package alt-ergo-parsers

  1. Overview
  2. Docs

Source file psmt2_to_alt_ergo.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
(******************************************************************************)
(*                                                                            *)
(*     Alt-Ergo: The SMT Solver For Software Verification                     *)
(*     Copyright (C) 2013-2018 --- OCamlPro SAS                               *)
(*                                                                            *)
(*     This file is distributed under the terms of the Apache Software        *)
(*     License version 2.0                                                    *)
(*                                                                            *)
(******************************************************************************)

open AltErgoLib

module Smtlib_error = Psmt2Frontend.Smtlib_error
module Smtlib_options = Psmt2Frontend.Options
module Smtlib_ty = Psmt2Frontend.Smtlib_ty
module Smtlib_typed_env = Psmt2Frontend.Smtlib_typed_env
module Smtlib_typing = Psmt2Frontend.Smtlib_typing
module Smtlib_syntax = Psmt2Frontend.Smtlib_syntax
module Smtlib_parser = Psmt2Frontend.Smtlib_parser
module Smtlib_lexer = Psmt2Frontend.Smtlib_lexer

open Smtlib_syntax
open Options
open Parsed_interface


module Translate = struct

  let pos x =
    match x.p with
    | None -> Loc.dummy
    | Some p -> p

  (**************************************************************************)
  let translate_left_assoc f id params =
    match params with
    | [] | [_] -> assert false
    | t :: l ->
      List.fold_left (fun acc t ->
          f (pos id) acc t
        ) t l

  let translate_right_assoc f id params =
    match List.rev params with
    | [] | [_] -> assert false
    | t :: l ->
      List.fold_left (fun acc t ->
          f (pos id) t acc
        ) t l

  let translate_chainable_assoc f id params =
    match params with
    | [] | [_] -> assert false
    | a::b::l ->
      let (res,_) = List.fold_left (fun (acc,curr) next ->
          mk_and (pos id) acc (f (pos id) curr next), next
        ) ((f (pos id) a b),b) l
      in res

  (**************************************************************************)
  let init n f =
    let rec init_aux i n f =
      if i >= n then []
      else
        let r = f i in
        r :: init_aux (i+1) n f
    in
    init_aux 0 n f

  let translate_sort sort =
    let open Smtlib_ty in
    let rec aux ty =
      match (shorten ty).desc with
      | TDummy -> assert false
      | TInt -> int_type
      | TReal -> real_type
      | TBool -> bool_type
      | TString -> assert false
      | TArray (t1,t2) -> mk_external_type (pos sort) [aux t1;aux t2] "farray"
      | TBitVec _ -> assert false
      | TSort (s,t_list) -> mk_external_type (pos sort) (List.map aux t_list) s
      | TDatatype (d,t_list) ->
        mk_external_type (pos sort) (List.map aux t_list) d
      | TVar (s) -> mk_var_type (pos sort) s
      | TFun _ -> assert false
      | TLink _ -> assert false
      | TRoundingMode -> assert false
      | TFloatingPoint _ -> assert false
    in
    aux sort.ty

  let better_num_of_string s =
    begin match String.split_on_char '.' s with
      | [n] | [n;""] -> Num.num_of_string n
      | [n; d] ->
        let l = String.length d in
        let n = if (String.length n) = 0 then Num.Int 0
          else Num.num_of_string n in
        let d = Num.num_of_string d in
        let e = Num.power_num (Num.Int 10) (Num.Int l) in
        Num.add_num n (Num.div_num d e)
      | _ -> assert false
    end

  let translate_constant cst t =
    let loc = pos t in
    match cst with
    | Const_Dec(s) -> mk_real_const loc (better_num_of_string s)
    | Const_Num(s) ->
      let open Smtlib_ty in
      let ty = shorten t.ty in
      begin match ty.desc with (*TODO: do shorten earlier and better*)
        | TInt  -> mk_int_const loc s
        | TReal -> mk_real_const loc (better_num_of_string s)
        | _ ->
          Format.eprintf "%s@." (to_string ty);
          assert false
      end
    | Const_Str _  -> assert false (* to do *)
    | Const_Hex(s) -> mk_int_const loc s
    | Const_Bin(s) -> mk_int_const loc s

  let translate_string_identifier name params raw_params =
    match name.c with
    | "true" -> mk_true_const (pos name)
    | "false" -> mk_false_const (pos name)
    | "+" -> begin
        match params with
        | [p] -> p
        | _ -> translate_left_assoc mk_add name params
      end
    | "-" -> begin
        match params with
        | [t] -> mk_minus (pos name) t
        | _ -> translate_left_assoc mk_sub name params
      end
    | "*" -> translate_left_assoc mk_mul name params
    | "/" -> translate_left_assoc mk_div name params
    | "div" -> translate_left_assoc mk_div name params
    | "mod" -> begin
        match params with
        | [t1;t2] -> mk_mod (pos name) t1 t2
        | _ -> assert false
      end
    | "abs" -> begin
        match params with
        | [x] ->
          let cond = mk_pred_ge (pos name) x (mk_int_const (pos name) "0") in
          mk_ite (pos name) cond x (mk_minus (pos name) x)
        | _ -> assert false
      end
    | "<" -> translate_chainable_assoc mk_pred_lt name params
    | "<=" -> translate_chainable_assoc mk_pred_le name params
    | ">" -> translate_chainable_assoc mk_pred_gt name params
    | ">=" -> translate_chainable_assoc mk_pred_ge name params
    | "=" ->
      let f = match raw_params with
        | [] -> assert false
        | par :: _ ->
          if Smtlib_ty.is_bool (Smtlib_ty.shorten par.ty) then mk_iff
          else mk_pred_eq
      in
      translate_chainable_assoc f name params
    | "=>" -> translate_right_assoc mk_implies name params
    | "and" -> begin
        match params with
        | [p] -> p
        | _ -> translate_left_assoc mk_and name params
      end
    | "or" -> begin
        match params with
        | [p] -> p
        | _ -> translate_left_assoc mk_or name params
      end
    | "xor" -> translate_left_assoc mk_xor name params
    | "ite" ->
      begin
        match params with
        | [b;e1;e2] -> mk_ite (pos name) b e1 e2
        | _ -> assert false
      end
    | "not" -> begin
        match params with
        | [t] -> mk_not (pos name) t
        | _ -> assert false
      end
    | "distinct" -> mk_distinct (pos name) params
    | "select" -> begin
        match params with
        | [t;i] -> mk_array_get (pos name) t i
        | _ -> assert false
      end
    | "store" -> begin
        match params with
        | [t;i;j] -> mk_array_set (pos name) t i j
        | _ -> assert false
      end
    | _ ->
      if name.is_quantif then
        mk_var (pos name) name.c
      else
        mk_application (pos name) name.c params



  let translate_identifier id params raw_params =
    let name, l = Smtlib_typed_env.get_identifier id in
    match name.c, l, params with
    | _, [], _ -> translate_string_identifier name params raw_params
    | "is", [constr], [e] ->
      mk_algebraic_test (pos name) e constr
    | _ ->
      Format.eprintf "TODO: handle other underscored IDs@.";
      assert false

  let translate_qual_identifier qid params raw_params=
    match qid.c with
    | QualIdentifierId(id) -> translate_identifier id params raw_params, None
    | QualIdentifierAs(id,sort) ->
      translate_identifier id params raw_params, Some sort

  let rec translate_key_term pars acc k =
    match k.c with
    | Pattern(term_list) ->
      let tl = List.map (translate_term pars) term_list in
      (tl, true) :: acc
    | Named _ ->
      if Options.verbose () then
        Printf.eprintf "[Warning] (! :named not yet supported)\n%!";
      acc

  and translate_quantif f svl pars t =
    match t.c with
    | TermExclimationPt(term,key_term_list) ->
      let triggers = List.fold_left (fun acc key_term ->
          translate_key_term pars acc key_term
        ) [] key_term_list in
      f (pos t) svl triggers [] (translate_term pars term)
    | _ -> f (pos t) svl [] [] (translate_term pars t)

  and translate_term pars term =
    match term.c with
    | TermSpecConst(cst) -> translate_constant cst term
    | TermQualIdentifier(qid) ->
      let q,s = translate_qual_identifier qid [] [] in
      begin
        match s with
        | None -> q
        | Some s -> mk_type_cast (pos term) q (translate_sort s)
      end
    | TermQualIdTerm(qid,term_list) ->
      let params = List.map (translate_term pars) term_list in
      let q,s = translate_qual_identifier qid params term_list in
      begin
        match s with
        | None -> q
        | Some s -> mk_type_cast (pos term) q (translate_sort s)
      end
    | TermLetTerm(varbinding_list,term) ->
      let varbind = List.map (fun (s,term) ->
          s.c, (translate_term pars term)
        ) varbinding_list in
      mk_let (pos term) varbind (translate_term pars term)
    | TermForAllTerm(sorted_var_list,t) ->
      let svl = List.map (fun (v,s) ->
          v.c, v.c, translate_sort s
        ) sorted_var_list in
      translate_quantif mk_forall svl pars t
    | TermExistsTerm(sorted_var_list,t) ->
      let svl = List.map (fun (v,s) ->
          v.c, "", translate_sort s
        ) sorted_var_list in
      translate_quantif mk_exists svl pars t
    | TermExclimationPt(term,_key_term_list) ->
      translate_term pars term
    | TermMatch(term,pattern_term_list) ->
      let t = translate_term pars term in
      let cases = List.map (fun (pat,term) ->
          translate_pattern pat,
          translate_term pars term
        ) pattern_term_list
      in
      mk_match (pos term) t cases

  and translate_pattern pat =
    let p = pos pat in
    match pat.c with
    | MatchPattern(s,sl) -> mk_pattern p s.c (List.map (fun s -> s.c) sl)
    | MatchUnderscore -> mk_pattern p "_" []

  let translate_assert_term (pars,term) =
    translate_term pars term

  let translate_goal pos (pars,term) =
    mk_goal pos "g" (translate_assert_term (pars,term))

  let name_of_assert term =
    match term.c with
    | TermExclimationPt(_, [{ c = Named s; _ }]) -> Some s.c
    | _ -> None

  let translate_assert =
    let cpt = ref 0 in
    fun pos (pars,term) ->
      incr cpt;
      let name =
        match name_of_assert term with
        | Some s -> s
        | None -> Printf.sprintf "unamed__assert__%d" !cpt
      in
      mk_generic_axiom pos name (translate_assert_term (pars,term))

  let translate_const_dec (_,sort) =
    translate_sort sort

  let translate_decl_fun f params ret =
    let logic_type = mk_logic_type params (Some ret) in
    mk_logic (pos f) Symbols.Other [(f.c,f.c)] logic_type

  let translate_fun_dec (_,sl,s) =
    List.map translate_sort sl, translate_sort s

  let translate_fun_def_aux (symb,pars,svl,sort) =
    let pars = List.map (fun par -> par.c) pars in
    let params = List.map (fun (p,s) -> pos p, p.c,translate_sort s) svl in
    symb, params, translate_sort sort, pars

  let translate_fun_def fun_def term =
    let symb,params,ret,pars = translate_fun_def_aux fun_def in
    let t_expr = translate_term pars term in
    if Smtlib_ty.is_bool (Smtlib_ty.shorten term.ty) then
      mk_non_ground_predicate_def (pos symb) (symb.c,symb.c) params t_expr
    else mk_function_def (pos symb) (symb.c,symb.c) params ret t_expr

  let translate_datatype_decl (name, _) (params, cases) =
    let params = List.map (fun n -> n.c) params in
    let cases =
      List.map (fun (constr, d_l) ->
          constr.c,
          List.map (fun (des, sort) -> des.c, translate_sort sort) d_l
        )cases
    in
    pos name, params, name.c, (Parsed.Algebraic cases)

  let translate_datatypes sort_dec datatype_dec =
    try
      mk_rec_type_decl @@
      List.map2 translate_datatype_decl sort_dec datatype_dec
    with Invalid_argument _ -> assert false

  let not_supported s =
    Format.eprintf "; %S : Not yet supported@." s

  let translate_command acc command =
    match command.c with
    | Cmd_Assert(assert_term) ->
      (translate_assert (pos command) assert_term) :: acc
    | Cmd_CheckEntailment(assert_term) ->
      Options.set_unsat_mode false;
      (translate_goal (pos command) assert_term) :: acc
    | Cmd_CheckSat ->
      Options.set_unsat_mode true;
      (mk_goal (pos command) "g" (mk_false_const (pos command))) :: acc
    | Cmd_CheckSatAssum _ ->
      not_supported "check-sat-assuming"; assert false
    | Cmd_DeclareConst(symbol,const_dec) ->
      (translate_decl_fun symbol [] (translate_const_dec const_dec)) :: acc
    | Cmd_DeclareDataType(symbol,datatype_dec) ->
      (mk_rec_type_decl
         [(translate_datatype_decl (symbol,0) datatype_dec)]) :: acc
    | Cmd_DeclareDataTypes(sort_dec_list,datatype_dec_list) ->
      (translate_datatypes sort_dec_list datatype_dec_list) :: acc

    | Cmd_DeclareFun(symbol,fun_dec) ->
      let params,ret = translate_fun_dec fun_dec in
      (translate_decl_fun symbol params ret):: acc
    | Cmd_DeclareSort(symbol,n) ->
      let n = int_of_string n in
      let pars = init n (fun i -> Printf.sprintf "'a_%d" i) in
      (mk_abstract_type_decl (pos command) pars symbol.c) :: acc
    | Cmd_DefineFun(fun_def,term)
    | Cmd_DefineFunRec(fun_def,term) ->
      (translate_fun_def fun_def term) :: acc
    | Cmd_DefineFunsRec(fun_def_list,term_list) ->
      let l = List.map2 translate_fun_def fun_def_list term_list in
      l @ acc
    | Cmd_DefineSort _ -> acc
    | Cmd_Echo _ -> not_supported "echo"; acc
    | Cmd_GetAssert -> not_supported "get-assertions"; acc
    | Cmd_GetProof -> not_supported "get-proof"; acc
    | Cmd_GetUnsatCore -> not_supported "get-unsat-core"; acc
    | Cmd_GetValue _ -> not_supported "get-value"; acc
    | Cmd_GetAssign -> not_supported "get-assign"; acc
    | Cmd_GetOption _ -> not_supported "get-option"; acc
    | Cmd_GetInfo _ -> not_supported "get-info"; acc
    | Cmd_GetModel -> not_supported "get-model"; acc
    | Cmd_GetUnsatAssumptions -> not_supported "get-unsat-assumptions"; acc
    | Cmd_Reset -> not_supported "reset"; assert false
    | Cmd_ResetAssert -> not_supported "reset-asserts"; assert false
    | Cmd_SetLogic _ -> not_supported "set-logic"; acc
    | Cmd_SetOption _ -> not_supported "set-option"; acc
    | Cmd_SetInfo _ -> not_supported "set-info"; acc
    | Cmd_Push _ -> not_supported "push"; assert false
    | Cmd_Pop _ -> not_supported "pop"; assert false
    | Cmd_Exit -> acc

  let init () =
    if Psmt2Frontend.Options.get_is_int_real () then
      let dummy_pos = Lexing.dummy_pos,Lexing.dummy_pos in

      (* assert false; *)
      let logic_type = mk_logic_type [real_type] (Some int_type) in
      let to_int =
        mk_logic dummy_pos Symbols.Other [("to_int","to_int")] logic_type in
      let logic_type = mk_logic_type [int_type] (Some real_type) in
      let to_real =
        mk_logic dummy_pos Symbols.Other [("to_real","to_real")] logic_type in
      let logic_type = mk_logic_type [real_type] (Some bool_type) in
      let is_int =
        mk_logic dummy_pos Symbols.Other [("is_int","is_int")] logic_type in
      [to_int;to_real;is_int]
    else []

  let file commands =
    Smtlib_typing.typing commands;

    if Options.type_smt2 () then begin
      Printf.eprintf "%s%!" (Smtlib_options.status ());
      []
    end
    else begin
      let l = List.fold_left translate_command [] (List.rev commands) in
      (init ()) @ l
    end

  let lexpr l = translate_term [] l

  let trigger (tl,b) = List.map (translate_term []) tl,b

end

let aux aux_fun token lexbuf =
  try
    let res = aux_fun token lexbuf in
    Parsing.clear_parser ();
    res
  with
  | Parsing.Parse_error
  | (*Basics. | MenhirBasics. |*) Smtlib_error.Error _ ->
    (* not fully qualified ! backward incompat. in Menhir !!*)
    let loc = (Lexing.lexeme_start_p lexbuf, Lexing.lexeme_end_p lexbuf) in
    let lex = Lexing.lexeme lexbuf in
    Parsing.clear_parser ();
    raise (Errors.Syntax_error (loc, lex))

let file_parser token lexbuf =
  Translate.file (Smtlib_parser.commands token lexbuf)

let lexpr_parser token lexbuf =
  Translate.lexpr (Smtlib_parser.term token lexbuf)

let trigger_parser token lexbuf =
  Translate.trigger (Smtlib_parser.term_list token lexbuf)

module Parser : Parsers.PARSER_INTERFACE = struct
  let file    = aux file_parser    Smtlib_lexer.token
  let expr    = aux lexpr_parser   Smtlib_lexer.token
  let trigger = aux trigger_parser Smtlib_lexer.token
end

let () =
  (*register this parser in Input_lang: 2 different extensions recognized *)
  let p = (module Parser : Parsers.PARSER_INTERFACE) in
  Parsers.register_parser ~lang:".smt2" p;
  Parsers.register_parser ~lang:".psmt2" p;
OCaml

Innovation. Community. Security.