package alba
Alba compiler
Install
Dune Dependency
Authors
Maintainers
Sources
0.4.4.tar.gz
sha256=4817038301d3e45bac9edf7e6f2fc8bf0a6d78e76e02ad7ea33ef69bcc17df3b
md5=25234357587126685d64f16236167937
doc/src/alba.albalib/parser_lang.ml.html
Source file parser_lang.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
open Fmlib open Module_types open Common open Alba_core open Ast module Located = Character_parser.Located type 'a located = 'a Located.t module Position = Position module Indent = Character_parser.Indent type indent = Character_parser.Indent.t type position = Position.t type range = Position.t * Position.t module Command = struct type t = | Evaluate of Expression.t | Type_check of Expression.t | Define of Expression.definition | Clear | Load of string Located.t | Reload | Exit | Do_nothing end module Source_file = struct type entry = | Expression of (bool * Expression.t) | Entry of Source_entry.t type t = { entries: entry list; n: int; } let count (src: t): int = src.n let empty: t = { n = 0; entries = []; } let top (src: t): entry = assert (0 < count src); fst (List.split_head_tail src.entries) let push_entry (entry: Source_entry.t) (src: t): t = { entries = Entry entry :: src.entries; n = src.n + 1; } let push_expression (evaluate_flag: bool) (exp: Expression.t) (src: t): t = { entries = Expression (evaluate_flag, exp) :: src.entries; n = src.n + 1; } end module Problem = struct type t = | Operator_precedence of string * string (* the 2 operator strings *) | Illegal_name of string (* expectation *) | Illegal_command of string list | Ambiguous_command of string list | Duplicate_argument | Unused_definition of string | No_result_type | No_argument_type end module type ERROR = Generic_parser.ERROR with type expect = string * Character_parser.Indent.t and type semantic = range * Problem.t module Print (Error: ERROR) (P: Pretty_printer.SIG) = struct let problem (problem: Problem.t): P.t = let open Problem in let open P in match problem with | Operator_precedence (op1, op2) -> let source_text op1 op2 = string "_ " <+> string op1 <+> string " _ " <+> string op2 <+> string " _" and left op1 op2 = string "( _ " <+> string op1 <+> string " _ ) " <+> string op2 <+> string " _" and right op1 op2 = string "_ " <+> string op1 <+> string " ( _ " <+> string op2 <+> string " _ )" in wrap_words "I am no able to group your operator expression" <+> cut <+> cut <+> nest 4 (source_text op1 op2) <+> cut <+> cut <+> wrap_words "I can either group the first two" <+> cut <+> cut <+> nest 4 (left op1 op2) <+> cut <+> cut <+> wrap_words "or group the second two" <+> cut <+> cut <+> nest 4 (right op1 op2) <+> cut <+> cut <+> wrap_words "However the precedence and associativity of these operators \ don't give me enough information. Please put parentheses to \ indicate your intention." <+> cut <+> cut | Illegal_name expect -> wrap_words "I was expecting" <+> group space <+> string expect <+> cut | Illegal_command _ -> string "Illegal commmand" <+> cut | Ambiguous_command _ -> string "Ambiguous commmand" <+> cut | Duplicate_argument -> wrap_words "I found a duplicate argument name. All names \ of formal arguments must be different." <+> cut <+> cut | Unused_definition _ -> wrap_words "This local definition is not used. \ Sorry, this is not allowed." <+> cut <+> cut | No_result_type -> wrap_words "Top level definitions must have an explicit result type." <+> cut <+> cut | No_argument_type -> wrap_words "In top level definitions all formal arguments \ must be explicitly typed." <+> cut <+> cut let expectations (col: int) (exps: (string * indent) list) (tab_positions: int list) : P.t = let open P in let find_tab_number ind = let rec find number tabs = match tabs with | [] -> assert false (* Illegal call! *) | pos :: tabs -> if pos = Indent.lower_bound ind then number else find (number + 1) tabs in find 0 tab_positions in let expectation e ind = if Indent.is_offside col ind then string e <+> (if Indent.has_only_one_position ind then string " at tab marker " else string " starting at tab marker ") <+> string (string_of_int (find_tab_number ind)) else string e in match exps with | [] -> assert false (* Cannot happen, at least one expectation *) | [e, ind] -> string "I was expecting the following" <+> cut <+> cut <+> nest 4 (expectation e ind) <+> cut <+> cut | lst -> string "I was expecting one of the following" <+> cut <+> cut <+> nest 4 (list_separated cut (List.map (fun (e,ind) -> string "- " <+> expectation e ind) lst)) <+> cut <+> cut end module type SIG = sig type parser type state type final type _ t module Error: ERROR val needs_more: parser -> bool val has_ended: parser -> bool val has_succeeded: parser -> bool val has_failed: parser -> bool val state: parser -> Source_file.t val put_character: parser -> char -> parser val put_end: parser -> parser val result: parser -> final option val error: parser -> Error.t val line: parser -> int val column: parser -> int val position: parser -> position val error_tabs: parser -> int list val expression: unit -> Expression.t t val command: Command.t t val global_definition: _ -> Expression.definition t val global_definitions: _ -> Expression.definition array t val inductive_type: _ -> Source_entry.inductive t val inductive_family: _ -> Source_entry.inductive array t val source_file: bool -> unit t val make: final t -> parser val run: final t -> string -> parser module Error_printer (PP: Pretty_printer.SIG): sig val print_with_source: string -> parser -> PP.t val print_with_source_lines: string Sequence.t -> parser -> PP.t end end let keywords: String_set.t = let open String_set in empty |> add "all" |> add "case" |> add "class" |> add "inspect" |> add "mutual" |> add "where" module Make (Final: ANY) = struct module P = Character_parser.Normal (Source_file) (Final) (struct type t = range * Problem.t end) (String) include P let make_where (e: Expression.t) (defs: Expression.definition list) (end_pos: position) : Expression.t t = match Expression.find_unused_local e defs with | None -> return ( Located.make (Located.start e) (Expression.Where (e, defs)) end_pos) | Some name -> fail ( Located.range name, Problem.Unused_definition (Located.value name) ) let line_comment: unit t = backtrackable (string "--") "\"--\"" >>= fun _ -> skip_zero_or_more (expect (fun c -> c <> '\n') "any char except newline") >>= fun _ -> return () let multiline_comment: unit t = let rec to_end (): unit t = (char '-' >>= fun _ -> (char '}' <|> to_end ())) <|> (expect (fun _ -> true) "any char" >>= fun _ -> to_end ()) in backtrackable (string "{-") "\"{-\"" >>= fun _ -> to_end () let whitespace_char: char t = expect (fun c -> c = ' ' || c = '\n' || c = '\t') "space, newline or tab" let whitespace: int t = detached (skip_zero_or_more ( (map (fun _ -> ()) whitespace_char) <|> line_comment <|> multiline_comment <?> "whitespace" ) >>= succeed (* To avoid error messages like "expecting whitespace" *) ) let command_argument: string Located.t t = located ( map String.of_list ( one_or_more (expect (fun c -> c <> ' ' && c <> '\n' && c <> '\r') "normal character") ) ) let raw_name: string t = word Char.is_letter (fun c -> Char.is_letter c || Char.is_digit c || c = '_') "identifier" let name: string located t = located raw_name let name_ws: string located t = name |. whitespace let identifier (with_any_prop: bool): string located t = backtrackable ( name >>= fun s -> let str = Located.value s in if String_set.mem str keywords || Operator.is_keyword_operator str || ( not with_any_prop && (str = "Proposition" || str = "Any")) then unexpected "identifier" else return s ) "identifier" |. whitespace let number: string located t = located (word Char.is_digit Char.is_digit "digit") |. not_followed_by letter "not a letter" |. whitespace let identifier_expression: Expression.t t = map (Located.map (fun s -> if s = "Proposition" then Expression.Proposition else if s = "Any" then Expression.Any else Expression.Identifier s )) (identifier true) let number_expression: Expression.t t = map (Located.map (fun s -> Expression.Number s)) number let literal_string: Expression.t t = located ( return (fun chars -> let chars = Array.of_list chars in let len = Array.length chars in Expression.String (String.init len (fun i -> chars.(i)))) |. char '"' |= zero_or_more (expect (fun c -> let i = Char.code c in Char.code ' ' <= i && i < 128 && c <> '"') "string character") |. char '"') |. whitespace let literal_char: Expression.t t = located ( return (fun c -> Expression.Char (Char.code c)) |. char '\'' |= expect (fun c -> c <> '\'' && c <> '\n') "character" |. char '\'') |. whitespace let left_bracket: unit t = backtrackable ( char '[' |. not_followed_by (char ']') "not ']'" ) "'['" |. whitespace let right_bracket: unit t = char ']' |. whitespace let empty_list_string: string t = map (fun _ -> "[]") (backtrackable (string "[]") "[]") let empty_list_expression: Expression.t t = map (Located.map (fun _ -> Expression.Identifier "[]")) ( located ( backtrackable (string "[]") "[]" ) |. whitespace ) let colon: unit t = backtrackable (char ':' |. not_followed_by (char '=') "not '='") "':'" let assign: unit t = backtrackable (string ":=") "':='" let operator_character: char t = one_of_chars "+-^*|/=~<>" "operator character" let operator_string (with_comma: bool) : string Located.t t = located ( ( map String.of_list (one_or_more operator_character) >>= fun str -> optional (char ':') >>= fun oc -> match oc with | None -> return str | Some _ -> return (str ^ ":") ) <|> ( let colon = map (fun _ -> ":") colon and comma = map (fun _ -> ",") (char ',') in if with_comma then colon <|> comma else colon ) <|> backtrackable ( raw_name >>= fun str -> if Operator.is_keyword_operator str then return str else unexpected "keyword operator" ) "'and' or 'or'" ) <?> "operator" |. whitespace let operator (with_comma: bool) : Expression.operator Located.t t = map (Located.map (fun op_str -> op_str, Operator.of_string op_str)) (operator_string with_comma) let unary_operator: Expression.operator Located.t t = backtrackable ( operator false >>= fun op -> let op_str, _ = Located.value op in if Operator.is_unary op_str then return op else unexpected "unary operator" ) "unary operator" let lonely_operator: Expression.t t = map (fun op_located -> Located.map (fun op -> Expression.Operator op) op_located) (operator true) let char_ws (c:char): unit t = char c |. whitespace let zero_or_more_reversed (p: 'a t): 'a list t = let rec many l = (p >>= fun a -> many (a :: l)) <|> return l in many [] let parenthesized (p: unit -> 'a Located.t t) : 'a Located.t t = located (char '(') |. whitespace >>= fun loc1 -> p () >>= fun a -> located (char ')') |. whitespace >>= fun loc2 -> return (Located.make (Located.start loc1) (Located.value a) (Located.end_ loc2)) let name_for_definition (with_operators: bool): string Located.t t = if with_operators then identifier false <|> located empty_list_string <|> parenthesized (fun _ -> operator_string true) else identifier false let rec find_duplicate_argument (arg_lst: (string located * Expression.t option) list) : string located option = match arg_lst with | [] -> None | arg :: args -> let arg_name (nme,_) = Located.value nme in let name = arg_name arg in match List.find (fun arg2 -> name = arg_name arg2) args with | None -> find_duplicate_argument args | Some (duplicate, _) -> Some duplicate let rec expression0 (with_comma: bool) (): Expression.t t = let primary (what: string): Expression.t t = backtrackable identifier_expression "identifier" <|> number_expression <|> literal_char <|> literal_string <|> empty_list_expression <|> (* "( exp )" *) parenthesized ( fun _ -> indented ( expression0 true () <|> lonely_operator ) ) <|> (* "[ e1, e2, ... ]" *) located ( map Expression.to_list ( left_bracket >>= fun _ -> (indented (expression0 true ())) |. right_bracket ) ) <|> (* \ (x: A) (y: B) ... : RT := exp *) ( return (fun pos1 args rt exp -> Located.make pos1 (Expression.Function (args, rt, exp)) (Located.end_ exp)) |= get_position |. char_ws '\\' |= formal_arguments false false |= optional_result_type () |= assign_defining_expression () ) <|> (* all (a: A) (b: B) ... : RT *) ( return (fun pos1 args rt -> Located.make pos1 ( match Located.value rt with | Expression.Product (args_inner, rt) -> Expression.Product (args @ args_inner, rt) | _ -> Expression.Product (args, rt) ) (Located.end_ rt) ) |= get_position |. backtrackable (string "all") "all" |. whitespace |= formal_arguments false false |= result_type () ) <?> what in let application: Expression.t t = primary "expression" >>= fun f -> ( match Located.value f with | Proposition | Any | Number _ | Char _ | String _ | Product _ -> return [] | _ -> indented ( zero_or_more_reversed (primary "function argument")) ) >>= fun args_rev -> match args_rev with | [] -> return f | last :: _ -> let arg_lst = List.rev_map (fun arg -> arg, Expression.Normal) args_rev in let f0, arg_lst = match Located.value f with | Expression.Application (f0, arg_lst0) -> f0, arg_lst0 @ arg_lst | _ -> f, arg_lst in let pos1 = Located.start f and pos2 = Located.end_ last in return ( Located.make pos1 (Expression.Application (f0, arg_lst)) pos2 ) in let where_block: Expression.definition list t = ( backtrackable (string "where") "where <local definitions>" |. whitespace ) >>= fun _ -> indented (one_or_more_aligned (definition false)) in let operand: Expression.operand t = map (fun exp -> [], exp) application <|> ( one_or_more unary_operator >>= fun op_lst -> application >>= fun exp -> return (op_lst, exp) ) in let operator_and_operand (with_comma: bool) = return (fun op exp -> (op,exp)) |= operator with_comma |= operand in let operator_expression (with_comma: bool): Expression.t t = operand >>= fun e1 -> zero_or_more (operator_and_operand with_comma) >>= fun lst -> ( match Operator_expression.make e1 lst with | Ok e -> return e | Error (range, op1, op2) -> fail (range, Problem.Operator_precedence (op1, op2)) ) in (* expression parsing *) absolute ( operator_expression with_comma >>= fun e -> located (optional where_block) >>= fun def -> match Located.value def with | None -> return e | Some definitions -> assert (definitions <> []); let definitions = List.rev definitions in let pos_end = Located.end_ (List.head_strict definitions) in make_where e definitions pos_end ) and indented_expression (kind: string) () = indented (expression0 false () <?> kind) and subexpression (kind: string) () = maybe_indented (expression0 false () <?> kind) and result_type _ : Expression.t t = (colon |. whitespace >>= subexpression "type") <?> ": <result type>" and optional_result_type _ : Expression.t option t = optional (result_type ()) and typed_formal_argument _ : Expression.formal_argument t = char_ws '(' >>= fun _ -> identifier false >>= fun name -> colon |. whitespace >>= subexpression "type" >>= fun typ -> char_ws ')' >>= fun _ -> return (name, Some typ) and formal_argument (typed: bool) : Expression.formal_argument t = ( if typed then typed_formal_argument () else typed_formal_argument () <|> map (fun name -> name, None) (identifier false) ) <?> "formal argument" and formal_arguments (zero: bool) (typed: bool) : Expression.formal_argument list t = ( if zero then zero_or_more (formal_argument typed) else one_or_more (formal_argument typed) ) >>= fun lst -> match find_duplicate_argument lst with | None -> return lst | Some name -> fail (Located.range name, Problem.Duplicate_argument) and signature (typed: bool) : Expression.signature t = return (fun fargs res -> fargs, res) |= formal_arguments true typed |= optional_result_type () and assign_defining_expression _: Expression.t t = assign |. whitespace >>= indented_expression "defining expression" <?> ":= <defining expression>" and definition (with_operators: bool): Expression.definition t = return (fun name args res_tp e -> let p1 = Located.start name and p2 = Located.end_ e in Located.make p1 (name, args, res_tp, e) p2) |= name_for_definition with_operators |= formal_arguments true false |= optional_result_type () |= assign_defining_expression () <?> "definition" let expression (): Expression.t t = expression0 true () let global_definition _ : Expression.definition t = definition true >>= fun def -> let name, fargs, res, _ = Located.value def in match List.find (fun (_, tp) -> tp = None) fargs with | Some (name, _) -> fail (Located.range name, Problem.No_argument_type) | None -> if res = None then fail (Located.range name, Problem.No_result_type) else return def let global_definitions _: Expression.definition array t = map Array.of_list (one_or_more_aligned (global_definition ())) let named_signature (with_operators: bool) (typed: bool) : Expression.named_signature t = name_for_definition with_operators >>= fun name -> signature typed >>= fun sign -> return (name, sign) let inductive_type _: Source_entry.inductive t = return ( fun header constructors -> header, Array.of_list (List.join constructors) ) |. backtrackable (string "class") "class" |. whitespace |= indented ( named_signature true false ) |. assign |. whitespace |= indented ( zero_or_more_aligned ( one_or_more_separated (named_signature true true) (char ';' |. whitespace) ) ) let inductive_family _: Source_entry.inductive array t = map Array.of_list (one_or_more_aligned (inductive_type ())) let source_entry _: unit t = ( map (fun ind -> Source_entry.Inductive [|ind|]) (inductive_type ()) <|> map (fun def -> Source_entry.Normal def) (global_definition ()) ) <|> ( string "mutual" |. whitespace >>= fun _ -> indented ( map (fun inds -> Source_entry.Inductive inds) (inductive_family ()) ) ) >>= fun entry -> update (Source_file.push_entry entry) let commands: (string * Command.t t) list = (* repl commands *) ["evaluate", map (fun e -> Command.Evaluate e) (expression ()); "typecheck", map (fun e -> Command.Type_check e) (expression ()); "clear", return Command.Clear; "load", map (fun file_name -> Command.Load file_name) command_argument; "define", map (fun def -> Command.Define def) (global_definition ()); "exit", return Command.Exit; ] let find_command (cmd: string): (string * Command.t t) list = List.filter (fun (str, _) -> String.is_prefix cmd str) commands let command_names (cs: (string * Command.t t) list): string list = List.map fst cs let command: Command.t t = (char ':' >>= fun _ -> (name_ws <?> "command") >>= fun cmd -> match find_command (Located.value cmd) with | [] -> fail (Located.range cmd, Problem.Illegal_command (command_names commands)) | [_, arg_parser] -> indented arg_parser | lst -> fail (Located.range cmd, Problem.Ambiguous_command (command_names lst)) ) <|> (return (fun exp -> match exp with | None -> Command.Do_nothing | Some exp -> Command.Evaluate exp) |. whitespace |= optional (expression ())) let source_file_command: unit t = backtrackable ( char ':' >>= fun _ -> name_ws >>= fun str -> let str = Located.value str in if str = "evaluate" then return true else if str = "typecheck" then return false else unexpected "command" ) "':evaluate <expression>' or ':typecheck <expression>'" >>= fun evaluate_flag -> indented (expression ()) >>= fun exp -> update (Source_file.push_expression evaluate_flag exp) let declaration (with_expressions: bool): unit t = if with_expressions then source_file_command <|> source_entry () else source_entry () let declarations (with_expressions: bool): unit t = map (fun _ -> ()) ( skip_zero_or_more (absolute (declaration with_expressions)) ) let source_file (with_expressions: bool) : unit t = whitespace >>= fun _ -> absolute_at 0 (declarations with_expressions) let make (p: final t): parser = P.make (p |. expect_end) (Source_file.empty) let run (p: final t) (input: string): parser = run (p |. expect_end) (Source_file.empty) input module Error_printer (PP: Pretty_printer.SIG) = struct module PP0 = Printer.Make (PP) module PPr = Print (Error) (PP) open PP let print0 (lines: range -> int list -> PP.t) (p: parser): PP.t = assert (has_ended p); assert (not (has_succeeded p)); if Error.is_semantic (error p) then let range, error = Error.semantic (error p) in PP0.print_error_header "SYNTAX" <+> lines range [] <+> PPr.problem error else let pos = position p and tabs = error_tabs p in PP0.print_error_header "SYNTAX" <+> lines (pos,pos) tabs <+> PPr.expectations (column p) (Error.expectations (error p)) tabs let print_with_source (source: string) (p: parser) : PP.t = assert (has_ended p); assert (not (has_succeeded p)); print0 (PP0.print_source source) p let print_with_source_lines (lines: string Sequence.t) (p: parser) : PP.t = print0 (PP0.print_source_lines lines) p end end (* Make *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>