package alt-ergo-lib

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file typechecker.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
(******************************************************************************)
(*                                                                            *)
(*     The Alt-Ergo theorem prover                                            *)
(*     Copyright (C) 2006-2013                                                *)
(*                                                                            *)
(*     Sylvain Conchon                                                        *)
(*     Evelyne Contejean                                                      *)
(*                                                                            *)
(*     Francois Bobot                                                         *)
(*     Mohamed Iguernelala                                                    *)
(*     Stephane Lescuyer                                                      *)
(*     Alain Mebsout                                                          *)
(*                                                                            *)
(*     CNRS - INRIA - Universite Paris Sud                                    *)
(*                                                                            *)
(*     This file is distributed under the terms of the Apache Software        *)
(*     License version 2.0                                                    *)
(*                                                                            *)
(*  ------------------------------------------------------------------------  *)
(*                                                                            *)
(*     Alt-Ergo: The SMT Solver For Software Verification                     *)
(*     Copyright (C) 2013-2018 --- OCamlPro SAS                               *)
(*                                                                            *)
(*     This file is distributed under the terms of the Apache Software        *)
(*     License version 2.0                                                    *)
(*                                                                            *)
(******************************************************************************)

open Options
open Format
open Parsed
open Typed
open Errors


module S = Set.Make(String)
module HSS = Hstring.Set

module MString =
  Map.Make(struct type t = string let compare = Pervasives.compare end)

module Types = struct

  (* environment for user-defined types *)
  type t = {
    to_ty : Ty.t MString.t;
    from_labels : string MString.t; }

  let to_tyvars = ref MString.empty

  let empty =
    { to_ty = MString.empty;
      from_labels = MString.empty }

  let fresh_vars ~recursive vars loc =
    List.map
      (fun x ->
         if recursive then
           try MString.find x !to_tyvars
           with Not_found -> assert false
         else
           begin
             if MString.mem x !to_tyvars then error (TypeDuplicateVar x) loc;
             let nv = Ty.Tvar (Ty.fresh_var ()) in
             to_tyvars := MString.add x nv !to_tyvars;
             nv
           end
      ) vars

  let check_number_args loc lty ty =
    match ty with
    | Ty.Text (lty', s)
    | Ty.Trecord { Ty.args = lty'; name = s; _ }
    | Ty.Tadt (s,lty') ->
      if List.length lty <> List.length lty' then
        error (WrongNumberofArgs (Hstring.view s)) loc;
      lty'
    | Ty.Tsum (s, _) ->
      if List.length lty <> 0 then
        error (WrongNumberofArgs (Hstring.view s)) loc;
      []
    | _ -> assert false

  let equal_pp_vars lpp lvars =
    try
      List.for_all2
        (fun pp x ->
           match pp with
           | PPTvarid (y, _) -> Pervasives.(=) x y
           | _ -> false
        ) lpp lvars
    with Invalid_argument _ -> false

  let rec ty_of_pp _loc env rectype = function
    | PPTint -> Ty.Tint
    | PPTbool -> Ty.Tbool
    | PPTunit -> Ty.Tunit
    | PPTreal -> Ty.Treal
    | PPTbitv n -> Ty.Tbitv n
    | PPTvarid (s, _) ->
      begin
        try MString.find s !to_tyvars
        with Not_found ->
          let nty = Ty.Tvar (Ty.fresh_var ()) in
          to_tyvars := MString.add s nty !to_tyvars;
          nty
      end
    | PPTexternal (l, s, loc) when Pervasives.(=) s "farray" ->
      let t1,t2 = match l with
        | [t2] -> PPTint,t2
        | [t1;t2] -> t1,t2
        | _ -> error (WrongArity(s,2)) loc in
      let ty1 = ty_of_pp loc env rectype t1 in
      let ty2 = ty_of_pp loc env rectype t2 in
      Ty.Tfarray (ty1, ty2)
    | PPTexternal (l, s, loc) ->
      begin
        match rectype with
        | Some (id, vars, ty) when Pervasives.(=) s id &&
                                   equal_pp_vars l vars -> ty
        | _ ->
          try
            let lty = List.map (ty_of_pp loc env rectype) l in
            let ty = MString.find s env.to_ty in
            let vars = check_number_args loc lty ty in
            Ty.instantiate vars lty ty
          with Not_found ->
            error (UnknownType s) loc
      end

  let add_decl ~recursive env vars id body loc =
    if MString.mem id env.to_ty && not recursive then error (ClashType id) loc;
    let ty_vars = fresh_vars ~recursive vars loc in
    match body with
    | Abstract ->
      let ty = Ty.text ty_vars id in
      ty, { env with to_ty = MString.add id ty env.to_ty }
    | Enum lc ->
      let ty = Ty.tsum id lc in
      ty, { env with to_ty = MString.add id ty env.to_ty }
    | Record (record_constr, lbs) ->
      let lbs =
        List.map (fun (x, pp) -> x, ty_of_pp loc env None pp) lbs in
      let ty = Ty.trecord ~record_constr ty_vars id lbs in
      ty, { to_ty = MString.add id ty env.to_ty;
            from_labels =
              List.fold_left
                (fun fl (l,_) -> MString.add l id fl) env.from_labels lbs }
    | Algebraic l ->
      let l = (* convert ppure_type to Ty.t in l *)
        List.map (fun (constr, l) ->
            constr,
            List.map (fun (field, pp) -> field, ty_of_pp loc env None pp) l
          ) l
      in
      let body =
        if l == [] then None (* in initialization step, no body *)
        else Some l
      in
      let ty = Ty.t_adt ~body id ty_vars in
      ty, { env with to_ty = MString.add id ty env.to_ty }

  module SH = Set.Make(Hstring)

  let check_labels lbs ty loc =
    let rec check_duplicates s = function
      | [] -> ()
      | (lb, _) :: l ->
        if SH.mem lb s then error (DuplicateLabel lb) loc;
        check_duplicates (SH.add lb s) l
    in
    check_duplicates SH.empty lbs;
    match ty with
    | Ty.Trecord { Ty.lbs = l; _ } ->
      if List.length lbs <> List.length l then
        error WrongNumberOfLabels loc;
      List.iter
        (fun (lb, _) ->
           try ignore (Hstring.list_assoc lb l)
           with Not_found -> error (WrongLabel(lb, ty)) loc) lbs;
      ty
    | _ -> assert false


  let from_labels env lbs loc =
    match lbs with
    | [] -> assert false
    | (l, _) :: _ ->
      try
        let l = Hstring.view l in
        let ty = MString.find (MString.find l env.from_labels) env.to_ty in
        check_labels lbs ty loc
      with Not_found -> error (NoRecordType l) loc

  let rec monomorphized = function
    | PPTvarid (x, _) when not (MString.mem x !to_tyvars) ->
      to_tyvars := MString.add x (Ty.fresh_empty_text ()) !to_tyvars;

    | PPTexternal (args, _, _) ->
      List.iter monomorphized args

    | _ -> ()

end

module Env = struct

  type profile = { args : Ty.t list; result : Ty.t }

  type logic_kind =
    | RecordConstr
    | RecordDestr
    | AdtConstr
    | AdtDestr
    | Other

  type t = {
    var_map : (Symbols.t * Ty.t) MString.t ; (* variables' map*)
    types : Types.t ;
    logics : (Symbols.t * profile * logic_kind) MString.t;
    (* logic symbols' map *)
  }

  let empty = {
    var_map = MString.empty;
    types = Types.empty;
    logics = MString.empty
  }

  let add env lv fvar ty =
    let vmap =
      List.fold_left
        (fun vmap x -> MString.add x (fvar x, ty) vmap) env.var_map lv in
    { env with var_map = vmap }

  let add_var env lv pp_ty loc  =
    let ty = Types.ty_of_pp loc env.types None pp_ty in
    let fvar s = Symbols.var @@ Var.of_string s in
    add env lv fvar ty

  let add_ty_var env lv ty  =
    let fvar s = Symbols.var @@ Var.of_string s in
    add env lv fvar ty

  let add_names env lv pp_ty loc =
    Types.monomorphized pp_ty;
    let ty = Types.ty_of_pp loc env.types None pp_ty in
    add env lv Symbols.name ty

  let add_names_lbl env lv pp_ty loc =
    Types.monomorphized pp_ty;
    let ty = Types.ty_of_pp loc env.types None pp_ty in
    let rlv =
      List.fold_left (fun acc (x, lbl) ->
          let lbl = Hstring.make lbl in
          if not (Hstring.equal lbl Hstring.empty) then
            Symbols.add_label lbl (Symbols.name x);
          x::acc
        ) [] lv in
    let lv = List.rev rlv in
    add env lv Symbols.name ty

  let add_logics ?(kind=Other) env mk_symb names pp_profile loc =
    let decl, profile =
      match pp_profile with
      | PPredicate args ->
        let args = List.map (Types.ty_of_pp loc env.types None) args in
        TPredicate args,
        { args = args; result = Ty.Tbool }
      (*| PFunction ([], PPTvarid (_, loc)) ->
          error CannotGeneralize loc*)
      | PFunction(args, res) ->
        let args = List.map (Types.ty_of_pp loc env.types None) args in
        let res = Types.ty_of_pp loc env.types None res in
        TFunction (args, res),
        { args = args; result = res }
    in
    let logics =
      List.fold_left
        (fun logics (n, lbl) ->
           let sy = mk_symb n in
           if MString.mem n logics then error (SymbAlreadyDefined n) loc;
           let lbl = Hstring.make lbl in
           if not (Hstring.equal lbl Hstring.empty) then
             Symbols.add_label lbl sy;

           MString.add n (sy, profile, kind) logics)
        env.logics names
    in
    decl, { env with logics = logics }

  let add_constr ~record env constr args_ty ty loc =
    let pp_profile = PFunction (args_ty, ty) in
    let kind = if record then RecordConstr else AdtConstr in
    add_logics ~kind env Symbols.constr [constr, ""] pp_profile loc

  let add_destr ~record env destr pur_ty lbl_ty loc =
    let pp_profile = PFunction ([pur_ty], lbl_ty) in
    let mk_sy s =
      if record then (Symbols.Op (Symbols.Access (Hstring.make s)))
      else Symbols.destruct ~guarded:true s
    in
    let kind = if record then RecordDestr else AdtDestr in
    add_logics ~kind env mk_sy [destr, ""] pp_profile loc

  let find { var_map = m; _ } n = MString.find n m

  let list_of { var_map = m; _ } = MString.fold (fun _ c acc -> c::acc) m []

  let add_type_decl ?(recursive=false) env vars id body loc =
    let ty, types = Types.add_decl ~recursive env.types vars id body loc in
    ty, { env with types = types; }

  (* returns a type with fresh variables *)
  let fresh_type env n loc =
    try
      let s, { args = args; result = r}, kind = MString.find n env.logics in
      let args, subst = Ty.fresh_list args Ty.esubst in
      let res, _ = Ty.fresh r subst in
      s, { args = args; result = res }, kind
    with Not_found -> error (SymbUndefined n) loc

end

let symbol_of = function
    PPadd -> Symbols.Op Symbols.Plus
  | PPsub -> Symbols.Op Symbols.Minus
  | PPmul -> Symbols.Op Symbols.Mult
  | PPdiv -> Symbols.Op Symbols.Div
  | PPmod ->  Symbols.Op Symbols.Modulo
  | _ -> assert false

let append_type msg ty =
  fprintf str_formatter "%s %a" msg Ty.print ty;
  flush_str_formatter ()

let type_var_desc env p loc =
  try
    let s,t = Env.find env p in
    Options.tool_req 1 (append_type "TR-Typing-Var$_\\Gamma$ type" t);
    TTvar s , t
  with Not_found ->
  match Env.fresh_type env p loc with
  | s,
    { Env.args = []; result = ty},
    (Env.Other | Env.AdtConstr (*more exactly, Enum constr*) ) ->
    TTapp (s, []) , ty
  | _ -> error (ShouldBeApply p) loc

let check_no_duplicates =
  let rec aux loc l ss =
    match l with
    | [] -> ()
    | e :: l ->
      if S.mem e ss then error (ClashParam e) loc;
      aux loc l (S.add e ss)
  in
  fun loc args -> aux loc args S.empty

let filter_patterns pats ty_body _loc =
  let cases =
    List.fold_left (fun s {Ty.constr=c; _} -> HSS.add c s) HSS.empty ty_body
  in
  let missing, filtered_pats, dead =
    List.fold_left
      (fun (miss, filtered_pats, dead) ((p, _) as u) ->
         match p with
         | Constr { name; _ } ->
           assert (HSS.mem name cases); (* pattern is well typed *)
           if HSS.mem name miss then (* not encountered yet *)
             HSS.remove name miss, u :: filtered_pats, dead
           else (* case already seen --> dead pattern *)
             miss, pats, p :: dead
         | Var _ ->
           if HSS.is_empty miss then (* match already exhaussive -> dead case *)
             miss, filtered_pats, p :: dead
           else (* covers all remaining cases, miss becomes empty *)
             HSS.empty, u :: filtered_pats, dead
      )(cases, [], []) pats
  in
  missing, List.rev filtered_pats, dead

let check_pattern_matching missing dead loc =
  if not (HSS.is_empty missing) then
    error (MatchNotExhaustive (HSS.elements missing)) loc;
  if dead != [] then
    let dead =
      List.rev_map
        (function
          | Constr { name; _ } -> name
          | Var v -> (Var.view v).Var.hs
        ) dead
    in
    warning (MatchUnusedCases dead) loc

let mk_adequate_app p s te_args ty logic_kind =
  let hp = Hstring.make p in
  match logic_kind, te_args, ty with
  | (Env.AdtConstr | Env.Other), _, _ ->
    (* symbol 's' alreadt contains the information *)
    TTapp(s, te_args)

  | Env.RecordConstr, _, Ty.Trecord { Ty.lbs; _ } ->
    let lbs =
      try List.map2 (fun (hs, _) e -> hs, e) lbs te_args
      with Invalid_argument _ -> assert false
    in
    TTrecord lbs

  | Env.RecordDestr, [te], _ -> TTdot(te, hp)

  | Env.AdtDestr, [te], _ -> TTproject (true, te, hp)

  | Env.RecordDestr, _, _ -> assert false
  | Env.RecordConstr, _, _ -> assert false
  | Env.AdtDestr, _, _ -> assert false

let rec type_term ?(call_from_type_form=false) env f =
  let {pp_loc = loc; pp_desc} = f in
  let e, ty = match pp_desc with
    | PPconst ConstTrue ->
      Options.tool_req 1 (append_type "TR-Typing-Const type" Ty.Tbool);
      TTconst Ttrue, Ty.Tbool
    | PPconst ConstFalse ->
      Options.tool_req 1 (append_type "TR-Typing-Const type" Ty.Tbool);
      TTconst Tfalse, Ty.Tbool
    | PPconst ConstVoid ->
      Options.tool_req 1 (append_type "TR-Typing-Const type" Ty.Tunit);
      TTconst Tvoid, Ty.Tunit
    | PPconst (ConstInt n) ->
      Options.tool_req 1 (append_type "TR-Typing-Const type" Ty.Tint);
      TTconst(Tint n), Ty.Tint
    | PPconst (ConstReal n) ->
      Options.tool_req 1 (append_type "TR-Typing-Const type" Ty.Treal);
      TTconst(Treal n), Ty.Treal
    | PPconst (ConstBitv n) ->
      Options.tool_req 1
        (append_type "TR-Typing-Const type" (Ty.Tbitv (String.length n)));
      TTconst(Tbitv n), Ty.Tbitv (String.length n)
    | PPvar p ->
      type_var_desc env p loc

    | PPapp(p,args) ->
      begin
        let te_args = List.map (type_term env) args in
        let lt_args = List.map (
            fun { c = { tt_ty = t; _ }; _ } -> t
          ) te_args in
        let s, {Env.args = lt; result = t}, kind = Env.fresh_type env p loc in
        try
          List.iter2 Ty.unify lt lt_args;
          Options.tool_req 1 (append_type "TR-Typing-App type" t);
          mk_adequate_app p s te_args t kind, t
        with
        | Ty.TypeClash(t1,t2) ->
          error (Unification(t1,t2)) loc
        | Invalid_argument _ ->
          error (WrongNumberofArgs p) loc
      end

    | PPinfix(t1,(PPadd | PPsub | PPmul | PPdiv as op),t2) ->
      begin
        let s = symbol_of op in
        let te1 = type_term env t1 in
        let te2 = type_term env t2 in
        let ty1 = Ty.shorten te1.c.tt_ty in
        let ty2 = Ty.shorten te2.c.tt_ty in
        match ty1, ty2 with
        | Ty.Tint, Ty.Tint ->
          Options.tool_req 1 (append_type "TR-Typing-OpBin type" ty1);
          TTinfix(te1,s,te2) , ty1
        | Ty.Treal, Ty.Treal ->
          Options.tool_req 1 (append_type "TR-Typing-OpBin type" ty2);
          TTinfix(te1,s,te2), ty2
        | Ty.Tint, _ -> error (ShouldHaveType(ty2,Ty.Tint)) t2.pp_loc
        | Ty.Treal, _ -> error (ShouldHaveType(ty2,Ty.Treal)) t2.pp_loc
        | _ -> error (ShouldHaveTypeIntorReal ty1) t1.pp_loc
      end
    | PPinfix(t1, PPmod, t2) ->
      begin
        let s = symbol_of PPmod in
        let te1 = type_term env t1 in
        let te2 = type_term env t2 in
        let ty1 = Ty.shorten te1.c.tt_ty in
        let ty2 = Ty.shorten te2.c.tt_ty in
        match ty1, ty2 with
        | Ty.Tint, Ty.Tint ->
          Options.tool_req 1 (append_type "TR-Typing-OpMod type" ty1);
          TTinfix(te1,s,te2) , ty1
        | _ -> error (ShouldHaveTypeInt ty1) t1.pp_loc
      end
    | PPprefix(PPneg, { pp_desc=PPconst (ConstInt n); _ }) ->
      Options.tool_req 1 (append_type "TR-Typing-OpUnarith type" Ty.Tint);
      TTconst(Tint ("-"^n)), Ty.Tint
    | PPprefix(PPneg, { pp_desc=PPconst (ConstReal n); _ }) ->
      Options.tool_req 1 (append_type "TR-Typing-OpUnarith type" Ty.Treal);
      TTconst(Treal (Num.minus_num n)), Ty.Treal
    | PPprefix(PPneg, e) ->
      let te = type_term env e in
      let ty = Ty.shorten te.c.tt_ty in
      if ty!=Ty.Tint && ty!=Ty.Treal then
        error (ShouldHaveTypeIntorReal ty) e.pp_loc;
      Options.tool_req 1 (append_type "TR-Typing-OpUnarith type" ty);
      TTprefix(Symbols.Op Symbols.Minus, te), ty
    | PPconcat(t1, t2) ->
      begin
        let te1 = type_term env t1 in
        let te2 = type_term env t2 in
        let ty1 = Ty.shorten te1.c.tt_ty in
        let ty2 = Ty.shorten te2.c.tt_ty in
        match ty1, ty2 with
        | Ty.Tbitv n , Ty.Tbitv m ->
          Options.tool_req 1
            (append_type "TR-Typing-OpConcat type" (Ty.Tbitv (n+m)));
          TTconcat(te1, te2), Ty.Tbitv (n+m)
        | Ty.Tbitv _ , _ -> error (ShouldHaveTypeBitv ty2) t2.pp_loc
        | _ , Ty.Tbitv _ -> error (ShouldHaveTypeBitv ty1) t1.pp_loc
        | _ -> error (ShouldHaveTypeBitv ty1) t1.pp_loc
      end
    | PPextract(e, ({ pp_desc=PPconst(ConstInt i); _ } as ei),
                ({ pp_desc = PPconst(ConstInt j); _ } as ej)) ->
      begin
        let te = type_term env e in
        let tye = Ty.shorten te.c.tt_ty in
        let i = int_of_string i in
        let j = int_of_string j in
        match tye with
        | Ty.Tbitv n ->
          if i>j then error (BitvExtract(i,j)) loc;
          if j>=n then error (BitvExtractRange(n,j) ) loc;
          let tei = type_term env ei in
          let tej = type_term env ej in
          Options.tool_req 1
            (append_type "TR-Typing-OpExtract type" (Ty.Tbitv (j-i+1)));
          TTextract(te, tei, tej), Ty.Tbitv (j-i+1)
        | _ -> error (ShouldHaveType(tye,Ty.Tbitv (j+1))) loc
      end
    | PPget (t1, t2) ->
      begin
        let te1 = type_term env t1 in
        let te2 = type_term env t2 in
        let tyarray = Ty.shorten te1.c.tt_ty in
        let tykey2 = Ty.shorten te2.c.tt_ty in
        match tyarray with
        | Ty.Tfarray (tykey,tyval) ->
          begin
            try
              Ty.unify tykey tykey2;
              Options.tool_req 1 (append_type "TR-Typing-OpGet type" tyval);
              TTget(te1, te2), tyval
            with
            | Ty.TypeClash(t1,t2) ->
              error (Unification(t1,t2)) loc
          end
        | _ -> error ShouldHaveTypeArray t1.pp_loc
      end
    | PPset (t1, t2, t3) ->
      begin
        let te1 = type_term env t1 in
        let te2 = type_term env t2 in
        let te3 = type_term env t3 in
        let ty1 = Ty.shorten te1.c.tt_ty in
        let tykey2 = Ty.shorten te2.c.tt_ty in
        let tyval2 = Ty.shorten te3.c.tt_ty in
        try
          match ty1 with
          | Ty.Tfarray (tykey,tyval) ->
            Ty.unify tykey tykey2;Ty.unify tyval tyval2;
            Options.tool_req 1 (append_type "TR-Typing-OpSet type" ty1);
            TTset(te1, te2, te3), ty1
          | _ -> error ShouldHaveTypeArray t1.pp_loc
        with
        | Ty.TypeClash(t, t') ->
          error (Unification(t, t')) loc
      end
    | PPif(cond,t2,t3) ->
      begin
        let cond = type_form env cond in
        (* TODO : should use _fv somewhere ? *)
        let te2 = type_term env t2 in
        let te3 = type_term env t3 in
        let ty2 = Ty.shorten te2.c.tt_ty in
        let ty3 = Ty.shorten te3.c.tt_ty in
        begin
          try Ty.unify ty2 ty3
          with Ty.TypeClash _ -> error (ShouldHaveType(ty3,ty2)) t3.pp_loc;
        end;
        Options.tool_req 1 (append_type "TR-Typing-Ite type" ty2);
        TTite (cond, te2, te3) , ty2
      end
    | PPdot(t, a) ->
      begin
        let te = type_term env t in
        let ty = Ty.shorten te.c.tt_ty in
        match ty with
        | Ty.Trecord { Ty.name = g; lbs; _ } ->
          begin
            try
              let a = Hstring.make a in
              TTdot(te, a), Hstring.list_assoc a lbs
            with Not_found ->
              let g = Hstring.view g in
              error (ShouldHaveLabel(g,a)) t.pp_loc
          end
        | _ -> error (ShouldHaveTypeRecord ty) t.pp_loc
      end
    | PPrecord lbs ->
      begin
        let lbs =
          List.map (fun (lb, t) -> Hstring.make lb, type_term env t) lbs in
        let lbs = List.sort
            (fun (l1, _) (l2, _) -> Hstring.compare l1 l2) lbs in
        let ty = Types.from_labels env.Env.types lbs loc in
        let ty, _ = Ty.fresh (Ty.shorten ty) Ty.esubst in
        match ty with
        | Ty.Trecord { Ty.lbs=ty_lbs; _ } ->
          begin
            try
              let lbs =
                List.map2
                  (fun (_, te) (lb,ty_lb)->
                     Ty.unify te.c.tt_ty ty_lb;
                     lb, te) lbs ty_lbs
              in
              TTrecord(lbs), ty
            with Ty.TypeClash(t1,t2) -> error (Unification(t1,t2)) loc
          end
        | _ -> error ShouldBeARecord loc
      end
    | PPwith(e, lbs) ->
      begin
        let te = type_term env e in
        let lbs =
          List.map
            (fun (lb, t) -> Hstring.make lb, (type_term env t, t.pp_loc)) lbs in
        let ty = Ty.shorten te.c.tt_ty in
        match ty with
        | Ty.Trecord { Ty.lbs = ty_lbs; _ } ->
          let nlbs =
            List.map
              (fun (lb, ty_lb) ->
                 try
                   let v, _ = Hstring.list_assoc lb lbs in
                   Ty.unify ty_lb v.c.tt_ty;
                   lb, v
                 with
                 | Not_found ->
                   lb, {c = { tt_desc = TTdot(te, lb); tt_ty = ty_lb};
                        annot = te.annot }
                 | Ty.TypeClash(t1,t2) ->
                   error (Unification(t1,t2)) loc
              ) ty_lbs
          in
          List.iter
            (fun (lb, _) ->
               try ignore (Hstring.list_assoc lb ty_lbs)
               with Not_found -> error (NoLabelInType(lb, ty)) loc) lbs;
          TTrecord(nlbs), ty
        | _ ->  error ShouldBeARecord loc
      end
    | PPlet(l, t2) ->
      let _ =
        List.fold_left (fun z (sy,_) ->
            if Util.SS.mem sy z then error (DuplicatePattern sy) loc;
            Util.SS.add sy z
          )Util.SS.empty l
      in
      let rev_l = List.rev_map (fun (sy, t) -> sy, type_term env t) l in
      let env =
        List.fold_left
          (fun env (sy, te1) ->
             let ty1 = Ty.shorten te1.c.tt_ty in
             let fvar s = Symbols.var @@ Var.of_string s in
             Env.add env [sy] fvar ty1
          )env rev_l
      in
      let te2 = type_term env t2 in
      let ty2 = Ty.shorten te2.c.tt_ty in
      let l = List.rev_map (fun (sy, t) -> fst (Env.find env sy), t) rev_l in
      Options.tool_req 1 (append_type "TR-Typing-Let type" ty2);
      TTlet(l, te2), ty2

    (* | PPnamed(lbl, t) ->  *)
    (*     let te = type_term env t in *)
    (*     te.c.tt_desc, te.c.tt_ty *)

    | PPnamed (lbl, t) ->
      let te = type_term env t in
      let ty = Ty.shorten te.c.tt_ty in
      let lbl = Hstring.make lbl in
      TTnamed (lbl, te), ty

    | PPcast (t,ty) ->
      let ty = Types.ty_of_pp loc env.Env.types None ty in
      let te = type_term env t in
      begin try
          Ty.unify te.c.tt_ty ty;
          te.c.tt_desc, Ty.shorten te.c.tt_ty
        with
        | Ty.TypeClash(t1,t2) ->
          error (Unification(t1,t2)) loc
      end

    | PPproject (grded, t, lbl) ->
      let te = type_term env t in
      begin
        try
          match Env.fresh_type env lbl loc with
          | _, {Env.args = [arg] ; result}, Env.AdtDestr ->
            Ty.unify te.c.tt_ty arg;
            TTproject (grded, te, Hstring.make lbl), Ty.shorten result

          | _, {Env.args = [arg] ; result}, Env.RecordDestr ->
            Ty.unify te.c.tt_ty arg;
            TTdot (te, Hstring.make lbl), Ty.shorten result

          | _ -> assert false
        with Ty.TypeClash(t1,t2) -> error (Unification(t1,t2)) loc
      end

    | PPmatch (e, pats) ->
      (* we can match on ADTs including records and enumerations *)
      let e = type_term env e in
      let ty = Ty.shorten e.c.tt_ty in
      let ty_body = match ty with
        | Ty.Tadt (name, params) ->
          begin match Ty.type_body name params with
            | Ty.Adt cases -> cases
          end
        | Ty.Trecord { Ty.record_constr; lbs; _ } ->
          [{Ty.constr = record_constr; destrs = lbs}]
        | Ty.Tsum (_,l) ->
          List.map (fun e -> {Ty.constr = e; destrs = []}) l
        | _ ->
          error (ShouldBeADT ty) loc
      in
      let pats =
        List.rev @@
        List.rev_map
          (fun (p, v) ->
             let p, env = type_pattern p env ty ty_body in
             p, type_term env v
          ) pats
      in
      let missing, filtered_pats, dead = filter_patterns pats ty_body loc in
      check_pattern_matching missing dead loc;
      let ty =
        match filtered_pats with
        | [] -> assert false
        | (_, e) :: l ->
          let ty = e.c.tt_ty in
          List.iter
            (fun (_, e) ->
               if not (Ty.equal ty e.c.tt_ty) then
                 error (ShouldHaveType(e.c.tt_ty, ty)) loc
            )l;
          ty
      in
      TTmatch (e, filtered_pats), ty

    | _ ->
      if call_from_type_form then error SyntaxError loc;
      TTform (type_form env f), Ty.Tbool
  in
  {c = { tt_desc = e ; tt_ty = Ty.shorten ty }; annot = new_id ()}


and join_forall f = match f.pp_desc with
  | PPforall(vs_ty, trs1, hyp1, f) ->
    let tyvars,trs2,hyp2, f = join_forall f in
    vs_ty @ tyvars , trs1@trs2 , hyp1@hyp2, f
  | PPforall_named (named_vs_ty, trs1, hyp1, f) ->
    let vs_ty = List.map (fun (v, _, ty) -> v, ty) named_vs_ty in
    join_forall {f with pp_desc = PPforall (vs_ty, trs1, hyp1, f)}
  | PPnamed(_, f) ->
    join_forall f
  | _ -> [] , [] , [], f

and join_exists f = match f.pp_desc with
  | PPexists (vs_ty, trs1, hyp1, f) ->
    let tyvars,trs2, hyp2,f = join_exists f in
    vs_ty @ tyvars , trs1@trs2, hyp1@hyp2,  f
  | PPexists_named (named_vs_ty, trs1, hyp1, f) ->
    let vs_ty = List.map (fun (v, _, ty) -> v, ty) named_vs_ty in
    join_exists {f with pp_desc = PPexists (vs_ty, trs1, hyp1, f)}
  | PPnamed (_, f) -> join_exists f
  | _ -> [] , [] , [], f


and type_bound env bnd ty ~is_open ~is_lower =
  let bk, ty_x = match bnd.pp_desc with
    | PPvar s ->
      assert (String.length s > 0);
      begin match s.[0] with
        | '?' -> Symbols.VarBnd (Var.of_string s), ty
        | _ ->
          let vx, ty_x = type_var_desc env s bnd.pp_loc in
          let var_x =
            match vx with TTvar Symbols.Var vx -> vx | _ -> assert false
          in
          Symbols.VarBnd var_x, ty_x
      end
    | PPconst num ->
      let ty_x, q =
        try match num with
          | ConstInt s  ->
            Ty.Tint,  Numbers.Q.from_string s
          | ConstReal s ->
            Ty.Treal, Numbers.Q.from_string (Num.string_of_num s)
          | _ -> assert false
        with _ -> assert false (*numbers well constructed with regular exprs*)
      in
      Symbols.ValBnd q, ty_x
    | _ -> assert false
  in
  if not (Ty.equal ty ty_x) then error (ShouldHaveType(ty, ty_x)) bnd.pp_loc;
  Symbols.mk_bound bk ty ~is_open ~is_lower

and mk_ta_eq t1 t2 =
  let c =
    if t1.c.tt_ty != Ty.Tbool then TAeq [t1; t2]
    else
      match t1.c.tt_desc, t2.c.tt_desc with
      | TTconst Ttrue, _  -> TApred (t2, false)
      | _, TTconst Ttrue  -> TApred (t1, false)
      | TTconst Tfalse, _ -> TApred (t2, true)
      | _, TTconst Tfalse -> TApred (t1, true)
      | _ -> TAeq [t1; t2]
  in
  {c ; annot=new_id ()}

and mk_ta_neq t1 t2 =
  let c =
    if t1.c.tt_ty != Ty.Tbool then TAneq [t1; t2]
    else
      match t1.c.tt_desc, t2.c.tt_desc with
      | TTconst Ttrue, _  -> TApred (t2, true)
      | _, TTconst Ttrue  -> TApred (t1, true)
      | TTconst Tfalse, _ -> TApred (t2, false)
      | _, TTconst Tfalse -> TApred (t1, false)
      | _ -> TAneq [t1; t2]
  in
  {c ; annot=new_id ()}

and type_form ?(in_theory=false) env f =
  let rec type_pp_desc pp_desc = match pp_desc with
    | PPconst ConstTrue ->
      Options.tool_req 1 "TR-Typing-True$_F$";
      TFatom {c=TAtrue; annot=new_id ()}
    | PPconst ConstFalse ->
      Options.tool_req 1 "TR-Typing-False$_F$";
      TFatom {c=TAfalse; annot=new_id ()}
    | PPvar p ->
      Options.tool_req 1 "TR-Typing-Var$_F$";
      let res =
        try
          (* allow type cast bool to predicate in some simple situations *)
          let s, ty = Env.find env p in
          Options.tool_req 1 (append_type "TR-Typing-Var$_\\Gamma$ type" ty);
          s, { Env.args = []; result = ty}
        with Not_found ->
          let s, p, kd = Env.fresh_type env p f.pp_loc in
          assert (kd == Env.Other);
          s, p
      in
      let r =
        match res with
        | s, { Env.args = []; result = Ty.Tbool} ->
          let t2 = {c = {tt_desc=TTconst Ttrue;tt_ty=Ty.Tbool};
                    annot = new_id ()} in
          let t1 = {c = {tt_desc=TTvar s; tt_ty=Ty.Tbool};
                    annot = new_id ()} in
          TFatom (mk_ta_eq t1 t2)
        | _ ->
          error (NotAPropVar p) f.pp_loc
      in
      r

    | PPapp(p,args ) ->
      Options.tool_req 1 "TR-Typing-App$_F$";
      let te_args = List.map (type_term env) args in
      let lt_args =  List.map (fun { c = { tt_ty = t; _}; _ } -> t) te_args in
      let s , { Env.args = lt; result }, kd = Env.fresh_type env p f.pp_loc in
      begin
        try
          if result != Ty.Tbool then (* consider polymorphic functions *)
            Ty.unify result Ty.Tbool;
          try
            List.iter2 Ty.unify lt lt_args;
            let app = mk_adequate_app p s te_args result kd in
            let r =
              let t1 = {
                c = {tt_desc=app; tt_ty=Ty.Tbool};
                annot=new_id (); }
              in
              TFatom { c = TApred (t1, false); annot=new_id () }
            in
            r
          with
          | Ty.TypeClash(t1,t2) ->
            error (Unification(t1,t2)) f.pp_loc
          | Invalid_argument _ ->
            error (WrongNumberofArgs p) f.pp_loc
        with Ty.TypeClash _ -> error (NotAPredicate p) f.pp_loc
      end

    | PPdistinct (args) ->
      Options.tool_req 1 "TR-Typing-Distinct$_F$";
      let r =
        begin
          let te_args = List.map (type_term env) args in
          let lt_args =  List.map (
              fun { c = { tt_ty = t; _ }; _ } -> t
            ) te_args in
          try
            let t = match lt_args with
              | t::_ -> t
              | [] ->
                error (WrongNumberofArgs "distinct") f.pp_loc
            in
            List.iter (Ty.unify t) lt_args;
            TFatom { c = TAdistinct te_args; annot=new_id () }
          with
          | Ty.TypeClash(t1,t2) -> error (Unification(t1,t2)) f.pp_loc
        end
      in r

    | PPinfix
        ({ pp_desc = PPinfix (_, (PPlt|PPle|PPgt|PPge|PPeq|PPneq), a); _ } as p,
         (PPlt | PPle | PPgt | PPge | PPeq | PPneq as r), b) ->
      Options.tool_req 1 "TR-Typing-OpComp$_F$";
      let r =
        let q = { pp_desc = PPinfix (a, r, b); pp_loc = f.pp_loc } in
        let f1 = type_form env p in
        let f2 = type_form env q in
        TFop(OPand, [f1;f2])
      in r
    | PPinfix(t1, (PPeq | PPneq as op), t2) ->
      Options.tool_req 1 "TR-Typing-OpBin$_F$";
      let r =
        let tt1 = type_term env t1 in
        let tt2 = type_term env t2 in
        try
          Ty.unify tt1.c.tt_ty tt2.c.tt_ty;
          match op with
          | PPeq -> TFatom (mk_ta_eq tt1 tt2)
          | PPneq -> TFatom (mk_ta_neq tt1 tt2)
          | _ -> assert false
        with Ty.TypeClash(t1,t2) -> error (Unification(t1,t2)) f.pp_loc
      in r
    | PPinfix(t1, (PPlt | PPgt | PPge | PPle as op), t2) ->
      Options.tool_req 1 "TR-Typing-OpComp$_F$";
      let r =
        let tt1 = type_term env t1 in
        let tt2 = type_term env t2 in
        try
          Ty.unify tt1.c.tt_ty tt2.c.tt_ty;
          let ty = Ty.shorten tt1.c.tt_ty in
          match ty with
          | Ty.Tint | Ty.Treal ->
            let top =
              match op with
              | PPlt -> TAlt [tt1; tt2]
              | PPgt -> TAlt [tt2; tt1]
              | PPle -> TAle [tt1; tt2]
              | PPge -> TAle [tt2; tt1]
              | PPeq -> TAeq [tt1; tt2]
              | PPneq -> TAneq [tt1; tt2]
              | _ -> assert false
            in
            TFatom {c = top; annot=new_id ()}
          | _ -> error (ShouldHaveTypeIntorReal ty) t1.pp_loc
        with Ty.TypeClash(t1,t2) -> error (Unification(t1,t2)) f.pp_loc
      in r

    | PPisConstr (t,lbl) ->
      let tt = type_term env t in
      let _s, {Env.args = _lt; result}, kind =
        Env.fresh_type env lbl f.pp_loc in
      begin
        try
          Ty.unify tt.c.tt_ty result;
          let result = Ty.shorten result in
          match kind with
          | Env.AdtConstr ->
            let top = TTisConstr (tt, Hstring.make lbl) in
            let r = TFatom {c = top; annot=new_id ()} in
            r
          | _ -> error (NotAdtConstr (lbl, result)) f.pp_loc
        with Ty.TypeClash(t1,t2) -> error (Unification(t1,t2)) f.pp_loc
      end

    | PPinfix(f1,op ,f2) ->
      Options.tool_req 1 "TR-Typing-OpConnectors$_F$";
      begin
        let f1 = type_form env f1 in
        let f2 = type_form env f2 in
        (match op with
         | PPand ->
           TFop(OPand,[f1;f2])
         | PPor -> TFop(OPor,[f1;f2])
         | PPxor -> TFop(OPxor,[f1;f2])
         | PPimplies -> TFop(OPimp,[f1;f2])
         | PPiff -> TFop(OPiff,[f1;f2])
         | _ -> assert false)
      end
    | PPprefix(PPnot,f) ->
      Options.tool_req 1 "TR-Typing-OpNot$_F$";
      let f = type_form env f in
      TFop(OPnot,[f])
    | PPif(f1,f2,f3) ->
      Options.tool_req 1 "TR-Typing-Ite$_F$";
      let f1 = type_form env f1 in
      let f2 = type_form env f2 in
      let f3 = type_form env f3 in
      TFop(OPif, [f1; f2;f3])
    | PPnamed(lbl,f) ->
      let f = type_form env f in
      let lbl = Hstring.make lbl in
      TFnamed(lbl, f)
    | PPforall _ | PPexists _ ->
      let ty_vars, triggers, hyp, f' =
        match pp_desc with
        | PPforall(vs_ty,triggers,hyp,f') ->
          let ty_vars, triggers', hyp', f' = join_forall f' in
          vs_ty @ ty_vars, triggers@triggers', hyp @ hyp', f'
        | PPexists(vs_ty,triggers,hyp,f') ->
          let ty_vars, triggers', hyp', f' = join_exists f' in
          vs_ty @ ty_vars, triggers@triggers', hyp @ hyp', f'
        | _ -> assert false
      in
      let env' =
        List.fold_left
          (fun env (v, pp_ty) ->
             Env.add_var env [v] pp_ty f.pp_loc) env ty_vars in
      let f' = type_form env' f' in
      let ty_triggers =
        List.map (fun (tr, b) -> type_trigger in_theory env' tr, b) triggers in
      let qf_hyp = List.map (fun h -> type_form env' h) hyp in
      let upbvars = Env.list_of env in
      let bvars =
        List.fold_left
          (fun acc (v,_) ->
             let ty = Env.find env' v in
             ty :: acc) [] ty_vars
      in
      let qf_form = {
        qf_upvars = upbvars ;
        qf_bvars = bvars ;
        qf_triggers = ty_triggers ;
        qf_hyp = qf_hyp;
        qf_form = f'}
      in
      (match pp_desc with
       | PPforall _ ->
         Options.tool_req 1 "TR-Typing-Forall$_F$";
         TFforall qf_form
       | PPexists _ ->
         Options.tool_req 1 "TR-Typing-Exists$_F$";
         TFexists qf_form
       | _ -> assert false)
    | PPlet (binders,f) ->
      Options.tool_req 1 "TR-Typing-Let$_F$";
      let _ =
        List.fold_left (fun z (sy,_) ->
            if Util.SS.mem sy z then error (DuplicatePattern sy) f.pp_loc;
            Util.SS.add sy z
          )Util.SS.empty binders
      in
      let binders =
        List.fold_left
          (fun (binders) (sy, e) ->
             let xx, tty =
               try
                 (* try to type e as a term *)
                 let { c = { tt_ty = ttype; _ }; _} as tt = type_term env e in
                 TletTerm tt, ttype
               with _ ->
                 (* try to type e as a form *)
                 let fzz = type_form env e in
                 TletForm fzz, Ty.Tbool
             in
             (sy, Symbols.var @@ Var.of_string sy, xx, tty):: binders
          )[] binders
      in
      let up = Env.list_of env in
      let env =
        List.fold_left
          (fun env (v, sv, _, ty) ->
             {env with Env.var_map = MString.add v (sv, ty) env.Env.var_map}
          ) env binders
      in
      let f = type_form env f in
      let binders =
        List.fold_left
          (fun binders (_,sv,e,_) -> (sv, e) :: binders)
          [] binders
      in
      TFlet (up ,binders, f)

    (* Remove labels : *)
    | PPforall_named (vs_tys, trs, hyp, f) ->
      let vs_tys = List.map (fun (v, _, ty) -> v, ty) vs_tys in
      type_pp_desc (PPforall (vs_tys, trs, hyp, f))
    | PPexists_named (vs_tys, trs, hyp, f) ->
      let vs_tys = List.map (fun (v, _, ty) -> v, ty) vs_tys in
      type_pp_desc (PPexists (vs_tys, trs, hyp, f))

    | PPcheck _ | PPcut _ -> assert false

    | PPmatch (e, pats) ->
      let e = type_term env e in
      let ty = e.c.tt_ty in
      let ty_body = match ty with
        | Ty.Tadt (name, params) ->
          begin match Ty.type_body name params with
            | Ty.Adt cases -> cases
          end
        | Ty.Trecord { Ty.record_constr; lbs; _ } ->
          [{Ty.constr = record_constr ; destrs = lbs}]

        | Ty.Tsum (_,l) ->
          List.map (fun e -> {Ty.constr = e ; destrs = []}) l
        | _ ->
          error (ShouldBeADT ty) f.pp_loc
      in
      let pats =
        List.rev @@
        List.rev_map
          (fun (p, v) ->
             let p, env = type_pattern p env ty ty_body in
             p, type_form env v
          ) pats
      in
      let missing, filtered_pats, dead =
        filter_patterns pats ty_body f.pp_loc
      in
      check_pattern_matching missing dead f.pp_loc;
      TFmatch (e, filtered_pats)

    | _ ->
      let te1 = type_term env f in
      let ty = te1.c.tt_ty in
      match ty with
      | Ty.Tbool ->
        let te2 = {c = {tt_desc=TTconst Ttrue;tt_ty=Ty.Tbool};
                   annot = new_id ()}
        in
        TFatom (mk_ta_eq te1 te2)
      | _ -> error ShouldHaveTypeProp f.pp_loc
  in
  let form = type_pp_desc f.pp_desc in
  {c = form; annot = new_id ()}

and type_pattern p env ty ty_body =
  let {pat_loc ; pat_desc = (f, args) } = p in
  check_no_duplicates pat_loc args;
  let hf = Hstring.make f in
  try
    let prof = Ty.assoc_destrs hf ty_body in
    let env =
      try
        List.fold_left2
          (fun env v (_, ty) -> Env.add_ty_var env [v] ty) env args prof
      with
        Invalid_argument _ -> error (WrongNumberofArgs f) pat_loc
    in
    let args =
      List.map2
        (fun v (destr, _) ->
           let tv, ty = type_var_desc env v pat_loc in
           let var_v =
             match tv with TTvar Symbols.Var vx -> vx | _ -> assert false
           in
           var_v, destr, ty
        )args prof
    in
    Constr { name = hf ; args = args }, env
  with Not_found ->
    if args != [] then error (NotAdtConstr (f, ty)) pat_loc;
    let env = Env.add_ty_var env [f] ty in
    let tv, _ = type_var_desc env f pat_loc in
    let var_f =
      match tv with TTvar Symbols.Var vx -> vx | _ -> assert false
    in
    Var var_f, env

and type_trigger in_theory env l =
  List.map
    (fun t ->
       match in_theory, t.pp_desc with
       | false, PPinInterval _ -> error ThSemTriggerError t.pp_loc
       | false, PPmapsTo _ -> error ThSemTriggerError t.pp_loc
       | true, PPinInterval (e, a,b, c, d) ->
         let te = type_term env e in
         let tt_ty = te.c.tt_ty in
         let tb = type_bound env b tt_ty ~is_open:a ~is_lower:true in
         let tc = type_bound env c tt_ty ~is_open:d ~is_lower:false in
         { c = { tt_desc = TTinInterval(te, tb , tc) ; tt_ty = Ty.Tbool};
           annot = new_id ()}

       | true, PPmapsTo (x, e) ->
         let vx, ty_x = type_var_desc env x t.pp_loc in
         let hs_x =
           match vx with TTvar Symbols.Var hs -> hs | _ -> assert false
         in
         let te = type_term env e in
         let tt_ty = te.c.tt_ty in
         if not (Ty.equal tt_ty ty_x) then
           error (ShouldHaveType(ty_x,tt_ty)) t.pp_loc;
         { c = { tt_desc = TTmapsTo(hs_x, te) ; tt_ty = Ty.Tbool};
           annot = new_id ()}

       | _ ->
         try type_term env t
         with Error _ ->
           ignore (type_form env t);
           if Options.verbose () then
             fprintf fmt
               "; %a The given trigger is not a term and is ignored@."
               Loc.report t.pp_loc;
           (* hack to typecheck *)
           type_term env {t with pp_desc = PPconst ConstVoid}
    )l

let make_rules loc f = match f.c with
  | TFforall { qf_bvars = vars;
               qf_form = { c = TFatom { c = TAeq [t1; t2]; _ }; _ }; _ } ->
    {rwt_vars = vars; rwt_left = t1; rwt_right = t2}
  | TFatom { c = TAeq [t1; t2]; _} ->
    {rwt_vars = []; rwt_left = t1; rwt_right = t2}
  | _ -> error SyntaxError loc


let fresh_var =
  let cpt = ref 0 in
  fun x -> incr cpt; ("_"^x^(string_of_int !cpt))

let rec no_alpha_renaming_b ((up, m) as s) f =
  match f.pp_desc with
  | PPvar x ->
    (try
       let y = MString.find x m in
       assert (String.compare x y <> 0);
       raise Exit
     with Not_found -> ())

  | PPmapsTo(x, e) ->
    (try
       let y = MString.find x m in
       assert (String.compare x y <> 0);
       raise Exit
     with Not_found -> ());
    no_alpha_renaming_b s e

  | PPapp(_, l) ->
    List.iter (no_alpha_renaming_b s) l

  | PPinInterval(e, _,_,_,_) ->
    no_alpha_renaming_b s e

  | PPdistinct l ->
    List.iter (no_alpha_renaming_b s) l

  | PPconst _ -> ()

  | PPinfix(f1, _, f2) ->
    no_alpha_renaming_b s f1; no_alpha_renaming_b s f2

  | PPprefix(_, f1) ->
    no_alpha_renaming_b s f1

  | PPget(f1,f2) ->
    no_alpha_renaming_b s f1; no_alpha_renaming_b s f2


  | PPset(f1, f2, f3) ->
    no_alpha_renaming_b s f1;
    no_alpha_renaming_b s f2;
    no_alpha_renaming_b s f3


  | PPextract(f1, f2, f3) ->
    no_alpha_renaming_b s f1;
    no_alpha_renaming_b s f2;
    no_alpha_renaming_b s f3

  | PPconcat(f1, f2) ->
    no_alpha_renaming_b s f1; no_alpha_renaming_b s f2

  | PPif(f1, f2, f3) ->
    no_alpha_renaming_b s f1;
    no_alpha_renaming_b s f2;
    no_alpha_renaming_b s f3

  | PPnamed(_, f1) ->
    no_alpha_renaming_b s f1

  | PPdot(f1, _) ->
    no_alpha_renaming_b s f1

  | PPrecord l ->
    List.iter (fun (_,e) -> no_alpha_renaming_b s e) l

  | PPwith(e, l) ->
    List.iter (fun (_,e) -> no_alpha_renaming_b s e) l;
    no_alpha_renaming_b s e

  | PPlet(l, f2) ->
    let _ =
      List.fold_left (fun z (sy,_) ->
          if Util.SS.mem sy z then error (DuplicatePattern sy) f.pp_loc;
          Util.SS.add sy z
        )Util.SS.empty l
    in
    List.iter (fun (_, f) -> no_alpha_renaming_b s f) l;
    let s =
      List.fold_left
        (fun (up, m) (x, _) ->
           if S.mem x up then
             let nx = fresh_var x in
             let m = MString.add x nx m in
             (S.add nx up, m)
           else (S.add x up, m)
        )(up, m) l
    in
    no_alpha_renaming_b s f2

  | PPcheck f' ->
    no_alpha_renaming_b s f'

  | PPcut f' ->
    no_alpha_renaming_b s f'

  | PPcast (f',_) ->
    no_alpha_renaming_b s f'

  | PPforall(xs, trs, hyp, f1) ->
    let xs1, xs2 = List.partition (fun (x, _) -> S.mem x up) xs in
    let nv = List.map (fun (x, ty) -> fresh_var x, ty) xs1 in
    let m = List.fold_left2
        (fun m (x, _) (nx, _) -> MString.add x nx m) m xs1 nv in
    let xs = nv @ xs2 in
    let up = List.fold_left (fun up (x, _) -> S.add x up) up xs in
    let s = (up, m) in
    List.iter (no_alpha_renaming_b s) hyp;
    no_alpha_renaming_b s f1;
    List.iter (fun (l, _) -> List.iter (no_alpha_renaming_b s) l) trs

  | PPforall_named (xs, trs, hyp, f1) ->
    let xs1, xs2 = List.partition (fun (x, _, _) -> S.mem x up) xs in
    let nv = List.map (fun (x, lbl, ty) -> fresh_var x, lbl, ty) xs1 in
    let m = List.fold_left2
        (fun m (x, _, _) (nx, _, _) -> MString.add x nx m) m xs1 nv in
    let xs = nv @ xs2 in
    let up = List.fold_left (fun up (x, _, _) -> S.add x up) up xs in
    let s = (up, m) in
    List.iter (no_alpha_renaming_b s) hyp;
    no_alpha_renaming_b s f1;
    List.iter (fun (l, _) -> List.iter (no_alpha_renaming_b s) l) trs

  | PPexists(lx, trs, hyp, f1) ->
    let s, _ =
      List.fold_left
        (fun (_, lx) (x, _) ->
           if S.mem x up then
             let nx = fresh_var x in
             let m = MString.add x nx m in
             let up = S.add nx up in
             (up, m), nx :: lx
           else
             (S.add x up, m), x :: lx)
        (s, []) lx
    in
    no_alpha_renaming_b s f1;
    List.iter (no_alpha_renaming_b s) hyp;
    List.iter (fun (l, _) -> List.iter (no_alpha_renaming_b s) l) trs

  | PPexists_named (lx, trs, hyp, f1) ->
    let s, _ =
      List.fold_left
        (fun (_, lx) (x, _, _) ->
           if S.mem x up then
             let nx = fresh_var x in
             let m = MString.add x nx m in
             let up = S.add nx up in
             (up, m), nx :: lx
           else
             (S.add x up, m), x :: lx)
        (s, []) lx
    in
    no_alpha_renaming_b s f1;
    List.iter (no_alpha_renaming_b s) hyp;
    List.iter (fun (l, _) -> List.iter (no_alpha_renaming_b s) l) trs

  | PPmatch(e, cases) ->
    no_alpha_renaming_b s e;
    List.iter (fun (_, e) -> no_alpha_renaming_b s e) cases

  | PPisConstr (e, _) ->
    no_alpha_renaming_b s e

  | PPproject (_, e, _) ->
    no_alpha_renaming_b s e


let rec alpha_renaming_b ((up, m) as s) f =
  match f.pp_desc with
  | PPvar x ->
    (try
       let y = MString.find x m in
       assert (String.compare x y <> 0);
       {f with pp_desc = PPvar y}
     with Not_found -> f)

  | PPmapsTo (x, e) ->
    let x' =
      try
        let y = MString.find x m in
        assert (String.compare x y <> 0);
        y
      with Not_found -> x
    in
    let e' = alpha_renaming_b s e in
    if x == x' && e == e' then f
    else {f with pp_desc = PPmapsTo(x', e')}

  | PPapp(k, l) ->
    let l2 = List.rev (List.rev_map (alpha_renaming_b s) l) in
    if List.for_all2 (fun a b -> a == b) l l2 then f
    else {f with pp_desc = PPapp(k, l2)}

  | PPinInterval (e,a,b,c,d) ->
    let e' = alpha_renaming_b s e in
    if e == e' then e
    else {f with pp_desc = PPinInterval(e', a,b,c,d)}

  | PPdistinct l ->
    let l2 = List.rev (List.rev_map (alpha_renaming_b s) l) in
    if List.for_all2 (fun a b -> a == b) l l2 then f
    else {f with pp_desc = PPdistinct l2}

  | PPconst _ -> f

  | PPinfix(f1, op, f2) ->
    let ff1 = alpha_renaming_b s f1 in
    let ff2 = alpha_renaming_b s f2 in
    if f1 == ff1 && f2 == ff2 then f
    else {f with pp_desc = PPinfix(ff1, op, ff2)}

  | PPprefix(op, f1) ->
    let ff1 = alpha_renaming_b s f1 in
    if f1 == ff1 then f
    else {f with pp_desc = PPprefix(op, ff1)}

  | PPget(f1,f2) ->
    let ff1 = alpha_renaming_b s f1 in
    let ff2 = alpha_renaming_b s f2 in
    if f1 == ff1 && f2 == ff2 then f
    else {f with pp_desc = PPget(ff1, ff2)}

  | PPset(f1, f2, f3) ->
    let ff1 = alpha_renaming_b s f1 in
    let ff2 = alpha_renaming_b s f2 in
    let ff3 = alpha_renaming_b s f3 in
    if f1 == ff1 && f2 == ff2 && f3 == ff3 then f
    else {f with pp_desc = PPset(ff1, ff2, ff3)}

  | PPextract(f1, f2, f3) ->
    let ff1 = alpha_renaming_b s f1 in
    let ff2 = alpha_renaming_b s f2 in
    let ff3 = alpha_renaming_b s f3 in
    if f1 == ff1 && f2 == ff2 && f3 == ff3 then f
    else {f with pp_desc = PPextract(ff1, ff2, ff3)}

  | PPconcat(f1, f2) ->
    let ff1 = alpha_renaming_b s f1 in
    let ff2 = alpha_renaming_b s f2 in
    if ff1 == f1 && ff2 == f2 then f
    else {f with pp_desc = PPconcat(ff1, ff2)}

  | PPif(f1, f2, f3) ->
    let ff1 = alpha_renaming_b s f1 in
    let ff2 = alpha_renaming_b s f2 in
    let ff3 = alpha_renaming_b s f3 in
    if f1 == ff1 && f2 == ff2 && f3 == ff3 then f
    else {f with pp_desc = PPif(ff1, ff2, ff3)}

  | PPnamed(n, f1) ->
    let ff1 = alpha_renaming_b s f1 in
    if f1 == ff1 then f
    else {f with pp_desc = PPnamed(n, ff1)}

  | PPdot(f1, a) ->
    let ff1 = alpha_renaming_b s f1 in
    if f1 == ff1 then f
    else {f with pp_desc = PPdot(ff1, a)}

  | PPrecord l ->
    let l2 =
      List.rev (List.rev_map (fun (a,e) -> a, alpha_renaming_b s e) l) in
    if List.for_all2 (fun a b -> a == b) l l2 then f
    else {f with pp_desc = PPrecord l2}

  | PPwith(e, l) ->
    let l2 =
      List.rev (List.rev_map (fun (a,e) -> a, alpha_renaming_b s e) l) in
    let ee = alpha_renaming_b s e in
    if List.for_all2 (fun a b -> a == b) l l2 && e == ee then f
    else {f with pp_desc = PPwith(ee, l2)}

  | PPlet(l, f2) ->
    let _ =
      List.fold_left (fun z (sy,_) ->
          if Util.SS.mem sy z then error (DuplicatePattern sy) f.pp_loc;
          Util.SS.add sy z
        )Util.SS.empty l
    in
    let same_fi = ref true in
    let rev_l =
      List.rev_map (fun (x, f1) ->
          let ff1 = alpha_renaming_b s f1 in
          same_fi := !same_fi && f1 == ff1;
          x, ff1
        ) l
    in
    let s, l =
      List.fold_left
        (fun ((up,m), l) (x, f1) ->
           if S.mem x up then
             let nx = fresh_var x in
             let m = MString.add x nx m in
             (S.add nx up, m), (nx, f1) :: l
           else
             (S.add x up, m), (x, f1) :: l
        )((up,m), []) rev_l
    in
    let ff2 = alpha_renaming_b s f2 in
    if !same_fi && f2 == ff2 then f
    else {f with pp_desc = PPlet(l, ff2)}

  | PPcheck f' ->
    let ff = alpha_renaming_b s f' in
    if f' == ff then f
    else {f with pp_desc = PPcheck ff}

  | PPcut f' ->
    let ff = alpha_renaming_b s f' in
    if f' == ff then f
    else {f with pp_desc = PPcut ff}

  | PPcast (f',ty) ->
    let ff = alpha_renaming_b s f' in
    if f' == ff then f
    else {f with pp_desc = PPcast (ff,ty)}

  | PPforall(xs, trs, hyp, f1) ->
    let xs1, xs2 = List.partition (fun (x, _) -> S.mem x up) xs in
    let nv = List.map (fun (x, ty) -> fresh_var x, ty) xs1 in
    let m = List.fold_left2
        (fun m (x, _) (nx, _) -> MString.add x nx m) m xs1 nv in
    let xs = nv @ xs2 in
    let up = List.fold_left (fun up (x, _) -> S.add x up) up xs in
    let s = (up, m) in
    let ff1 = alpha_renaming_b s f1 in
    let trs2 =
      List.map (fun (l, tuser) ->
          List.map (alpha_renaming_b s) l, tuser) trs
    in
    let hyp2 = List.map (alpha_renaming_b s) hyp in
    if f1==ff1 && List.for_all2 (fun a b -> a==b) trs trs2
       && List.for_all2 (fun a b -> a==b) hyp hyp2 then f
    else {f with pp_desc = PPforall(xs, trs2, hyp2, ff1)}

  | PPforall_named (xs, trs, hyp, f1) ->
    let xs1, xs2 = List.partition (fun (x, _, _) -> S.mem x up) xs in
    let nv = List.map (fun (x, lbl, ty) -> fresh_var x, lbl, ty) xs1 in
    let m = List.fold_left2
        (fun m (x, _, _) (nx, _, _) -> MString.add x nx m) m xs1 nv in
    let xs = nv @ xs2 in
    let up = List.fold_left (fun up (x, _, _) -> S.add x up) up xs in
    let s = (up, m) in
    let ff1 = alpha_renaming_b s f1 in
    let trs2 =
      List.map (fun (l, tuser) ->
          List.map (alpha_renaming_b s) l, tuser) trs
    in
    let hyp2 = List.map (alpha_renaming_b s) hyp in
    if f1==ff1 && List.for_all2 (fun a b -> a==b) trs trs2
       && List.for_all2 (fun a b -> a==b) hyp hyp2 then f
    else {f with pp_desc = PPforall_named (xs, trs2, hyp2, ff1)}

  | PPexists(lx, trs, hyp, f1) ->
    let s, lx =
      List.fold_left
        (fun (_, lx) (x, ty) ->
           if S.mem x up then
             let nx = fresh_var x in
             let m = MString.add x nx m in
             let up = S.add nx up in
             (up, m), (nx, ty) :: lx
           else
             (S.add x up, m), (x, ty) :: lx)
        (s, []) lx
    in
    let trs2 =
      List.map
        (fun (l, tuser) -> List.map (alpha_renaming_b s) l, tuser) trs
    in
    let ff1 = alpha_renaming_b s f1 in
    let hyp2 = List.map (alpha_renaming_b s) hyp in
    if f1==ff1 && List.for_all2 (fun a b -> a==b) trs trs2
       && List.for_all2 (fun a b -> a==b) hyp hyp2 then f
    else {f with pp_desc = PPexists(lx, trs2, hyp2, ff1)}

  | PPexists_named (lx, trs, hyp, f1) ->
    let s, lx =
      List.fold_left
        (fun (_, lx) (x, lbl, ty) ->
           if S.mem x up then
             let nx = fresh_var x in
             let m = MString.add x nx m in
             let up = S.add nx up in
             (up, m), (nx, lbl, ty) :: lx
           else
             (S.add x up, m), (x, lbl, ty) :: lx)
        (s, []) lx
    in
    let ff1 = alpha_renaming_b s f1 in
    let trs2 =
      List.map
        (fun (l, tuser) -> List.map (alpha_renaming_b s) l, tuser) trs
    in
    let hyp2 = List.map (alpha_renaming_b s) hyp in
    if f1==ff1 && List.for_all2 (fun a b -> a==b) trs trs2
       && List.for_all2 (fun a b -> a==b) hyp hyp2 then f
    else {f with pp_desc = PPexists_named (lx, trs2, hyp2, ff1)}

  | PPmatch(e, cases) ->
    let e' = alpha_renaming_b s e in
    let same_cases = ref true in
    let cases' =
      List.map
        (fun (p, e) ->
           let e' = alpha_renaming_b s e in
           same_cases := !same_cases && e == e';
           p, e'
        ) cases
    in
    if !same_cases && e == e' then f
    else
      let cases' = if !same_cases then cases else cases' in
      { f with pp_desc = PPmatch(e', cases') }

  | PPproject(grded, f1, a) ->
    let ff1 = alpha_renaming_b s f1 in
    if f1 == ff1 then f
    else {f with pp_desc = PPproject(grded, ff1, a)}

  | PPisConstr(f1, a) ->
    let ff1 = alpha_renaming_b s f1 in
    if f1 == ff1 then f
    else {f with pp_desc = PPisConstr(ff1, a)}


let alpha_renaming_b s f =
  try no_alpha_renaming_b s f; f
  with Exit -> alpha_renaming_b s f

let alpha_renaming_env env =
  let up = MString.fold (fun s _ up -> S.add s up)
      env.Env.logics S.empty in
  let up = MString.fold (fun s _ up -> S.add s up) env.Env.var_map up in
  alpha_renaming_b (up, MString.empty)


let rec elim_toplevel_forall env bnot f =
  (* bnot = true : nombre impaire de not *)
  match f.pp_desc with
  | PPforall (lv, _, _, f) when bnot ->
    let env = List.fold_left (fun env (v, ty) ->
        Env.add_names env [v] ty f.pp_loc
      ) env lv in
    elim_toplevel_forall env bnot f

  | PPforall_named (lvb, _, _, f) when bnot->
    let env = List.fold_left (fun env (v, lbl, ty) ->
        Env.add_names_lbl env [v, lbl] ty f.pp_loc
      ) env lvb in
    elim_toplevel_forall env bnot f

  | PPinfix (f1, PPand, f2) when not bnot ->
    let f1 , env = elim_toplevel_forall env false f1 in
    let f2 , env = elim_toplevel_forall env false
        (alpha_renaming_env env f2) in
    { f with pp_desc = PPinfix(f1, PPand , f2)}, env

  | PPinfix (f1, PPor, f2) when bnot ->
    let f1 , env = elim_toplevel_forall env true f1 in
    let f2 , env = elim_toplevel_forall env true
        (alpha_renaming_env env f2) in
    { f with pp_desc = PPinfix(f1, PPand , f2)}, env

  | PPinfix (f1, PPimplies, f2) when bnot ->
    let f1 , env = elim_toplevel_forall env false f1 in
    let f2 , env = elim_toplevel_forall env true
        (alpha_renaming_env env f2) in
    { f with pp_desc = PPinfix(f1,PPand,f2)}, env

  | PPprefix (PPnot, f) -> elim_toplevel_forall env (not bnot) f


  | _ when bnot ->
    { f with pp_desc = PPprefix (PPnot, f) }, env

  | _  -> f , env


let rec intro_hypothesis env valid_mode f =
  match f.pp_desc with
  | PPinfix(f1,PPimplies,f2) when valid_mode ->
    let ((_, env) as f1_env) =
      elim_toplevel_forall env (not valid_mode) f1 in
    let axioms, goal = intro_hypothesis env valid_mode
        (alpha_renaming_env env f2) in
    f1_env::axioms, goal
  (*    | PPlet(var,{pp_desc=PPcast(t1,ty); pp_loc = ty_loc},f2) ->
        let env = Env.add_names env [var] ty ty_loc in
        let var = {pp_desc = PPvar var; pp_loc = f.pp_loc} in
        let feq = {pp_desc = PPinfix(var,PPeq,t1); pp_loc = f.pp_loc} in
        let axioms, goal = intro_hypothesis env valid_mode
          (alpha_renaming_env env f2) in
        (feq,env)::axioms, goal
  *)
  | PPforall (lv, _, _, f) when valid_mode ->
    let env = List.fold_left (fun env (v, ty) ->
        Env.add_names env [v] ty f.pp_loc
      ) env lv in
    intro_hypothesis env valid_mode f
  | PPexists (lv, _, _, f) when not valid_mode->
    let env = List.fold_left (fun env (v, ty) ->
        Env.add_names env [v] ty f.pp_loc
      ) env lv in
    intro_hypothesis env valid_mode f
  | PPforall_named (lvb, _, _, f) when valid_mode ->
    let env = List.fold_left (fun env (v, lbl, ty) ->
        Env.add_names_lbl env [v, lbl] ty f.pp_loc
      ) env lvb in
    intro_hypothesis env valid_mode f
  | PPexists_named (lvb, _, _, f) when not valid_mode->
    let env = List.fold_left (fun env (v, lbl, ty) ->
        Env.add_names_lbl env [v, lbl] ty f.pp_loc
      ) env lvb in
    intro_hypothesis env valid_mode f
  | _ ->
    let f_env = elim_toplevel_forall env valid_mode f in
    [] , f_env

let fresh_check_name =
  let cpt = ref 0 in fun () -> incr cpt; "check_"^(string_of_int !cpt)

let fresh_cut_name =
  let cpt = ref 0 in fun () -> incr cpt; "cut_"^(string_of_int !cpt)

let check_duplicate_params l =
  let rec loop l acc =
    match l with
    | [] -> ()
    | (loc,x,_)::rem ->
      if List.mem x acc then
        error (ClashParam x) loc
      else loop rem (x::acc)
  in
  loop l []

let rec make_pred loc trs f = function
    [] ->  f
  | [x,t] ->
    { pp_desc = PPforall([x,t],trs,[],f) ; pp_loc = loc }
  | (x,t)::l ->
    { pp_desc = PPforall([x,t],[],[],(make_pred loc trs f l)) ;
      pp_loc = loc }

let monomorphize_var (s,ty) = s, Ty.monomorphize ty

let rec mono_term {c = {tt_ty=tt_ty; tt_desc=tt_desc}; annot = id} =
  let tt_desc = match tt_desc with
    | TTconst _ | TTvar _ ->
      tt_desc
    | TTinfix (t1, sy, t2) ->
      TTinfix(mono_term t1, sy, mono_term t2)
    | TTprefix (sy,t) ->
      TTprefix(sy, mono_term t)
    | TTapp (sy,tl) ->
      TTapp (sy, List.map mono_term tl)
    | TTinInterval (e, lb, ub) ->
      TTinInterval(mono_term e, lb, ub)
    | TTmapsTo (x, e) ->
      TTmapsTo(x, mono_term e)
    | TTget (t1,t2) ->
      TTget (mono_term t1, mono_term t2)
    | TTset (t1,t2,t3) ->
      TTset(mono_term t1, mono_term t2, mono_term t3)
    | TTextract (t1,t2,t3) ->
      TTextract(mono_term t1, mono_term t2, mono_term t3)
    | TTconcat (t1,t2)->
      TTconcat (mono_term t1, mono_term t2)
    | TTdot (t1, a) ->
      TTdot (mono_term t1, a)
    | TTrecord lbs ->
      TTrecord (List.map (fun (x, t) -> x, mono_term t) lbs)
    | TTlet (l,t2)->
      let l = List.rev_map (fun (x, t1) -> x, mono_term t1) (List.rev l) in
      TTlet (l, mono_term t2)
    | TTnamed (lbl, t)->
      TTnamed (lbl, mono_term t)
    | TTite (cond, t1, t2) ->
      TTite (monomorphize_form cond, mono_term t1, mono_term t2)

    | TTproject (grded, t, lbl) ->
      TTproject (grded, mono_term t, lbl)
    | TTmatch (e, pats) ->
      let e = mono_term e in
      let pats = List.rev_map (fun (p, f) -> p, mono_term f) (List.rev pats) in
      TTmatch (e, pats)

    | TTform f -> TTform (monomorphize_form f)

  in
  { c = {tt_ty = Ty.monomorphize tt_ty; tt_desc=tt_desc}; annot = id}


and monomorphize_atom tat =
  let c = match tat.c with
    | TAtrue | TAfalse -> tat.c
    | TAeq tl -> TAeq (List.map mono_term tl)
    | TAneq tl -> TAneq (List.map mono_term tl)
    | TAle tl -> TAle (List.map mono_term tl)
    | TAlt tl -> TAlt (List.map mono_term tl)
    | TAdistinct tl -> TAdistinct (List.map mono_term tl)
    | TApred (t, negated) -> TApred (mono_term t, negated)
    | TTisConstr (t, lbl) -> TTisConstr (mono_term t, lbl)
  in
  { tat with c = c }

and monomorphize_form tf =
  let c = match tf.c with
    | TFatom tat -> TFatom (monomorphize_atom tat)
    | TFop (oplogic , tfl) ->
      TFop(oplogic, List.map monomorphize_form tfl)
    | TFforall qf ->
      TFforall
        {  qf_bvars = List.map monomorphize_var qf.qf_bvars;
           qf_upvars = List.map monomorphize_var qf.qf_upvars;
           qf_hyp = List.map monomorphize_form qf.qf_hyp;
           qf_form = monomorphize_form qf.qf_form;
           qf_triggers =
             List.map (fun (l, b) -> List.map mono_term l, b) qf.qf_triggers}
    | TFexists qf ->
      TFexists
        {  qf_bvars = List.map monomorphize_var qf.qf_bvars;
           qf_upvars = List.map monomorphize_var qf.qf_upvars;
           qf_hyp = List.map monomorphize_form qf.qf_hyp;
           qf_form = monomorphize_form qf.qf_form;
           qf_triggers =
             List.map (fun (l, b) -> List.map mono_term l, b) qf.qf_triggers}

    | TFlet (l, binders, tf) ->
      let l = List.map monomorphize_var l in
      let binders =
        List.rev_map
          (fun (sy, e) ->
             match e with
             | TletTerm tt -> sy, TletTerm (mono_term tt)
             | TletForm ff -> sy, TletForm (monomorphize_form ff)
          )(List.rev binders)
      in
      TFlet(l, binders, monomorphize_form tf)

    | TFnamed (hs,tf) ->
      TFnamed(hs, monomorphize_form tf)

    | TFmatch(e, pats) ->
      let e = mono_term e in
      let pats =
        List.rev_map
          (fun (p, f) -> p, monomorphize_form f) (List.rev pats)
      in
      TFmatch (e, pats)
  in
  { tf with c = c }

let axioms_of_rules loc name lf acc env =
  let acc =
    List.fold_left
      (fun acc f ->
         let name = (Hstring.fresh_string ()) ^ "_" ^ name in
         let td = {c = TAxiom(loc,name,Util.Default, f); annot = new_id () } in
         (td, env)::acc
      ) acc lf
  in
  acc, env



let type_hypothesis acc env_f loc sort f =
  let f = type_form env_f f in
  let f = monomorphize_form f in
  let td =
    {c = TAxiom(loc, fresh_hypothesis_name sort,Util.Default, f);
     annot = new_id () } in
  (td, env_f)::acc


let type_goal acc env_g loc sort n goal =
  let goal = type_form env_g goal in
  let goal = monomorphize_form goal in
  let td = {c = TGoal(loc, sort, n, goal); annot = new_id () } in
  (td, env_g)::acc


let rec type_and_intro_goal acc env sort n f =
  let b = (* smtfile() || smt2file() || satmode()*) false in
  let axioms, (goal, env_g) =
    intro_hypothesis env (not b) f in
  let loc = f.pp_loc in
  let acc =
    List.fold_left
      (fun acc (f, env_f) -> match f.pp_desc with
         | PPcut f ->
           let acc = type_and_intro_goal
               acc env_f Cut (fresh_cut_name ()) f in
           type_hypothesis acc env_f loc sort f

         | PPcheck f ->
           type_and_intro_goal
             acc env_f Check (fresh_check_name ()) f

         | _ ->
           type_hypothesis acc env_f loc sort f
      ) acc axioms
  in
  type_goal acc env_g loc sort n goal



let type_one_th_decl env e =
  (* NB: we always keep triggers for axioms of theories *)
  match e with
  | Axiom(loc,name,ax_kd,f)  ->
    let f = type_form ~in_theory:true env f in
    {c = TAxiom (loc,name,ax_kd,f); annot = new_id ()}

  | Theory (loc, _, _, _)
  | Logic (loc, _, _, _)
  | Rewriting(loc, _, _)
  | Goal(loc, _, _)
  | Predicate_def(loc,_,_,_)
  | Function_def(loc,_,_,_,_)
  | TypeDecl ((loc, _, _, _)::_) ->
    error WrongDeclInTheory loc
  | TypeDecl [] -> assert false

let is_recursive_type =
  let rec exit_if_has_type s ppty =
    match ppty with
    | PPTint | PPTbool | PPTreal | PPTunit | PPTbitv _ | PPTvarid _ -> ()
    | PPTexternal (args, n, _loc) ->
      if String.equal s n then raise Exit;
      List.iter (exit_if_has_type s) args
  in
  fun s body ->
    match body with
    | Abstract | Enum _ | Record _ -> false
    | Algebraic cases ->
      try
        List.iter
          (fun (_c, args_ty) ->
             List.iter (fun (_lbl, ppty) -> exit_if_has_type s ppty) args_ty
          )cases;
        false
      with Exit ->
        true

let user_types_of_body =
  let rec aux acc ppty =
    match ppty with
    | PPTint | PPTbool | PPTreal | PPTunit | PPTbitv _ | PPTvarid _ -> acc
    | PPTexternal (args, n, _loc) -> List.fold_left aux (S.add n acc) args
  in
  fun body ->
    match body with
    | Abstract
    | Enum _   -> S.empty
    | Record (_, args_ty) ->
      List.fold_left (fun acc (_lbl, ppty) -> aux acc ppty) S.empty args_ty

    | Algebraic cases ->
      List.fold_left
        (fun acc (_c, args_ty) ->
           List.fold_left (fun acc (_lbl, ppty) -> aux acc ppty) acc args_ty
        )S.empty cases


(* Could do better with topological ordering and cycles detection *)
let partition_non_rec =
  let detect_non_rec non_rec pending =
    let tys =
      List.fold_left (fun acc (_,s, _) -> S.add s acc) S.empty pending
    in
    List.fold_left
      (fun (non_rec, pending) ((e, _, body_deps) as ee) ->
         let new_deps = S.inter body_deps tys in
         if S.is_empty new_deps then e :: non_rec, pending
         else non_rec, ee :: pending
      )(non_rec, []) (List.rev pending)
  in
  let rec aux non_rec pending =
    let non_rec', pending' = detect_non_rec non_rec pending in
    if non_rec' != non_rec then aux non_rec' pending'
    else List.rev non_rec', List.map (fun (e,_,_) -> e) pending'
  in
  fun l ->
    aux [] @@
    List.rev_map
      (fun ((_loc, _, s, body) as e) -> (e, s, user_types_of_body body))
      (List.rev l)

let refine_body_of_non_recursive_adt body =
  match body with
  | Algebraic [c, []] ->
    (*  enum with one constructor *)
    Enum [c]

  | Algebraic [c, l] ->
    (* record *)
    Record (c,l)

  | Algebraic l ->
    begin
      try Enum (List.map (fun (c, l) -> if l != [] then raise Exit; c) l)
      with Exit -> body
    end

  | _ -> body


let type_user_defined_type_body ~is_recursive env acc (loc, ls, s, body) =
  let tls = List.map (fun s -> PPTvarid (s,loc)) ls in
  let pur_ty = PPTexternal(tls, s, loc) in
  match body with
  | Enum lc ->
    assert (not is_recursive); (* Enum types are not recursive *)
    let lcl = List.map (fun c -> c, "") lc in (* empty labels *)
    let ty = PFunction([], pur_ty) in
    let tlogic, env =
      (* can also use List.fold Env.add_constr *)
      Env.add_logics ~kind:Env.AdtConstr env Symbols.constr lcl ty loc
    in
    let td2_a = { c = TLogic(loc, lc, tlogic); annot=new_id () } in
    (td2_a,env)::acc, env

  | Record (constr, lrec) ->
    (* Records types are not recursive. They remain Algebraic in this
       case *)
    assert (not is_recursive);
    let acc, env =
      if String.equal constr "{" then
        (* do not register default "{ . }" constructor *)
        acc, env
      else
        let args_ty = List.map snd lrec in
        let tlogic, env =
          Env.add_constr ~record:true env constr args_ty pur_ty loc
        in
        ({c = TLogic(loc, [constr], tlogic); annot=new_id ()}, env)::acc, env
    in
    List.fold_left (* register fields *)
      (fun (acc, env) (lbl, ty_lbl) ->
         let tlogic, env =
           Env.add_destr ~record:true env lbl pur_ty ty_lbl loc
         in
         ({c = TLogic(loc, [lbl], tlogic); annot=new_id ()}, env) :: acc, env
      )(acc, env) lrec

  | Algebraic lc ->
    List.fold_left
      (fun (acc, env) (cstr, lbl_args_ty) ->
         let args_ty = List.map snd lbl_args_ty in
         let tty, env =
           Env.add_constr ~record:false env cstr args_ty pur_ty loc
         in
         let acc =
           ({c = TLogic(loc, [cstr], tty); annot=new_id ()}, env) :: acc
         in
         List.fold_left (* register destructors *)
           (fun (acc, env) (lbl, ty_lbl) ->
              let tty, env =
                Env.add_destr ~record:false env lbl pur_ty ty_lbl loc
              in
              ({c = TLogic(loc, [lbl], tty); annot=new_id ()}, env) :: acc, env
           )(acc, env) lbl_args_ty
      )(acc, env) lc

  | Abstract ->
    assert (not is_recursive); (* Abstract types are not recursive *)
    acc, env

let rec type_decl (acc, env) d =
  Types.to_tyvars := MString.empty;
  match d with
  | Theory (loc, name, ext, l) ->
    Options.tool_req 1 "TR-Typing-TheoryDecl$_F$";
    let tl = List.map (type_one_th_decl env) l in
    let ext = match Util.th_ext_of_string ext with
      | Some res -> res
      | None ->
        Errors.error (Errors.ThExtError ext) loc
    in
    let td = {c = TTheory(loc, name, ext, tl); annot = new_id () } in
    (td, env)::acc, env

  | Logic (loc, ac, lp, pp_ty) ->
    Options.tool_req 1 "TR-Typing-LogicFun$_F$";
    let mk_symb hs = Symbols.name hs ~kind:ac in
    let tlogic, env' = Env.add_logics env mk_symb lp pp_ty loc in
    let lp = List.map fst lp in
    let td = {c = TLogic(loc,lp,tlogic); annot = new_id () } in
    (td, env)::acc, env'

  | Axiom(loc,name,ax_kd,f) ->
    Options.tool_req 1 "TR-Typing-AxiomDecl$_F$";
    let f = type_form env f in
    let td = {c = TAxiom(loc,name,ax_kd,f); annot = new_id () } in
    (td, env)::acc, env

  | Rewriting(loc, name, lr) ->
    let lf = List.map (type_form env) lr in
    if Options.rewriting () then
      let rules = List.map (fun f -> make_rules loc f) lf in
      let td = {c = TRewriting(loc, name, rules); annot = new_id () } in
      (td, env)::acc, env
    else
      axioms_of_rules loc name lf acc env


  | Goal(_loc, n, f) ->
    Options.tool_req 1 "TR-Typing-GoalDecl$_F$";
    (*let f = move_up f in*)
    let f = alpha_renaming_env env f in
    type_and_intro_goal acc env Thm n f, env

  | Predicate_def(loc,n,l,e)
  | Function_def(loc,n,l,_,e) ->
    check_duplicate_params l;
    let ty =
      let l = List.map (fun (_,_,x) -> x) l in
      match d with
      | Function_def(_,_,_,t,_) -> PFunction(l,t)
      | Predicate_def _ -> PPredicate l
      | _ -> assert false
    in
    let l = List.map (fun (_,x,t) -> (x,t)) l in
    let mk_symb hs = Symbols.name hs ~kind:Symbols.Other in
    let tlogic, env = Env.add_logics env mk_symb [n] ty loc in (* TODO *)
    let n = fst n in

    let lvar = List.map (fun (x,_) -> {pp_desc=PPvar x;pp_loc=loc}) l in
    let p = {pp_desc=PPapp(n,lvar) ; pp_loc=loc } in
    let infix = match d with Function_def _ -> PPeq | _ -> PPiff in
    let f = { pp_desc = PPinfix(p,infix,e) ; pp_loc = loc } in
    let f = make_pred loc [] f l in
    let f = type_form env f in
    let t_typed, l_typed =
      match tlogic with
      | TPredicate args ->
        Ty.Tbool, List.map2 (fun (x, _) ty -> x, Ty.shorten ty) l args
      | TFunction (args, ret) ->
        Ty.shorten ret, List.map2 (fun (x, _) ty -> x, Ty.shorten ty) l args
    in
    let td =
      match d with
      | Function_def _ ->
        Options.tool_req 1 "TR-Typing-LogicFun$_F$";
        TFunction_def(loc,n,l_typed,t_typed,f)
      | _ ->
        Options.tool_req 1 "TR-Typing-LogicPred$_F$";
        TPredicate_def(loc,n,l_typed,f)
    in
    let td_a = { c = td; annot=new_id () } in
    (td_a, env)::acc, env

  | TypeDecl [] ->
    assert false

  | TypeDecl [loc, ls, s, body] when not (is_recursive_type s body) ->
    let body = refine_body_of_non_recursive_adt body in
    Options.tool_req 1 "TR-Typing-TypeDecl$_F$";
    let ty1, env = Env.add_type_decl env ls s body loc in
    let acc = ({c = TTypeDecl(loc, ty1); annot=new_id ()}, env) :: acc in
    type_user_defined_type_body ~is_recursive:false env acc (loc, ls, s, body)

  | TypeDecl l ->
    let not_rec, are_rec = partition_non_rec l in

    (* A. Typing types that are not recursive *)
    let acc, env =
      List.fold_left
        (fun accu x -> type_decl accu (TypeDecl [x])) (acc, env) not_rec
    in

    (* B. Typing types that are recursive *)

    (* step 1: with body == (Algebraic []) *)
    let env, tyvars_of_ty =
      List.fold_left
        (fun (env, tyvars_of_ty) (loc, ls, s, _) ->
           Types.to_tyvars := MString.empty;
           let _, env = Env.add_type_decl env ls s (Parsed.Algebraic []) loc in
           env, MString.add s !(Types.to_tyvars) tyvars_of_ty
        )(env, MString.empty) are_rec
    in

    (* step 2: right body, but without adding constrs and destrs *)
    let acc, env =
      List.fold_left
        (fun (acc, env) (loc, ls, s, body) ->
           Types.to_tyvars :=
             (try MString.find s tyvars_of_ty with Not_found -> assert false);
           let tty, env =
             Env.add_type_decl ~recursive:true env ls s body loc in
           ({c = TTypeDecl(loc, tty); annot=new_id ()}, env)::acc, env
        )(acc, env) are_rec
    in
    (* step 3: register constrs and destrs as function symbols *)
    List.fold_left
      (fun (acc, env) ty_d ->
         type_user_defined_type_body ~is_recursive:true env acc ty_d)
      (acc, env) are_rec

let type_parsed env d =
  let l, env' = type_decl ([], env) d in
  List.rev_map fst l, env'

let type_file ld =
  let env = Env.empty in
  try
    let ltd, env =
      List.fold_left type_decl ([], env) ld
    in
    List.rev ltd, env
  with
  | Errors.Error(e,l) ->
    Loc.report err_formatter l;
    eprintf "typing error: %a\n@." Errors.report e;
    exit 1


let split_goals_aux f l =
  let _, _, _, ret =
    List.fold_left
      (fun (ctx, global_hyp, local_hyp, ret) (td, env) ->
         match td.c with
         | TGoal (_, (Check | Cut), name, _) ->
           ctx, global_hyp, [],
           (f td env (local_hyp@global_hyp@ctx), name) :: ret

         | TGoal (_, _, name, _) ->
           ctx, [], [],
           (f td env (local_hyp@global_hyp@ctx), name) :: ret

         | TAxiom (_, s, _, _) when is_global_hyp s ->
           ctx, (f td env global_hyp), local_hyp,
           ret

         | TAxiom (_, s, _, _) when is_local_hyp s ->
           ctx, global_hyp, (f td env local_hyp),
           ret

         | _ ->
           (f td env ctx), global_hyp, local_hyp,
           ret

      ) ([],[],[],[]) l
  in
  List.rev_map (fun (l, goal_name) -> List.rev l, goal_name) ret

let split_goals l =
  split_goals_aux (fun e env acc -> (e, env) :: acc) l

let split_goals_and_cnf l =
  split_goals_aux (fun td _env acc -> Cnf.make acc td) l

let type_expr env vars t =
  let vmap =
    List.fold_left
      (fun m (s,ty)->
         let str = Symbols.to_string_clean s in
         MString.add str (s,ty) m
      ) env.Env.var_map vars in
  let env = { env with Env.var_map = vmap } in
  type_term env t

type env = Env.t

let empty_env = Env.empty

OCaml

Innovation. Community. Security.