package alba
Alba compiler
Install
Dune Dependency
Authors
Maintainers
Sources
0.4.4.tar.gz
sha256=4817038301d3e45bac9edf7e6f2fc8bf0a6d78e76e02ad7ea33ef69bcc17df3b
md5=25234357587126685d64f16236167937
doc/src/alba.albalib/ast.ml.html
Source file ast.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
open Fmlib open Alba_core module Located = Character_parser.Located type range = Position.t * Position.t module Expression = struct type operator = string * Operator.t type argument_type = | Normal | Operand type t = t0 Located.t and t0 = | Proposition | Any | Identifier of string | Number of string | Char of int | String of string | Operator of operator | Typed of t * t (* exp, type *) | Application of t * (t * argument_type) list | Function of formal_argument list * t option (* result type *) * t (* defining expression *) | Product of formal_argument list * t | Where of t * definition list | List of t list and formal_argument = string Located.t * t option and signature = formal_argument list * t option and named_signature = string Located.t * signature and definition = (string Located.t * formal_argument list * t option * t) Located.t type operand = operator Located.t list * t let to_list (e: t): t0 = let rec to_list e = match Located.value e with | Application (f, [(a, _) ; (b, _)]) -> ( match Located.value f with | Identifier "," -> a :: to_list b | _ -> [e] ) | _ -> [e] in List (to_list e) let rec occurs (name: string Located.t) (e: t0): bool = let name_occurs name exp = occurs name (Located.value exp) in let occurs_opt name term_opt = match term_opt with | None -> false | Some term -> name_occurs name term in let rec occurs_in_fargs fargs opt1 opt2= match fargs with | [] -> occurs_opt name opt1 || occurs_opt name opt2 | (arg_name, arg_tp) :: fargs -> Located.value arg_name <> Located.value name && (occurs_opt name arg_tp || occurs_in_fargs fargs opt1 opt2) in match e with | Proposition | Any | Number _ | Char _ | String _ | Operator _ -> false | Identifier str -> str = Located.value name | Typed (exp, tp) -> name_occurs name exp || name_occurs name tp | Application (f, args) -> name_occurs name f || List.find (fun (arg, _) -> name_occurs name arg) args <> None | Function (fargs, res, exp) -> occurs_in_fargs fargs res (Some exp) | Product (fargs, res) -> occurs_in_fargs fargs (Some res) None | Where (exp, defs) -> ( match defs with | [] -> name_occurs name exp | def :: defs -> let name2, fargs, res_tp, def_exp = Located.value def in Located.value name <> Located.value name2 && ( occurs_in_fargs fargs (Some def_exp) None || occurs_opt name res_tp || occurs name (Where (exp, defs)) ) ) | List lst -> List.find (name_occurs name) lst <> None let rec find_unused_local (exp: t) (defs: definition list) : string Located.t option = match defs with | [] -> None | def :: defs -> let name, _, _, _ = Located.value def in if occurs name (Where (exp, defs)) then find_unused_local exp defs else Some name end (* Expression *) module Operator_expression = struct open Expression type rest = (operator Located.t * operand) list let (>>=) = Result.(>>=) let is_left_leaning (op1: operator Located.t) (op2: operator Located.t) : bool = let _, op1 = Located.value op1 and _, op2 = Located.value op2 in Operator.is_left_leaning op1 op2 let is_right_leaning (op1: operator Located.t) (op2: operator Located.t) : bool = let _, op1 = Located.value op1 and _, op2 = Located.value op2 in Operator.is_right_leaning op1 op2 let apply_unary (op: operator Located.t) (e: t): t = let pos1 = Located.start op and pos2 = Located.end_ e in let inner = Application ( Located.map (fun (op_str, _) -> Identifier op_str) op, [e, Operand] ) in Located.make pos1 inner pos2 let apply_binary (e1: t) (op: operator Located.t) (e2: t): t = let pos_start = Located.start e1 and pos_end = Located.end_ e2 and op_str,_ = Located.value op in Located.make pos_start ( if op_str = ":" then Typed (e1, e2) else if op_str = "->" then (* e1 -> e2 *) let name = Located.map (fun _ -> "_") e1 in match Located.value e2 with | Product (formal_arguments, result_type) -> Product ( (name, Some e1) :: formal_arguments, result_type ) | _ -> Product ([name, Some e1], e2) else Application ( Located.map (fun (op_str,_) -> Identifier op_str) op, [ e1, Operand; e2, Operand] ) ) pos_end let split_higher (op: operator Located.t) (rest: rest): rest * rest = (* Split the rest in two parts. The first part contains only operators with higher precedence than [op]. The second part starts with an operator with the same precedence or lower. *) let precedence op = Operator.precedence (snd (Located.value op)) in let prec = precedence op in List.split_at (fun (op2, _) -> precedence op2 <= prec) rest let split_right (op: operator Located.t) (rest: rest): rest * rest = (* Split the rest in two parts. The first part contains only operators which are right leaning with respect to [op] i.e. [e0 op e1 op2 e2] must be parsed as [e0 op (e1 op2 e2)]. *) let _, op = Located.value op in List.split_at (fun (op2, _) -> not ( Operator.is_right_leaning op (snd (Located.value op2)) ) ) rest let rec make ((unops, e0): operand) (rest: rest) : (t, range * string * string) result = match unops with | [] -> without_unary e0 rest | u :: unops -> let higher, lower_equal = (* All operators in [rest1] have higher precedence than [u]. *) split_higher u rest in make (unops, e0) higher >>= fun e -> without_unary (apply_unary u e) lower_equal and without_unary (e0: t) (rest: rest) : (t, range * string * string) result = match rest with | [] -> Ok e0 | [op1, e1] -> make e1 [] >>= fun e1 -> Ok (apply_binary e0 op1 e1) | (op1, e1) :: (op2, e2) :: rest -> if is_left_leaning op1 op2 then (* (e0 op1 e1) op2 e2 rest *) without_unary e0 [op1, e1] >>= fun e -> without_unary e ((op2, e2) :: rest) else if is_right_leaning op1 op2 then (* e0 op1 (e1 op2 higher) lower_equal *) let higher, lower_equal = split_right op1 rest in make e1 ((op2, e2) :: higher) >>= fun e -> without_unary e0 ((op1, ([], e)) :: lower_equal) else let op1_str, _ = Located.value op1 and op2_str, _ = Located.value op2 in Error ( (Located.start e0, Located.end_ (snd e2)), op1_str, op2_str ) end (* Operator_exression *) module Source_entry = struct type named_signature = Expression.named_signature type inductive = named_signature * named_signature array type t = | Normal of Expression.definition | Inductive of inductive array end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>