbt;
Vec.iter (z_subst_in_p p) zsbt
let normalize_sbt sbt zsbt =
Vec.iter (fun elt ->
Vec.iter (z_subst_in_p (snd elt)) zsbt
) sbt;
for i = Vec.size sbt - 1 downto 1 do
for j = i - 1 downto 0 do
subst_in_p (snd (Vec.get sbt j)) (Vec.get sbt i)
done;
done;
Vec.to_rev_list zsbt, Vec.to_rev_list sbt
let sbt = Vec.make 107 ~dummy:((0,0),{a=[||]; c=Q.zero, Q.zero})
let zsbt = Vec.make 107 ~dummy:(-2)
let solve_zero_arr zsbt zsbt_inv a =
Array.iter
(fun (s,coef) ->
if not (C.is_zero coef) then
begin Vec.push zsbt s; zsbt_inv.(s) <- true end
)a
let solve_zero_list zsbt zsbt_inv l =
if !dsimplex then
Printer.print_dbg
"[eq_solve] 0 = 0 (modulo Li >= 0)";
List.iter
(fun (s, _coef) ->
if not zsbt_inv.(s) then
begin Vec.push zsbt s; zsbt_inv.(s) <- true end
)l
let substs_from_equalities eqs h_i_s len =
if !dsimplex then
Printer.print_dbg ~flushed:false "subst from eqs:@ ";
Vec.clear sbt;
Vec.clear zsbt;
let zsbt_inv = Array.make len false in
let eqs =
List.fold_left
(fun acc (_,((lp,ln, ctt) as lp_ln)) ->
let sg = Q.sign ctt in
let p = (create len lp_ln h_i_s) in
if !dsimplex then
Printer.print_dbg ~flushed:false ~header:false
" >> poly %a@ " D.poly p;
match lp, ln with
| [], [] -> assert false
| _::_, [] when sg = 0 -> solve_zero_list zsbt zsbt_inv lp; acc
| [], _::_ when sg = 0 -> solve_zero_list zsbt zsbt_inv ln; acc
| _::_, [] when sg > 0 -> raise Inconsistent
| [], _::_ when sg < 0 -> raise Inconsistent
| _ -> (create len lp_ln h_i_s)::acc
)[] eqs
in
List.iter
(fun p ->
if !dsimplex then
Printer.print_dbg ~flushed:false ~header:false
"[eq_solve] solve 0 = %a@ " D.poly p;
normalize_poly p sbt zsbt;
if !dsimplex then
Printer.print_dbg ~flushed:false ~header:false
"i.e. [eq_solve] solve 0 = %a@ " D.poly p;
try
match coefs_have_mem_sign p.a with
| Some n ->
let c = C2.compare p.c C2.zero in
if n = 0 && c <> 0 then raise Inconsistent;
if n > 0 && c > 0 then raise Inconsistent;
if n < 0 && c < 0 then raise Inconsistent;
if n <> 0 && c = 0 then solve_zero_arr zsbt zsbt_inv p.a;
if n <> 0 && c <> 0 then
let ((s, pivot), p) as ln = pivot_in_p len p in
if !dsimplex then Printer.print_dbg
~flushed:false ~header:false
"new pivot (L%d,%d) |-> %a@ "
s pivot D.poly p;
Vec.push sbt ln
| _ ->
let ((s, pivot), p) as ln = pivot_in_p len p in
if !dsimplex then
Printer.print_dbg
~flushed:false ~header:false
"new pivot (L%d,%d) |-> %a@ "
s pivot D.poly p;
Vec.push sbt ln
with Trivial -> ()
)eqs;
if !dsimplex then
Printer.print_dbg "";
normalize_sbt sbt zsbt
let make_problem co eqs s_neq len =
let h_i_s = H.create len in
for i = 1 to len - 2 do H.add h_i_s i i done;
H.add h_i_s 0 (-1);
H.add h_i_s (len-1) (1-len);
if !dsimplex then
Printer.print_dbg ~header:false
"make_problem: len = %d (incluant les neqs et ghost)@ " len;
let zsbt, sbt = substs_from_equalities eqs h_i_s len in
let print fmt i =
fprintf fmt "L%i -> 0 ;@ " i in
if !dsimplex then
Printer.print_dbg ~flushed:false
"@[<v 2>ZERO substs:@ %a"
(Printer.pp_list_no_space print) zsbt;
if !dsimplex then
Printer.print_dbg "@]";
let p_sneq = create_strict len s_neq h_i_s in
List.iter (subst_in_p p_sneq) sbt;
List.iter (z_subst_in_p p_sneq) zsbt;
let s_neq = (1 - len, len - 1) , p_sneq in
let co = create len (co, [], Q.zero) h_i_s in
List.iter (subst_in_p co) sbt;
List.iter (z_subst_in_p co) zsbt;
D.auxiliary_problem sbt s_neq co h_i_s;
co, s_neq :: sbt, zsbt
let compact_poly_2 {a=a ; c=c} base new_len h_zsbt =
let non_basic = H.create 101 in
let old_i = ref 0 in
let f3 i =
while H.mem base !old_i || H.mem h_zsbt !old_i do incr old_i done;
let s, c = a.(!old_i) in
H.add non_basic i s;
incr old_i;
c
in
{a2=Array.init new_len f3 ; c2=c}, non_basic
let compact_poly {a=a ; c=c} base new_len h_zsbt =
let old_i = ref 0 in
let f4 _ =
while H.mem base !old_i || H.mem h_zsbt !old_i do incr old_i done;
let _, coef = a.(!old_i) in
incr old_i;
coef
in
{ a2 = Array.init new_len f4; c2=c }
let compact_problem co matrix len new_len zsbt =
let base = H.create 101 in
let basic = H.create 101 in
List.iter (fun ((_,i),_) -> H.add base i 0) matrix;
let h_zsbt = H.create (List.length zsbt) in
List.iter (fun i -> H.add h_zsbt i ()) zsbt;
let matrix, _ =
List.fold_left
(fun (matrix,cptL) ((s,_),p) ->
let p = compact_poly p base new_len h_zsbt in
H.add basic cptL s;
(cptL, p)::matrix, cptL + 1
)([],new_len) matrix
in
let matrix =
List.fold_left
(fun acc ((_, p) as line) ->
if !dsimplex then
Printer.print_dbg "compact_problem: LINE %a" D.pline line;
if array_is_null p.a2 then
let c = C2.compare p.c2 C2.zero in
if c = 0 then acc
else
if c < 0 then raise Inconsistent
else line :: acc
else line :: acc
)[] matrix
in
let co, non_basic = compact_poly_2 co base new_len h_zsbt in
D.compacted_problem basic non_basic matrix co;
let distr =
Array.init
len (fun i -> try H.find basic i with Not_found ->
try H.find non_basic i
with Not_found ->
if !dsimplex then
Printer.print_dbg "Colonne vide ! donc supprimee";
-20000)
in
co, matrix, distr
let norm_main co eqs s_neq nb_vars =
let len = nb_vars + 2 in
let co, matrix, zsbt = make_problem co eqs s_neq len in
let new_len = len - (List.length matrix) - (List.length zsbt) in
if !dsimplex then
Printer.print_dbg "new_len = %d (excluant les pivots)" new_len;
compact_problem co matrix len new_len zsbt
end
module Core_Simplex = struct
type system = (int * t2) list * t2
type i_result =
| I_unsat of system
| I_unbound of system
| I_max of system
exception E_max of system
exception E_unbound of system
exception E_unsat of system
let len = ref (-1)
let co_opt: t2 option ref = ref None
let v_ghost = "!ghost"
let main_simplex = ref true
let reset_refs length =
len := length;
co_opt := None;
main_simplex := true
let index_of_ghost distr =
try
Array.iteri (fun i s -> if s = boung_ghost then raise (Out i)) distr;
assert false
with Out i -> i
let line_with_min_const ctx =
match ctx with
| [] -> assert false
| line :: ctx ->
List.fold_left
(fun ((_,p') as line') ((_,p) as line) ->
if C2.compare p.c2 p'.c2 < 0 then line else line') line ctx
let subst ({a2=a2; c2=c2} as pp) lhs {a2=rhs_a2; c2=rhs_c2} =
let v = a2.(lhs) in
if not (C.is_zero v) then begin
a2.(lhs) <- C.zero;
let f7a j w =
let rhs_j = rhs_a2.(j) in
if not (C.is_zero rhs_j) then a2.(j) <- C.add rhs_j w
in
let f7b j w =
let rhs_j = rhs_a2.(j) in
if not (C.is_zero rhs_j) then a2.(j) <- C.add (C.mult v rhs_j) w
in
let f7 = if C.is_one v then f7a else f7b in
Array.iteri f7 a2;
pp.c2 <- C2.add c2 (C2.mult v rhs_c2)
end
let subst_line {old_lhs=old_lhs; lhs=lhs; rhs=rhs} (i, p) =
if i = old_lhs then begin p.a2 <- rhs.a2; p.c2 <- rhs.c2 end
else subst p lhs rhs
let subst_ctx ctx sbt = List.iter (subst_line sbt) ctx
exception Choose_index of int
let choose_var ctx co (q,_) =
try
for _ = 0 to !len - 1 do
let i = Queue.pop q in
Queue.push i q;
if C.compare co.a2.(i) C.zero > 0 then raise (Choose_index i)
done;
raise (E_max (ctx,co))
with Choose_index ind -> ind
let choose_eq ctx co ch_vr =
let acc = ref None in
List.iter
(fun ((j,p) as line) ->
let v_ch_vr = p.a2.(ch_vr) in
if C.compare v_ch_vr C.zero < 0 then
let rap = C2.minus (C2.div p.c2 v_ch_vr) in
match !acc with
| None -> acc := Some (v_ch_vr, rap, line)
| Some (_,r,(jj,_)) ->
let delta = C2.compare rap r in
let change = delta < 0 || (delta = 0 && j < jj) in
if change then acc := Some (v_ch_vr, rap, line)
)ctx;
match !acc with
| None -> raise (E_unbound (ctx,co))
| Some (_, _, eq) -> eq
let mult_const a2 c2 v =
let f5 i _ = a2.(i) <- C.zero in
let g5 _ _ = () in
let h5 i cs = a2.(i) <- C.mult v cs in
let k = if C.is_zero v then f5 else if C.is_one v then g5 else h5 in
Array.iteri k a2;
{a2=a2 ; c2 = C2.mult v c2}
let change_pivot ch_vr (old_vr, {a2=old_a; c2=c2}) distr _order =
D.change_pivot ch_vr old_vr;
let tmp = distr.(ch_vr) in
distr.(ch_vr) <- distr.(old_vr);
distr.(old_vr) <- tmp;
let v = old_a.(ch_vr) in
old_a.(ch_vr) <- C.m_one;
{old_lhs=old_vr; lhs=ch_vr; rhs= mult_const old_a c2 (C.div C.m_one v)}
let cpt = ref 0
let last_cost = ref (Q.zero, Q.zero)
let loops distr order co_cst =
if C2.compare co_cst ! last_cost = 0 then begin
incr cpt;
let limit = max (Queue.length (fst order)) (Array.length distr) in
!cpt >= limit
end
else begin
last_cost := co_cst;
cpt := 0;
false
end
let nbloops = ref 0
let rec simplex ctx co distr order =
if !main_simplex && loops distr order co.c2 then raise (E_max(ctx,co));
incr nbloops;
if !main_simplex &&
C.compare (fst co.c2) C.zero >= 0 &&
C.compare (snd co.c2) C.zero >= 0 then
raise (E_max(ctx,co));
D.in_simplex ctx co distr;
let ch_vr = choose_var ctx co order in
D.choosed_var ch_vr;
let ch_eq = choose_eq ctx co ch_vr in
D.choosed_eq ch_eq;
let sbt = change_pivot ch_vr ch_eq distr order in
D.pivot_result sbt;
begin match !co_opt with
None -> ()
| Some coo ->
subst coo sbt.lhs sbt.rhs;
co_opt := Some coo
end;
subst_ctx ctx sbt;
subst co sbt.lhs sbt.rhs;
simplex ctx co distr order
let delete_ghost ghost ghost_p ctx distr order =
let ch_vr = ref 0 in
try
for i = 0 to !len - 1 do
if C.compare ghost_p.a2.(i) C.zero <> 0 then (ch_vr := i; raise Exit)
done;
failwith "Pas possible"
with Exit ->
let sbt = change_pivot !ch_vr (ghost, ghost_p) distr order in
D.choosed_var !ch_vr;
D.pivot_result sbt;
subst_ctx ctx sbt;
ctx
let report_unsat distr order ctx co =
D.report_unsat ctx co distr;
let ghost = try index_of_ghost distr with Not_found -> assert false in
if ghost < !len then begin
List.iter (fun (_,p) -> p.a2.(ghost) <- C.zero) ctx;
ctx, true
end
else
try
let p_ghost = List.assoc ghost ctx in
let ctx = delete_ghost ghost p_ghost ctx distr order in
let ghost = index_of_ghost distr in
assert (ghost < !len);
List.iter (fun (_,p) -> p.a2.(ghost) <- C.zero) ctx;
ctx, true
with Not_found -> assert false
let report_max distr order ctx co =
D.report_max ctx co distr;
let ghost =
try index_of_ghost distr
with Not_found -> assert false in
if ghost < !len then begin
List.iter (fun (_,p) ->
if not ((Array.length p.a2) == !len) then
failwith (
sprintf "len = %d but plen = %d" !len (Array.length p.a2));
p.a2.(ghost) <- C.zero) ctx;
ctx, false
end
else
try
let p_ghost = List.assoc ghost ctx in
let ctx = delete_ghost ghost p_ghost ctx distr order in
let ghost = index_of_ghost distr in
assert (ghost < !len);
List.iter (fun (_,p) -> p.a2.(ghost) <- C.zero) ctx;
ctx, C2.compare p_ghost.c2 C2.zero <> 0
with Not_found -> assert false
let init_simplex ctx ((_,p) as line) distr order =
let ghost = index_of_ghost distr in
List.iter (fun (_,p) -> p.a2.(ghost) <- C.one) ctx;
let co_a2 = Array.make (Array.length p.a2) C.zero in
co_a2.(ghost) <- C.m_one;
let co = {a2=co_a2; c2= C2.zero} in
D.init_simplex_pb ctx co distr ghost line;
let sbt = change_pivot ghost line distr order in
D.pivot_result sbt;
subst_ctx ctx sbt;
subst co sbt.lhs sbt.rhs;
try simplex ctx co distr order
with
| E_unbound (ctx,co) -> raise (E_unbound (ctx,co))
| E_unsat (ctx,co) -> report_unsat distr order ctx co
| E_max (ctx,co) -> report_max distr order ctx co
let retrieve_cost distr =
match !co_opt with
| None -> assert false
| Some co ->
co_opt := None;
let i = index_of_ghost distr in
if i < !len then co.a2.(i) <- C.zero;
co
let solve co ctx distr order =
D.given_problem2 ctx co distr;
try
let (_,p) as line = line_with_min_const ctx in
if C2.compare p.c2 C2.zero >= 0 then simplex ctx co distr order
else
begin
co_opt := Some co;
main_simplex := false;
let ctx, unsat = init_simplex ctx line distr order in
main_simplex := true;
let co = retrieve_cost distr in
D.retrieved_cost co;
if unsat then I_unsat (ctx, co) else simplex ctx co distr order
end
with
| E_max (ctx, co) -> I_max (ctx, co)
| E_unbound (ctx,co) -> I_unbound (ctx, co)
| E_unsat(ctx,co) -> I_unsat(ctx,co)
let infos_of distr q { c2 ; _ } ctx =
let acc0 =
List.fold_left
(fun acc (i,p) ->
if C2.is_zero p.c2 then acc
else (i, p.c2):: acc
)[] ctx
in
let acc = ref [] in
let inf i s = if s > 0 then
try acc := (s, List.assoc i acc0) :: !acc
with Not_found -> ()
in
Array.iteri inf distr;
{vof = c2;
vals = !acc;
ctx = ctx;
distr = distr;
order =q }
let distr q = function
| I_max (ctx_ex,co_ex) ->
D.result_extraction "max" ctx_ex co_ex distr;
let res = infos_of distr q co_ex ctx_ex in
if !dsimplex then
Printer.print_dbg ">result size %d" (List.length res.vals);
Max res
| I_unbound (ctx_ex,co_ex) ->
D.result_extraction "unbound" ctx_ex co_ex distr;
let res = infos_of distr q co_ex ctx_ex in
if !dsimplex then
Printer.print_dbg ">result size %d" (List.length res.vals);
Unbound res
| I_unsat (ctx_ex,co_ex) ->
D.result_extraction "unsat" ctx_ex co_ex distr;
let res = infos_of distr q co_ex ctx_ex in
if !dsimplex then
Printer.print_dbg ">result size %d" (List.length res.vals);
Unsat res
let core_main co matrix distr =
let len = Array.length co.a2 in
reset_refs len;
let q = Queue.create () in
for i = len - 1 downto 0 do Queue.push i q done;
let res = solve co matrix distr (q, []) in
result_extraction distr q res
end
let cpt = ref 0
let main co eqs s_neq nb_vars =
let res = D.given_problem co eqs s_neq nb_vars;
try
let co, matrix, distr = Normalizer.norm_main co eqs s_neq nb_vars in
D.matrix_stats matrix co;
Core_Simplex.core_main co matrix distr
with Normalizer.Inconsistent -> Eq_unsat
in
res
let subst_spec ({a2=a2; c2=c2} as pp) v {a2=rhs_a2; c2=rhs_c2} =
if not (C.is_zero v) then begin
let f7a j w =
let rhs_j = rhs_a2.(j) in
if not (C.is_zero rhs_j) then a2.(j) <- C.add rhs_j w
in
let f7b j w =
let rhs_j = rhs_a2.(j) in
if not (C.is_zero rhs_j) then a2.(j) <- C.add (C.mult v rhs_j) w
in
let f7 = if C.is_one v then f7a else f7b in
Array.iteri f7 a2;
pp.c2 <- C2.add c2 (C2.mult v rhs_c2)
end
let partial_restart res (max_ctt: (int*Q.t) list) =
let print fmt (i,q) = fprintf fmt "%s*L%d + " (Q.to_string q) i in
if !dsimplex then
Printer.print_dbg ~flushed:false
"new: %a" (Printer.pp_list_no_space print) max_ctt;
match res with
| Eq_unsat -> Eq_unsat
| Unsat rr | Unbound rr | Max rr ->
match rr.ctx with
| [] -> assert false
| (_,a)::_ ->
if !dsimplex then
Printer.print_dbg ~header:false "tbl: @ ";
if !dsimplex then
Array.iteri (fun i s ->
Printer.print_dbg ~flushed:false ~header:false
"%d -> L%d | @ " i s) rr.distr;
let len = Array.length a.a2 in
let cost =
{a2=Array.make len Q.zero; c2=Q.zero,Q.zero} in
Array.iteri
(fun i ld ->
if !dsimplex then
Printer.print_dbg
~flushed:false ~header:false
"> AVANT: cost: %a@ \
traitement de l'index %d@ "
(D.ppoly (D.max_poly cost)) cost i;
begin
try
let q = List.assoc ld max_ctt in
if !dsimplex then
Printer.print_dbg ~flushed:false ~header:false
"L%d associe a %s@ " ld (Q.to_string q);
try
cost.a2.(i) <- Q.add cost.a2.(i) q
with Invalid_argument s ->
assert (String.compare s "index out of bounds" = 0);
if !dsimplex then
Printer.print_dbg
~flushed:false ~header:false
"L%d out of bounds@ " ld;
try
let rhs = List.assoc i rr.ctx in
subst_spec cost q rhs
with Not_found -> ()
with Not_found ->
if !dsimplex then
Printer.print_dbg
~flushed:false ~header:false
"L%d associe a RIEN@ " ld
end;
)rr.distr;
if !dsimplex then
Printer.print_dbg ~header:false
"> RES cost: %a" (D.ppoly (D.max_poly cost)) cost;
let leng = Array.length cost.a2 in
Core_Simplex.reset_refs leng;
let res =
Core_Simplex.solve cost rr.ctx rr.distr (rr.order, []) in
let res =
Core_Simplex.result_extraction rr.distr rr.order res in
res
end
module Simplex_Q = Simplex(Numbers.Q)