package alba
Alba compiler
Install
Dune Dependency
Authors
Maintainers
Sources
0.4.4.tar.gz
sha256=4817038301d3e45bac9edf7e6f2fc8bf0a6d78e76e02ad7ea33ef69bcc17df3b
md5=25234357587126685d64f16236167937
doc/src/alba.albalib/build_expression.ml.html
Source file build_expression.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
open Fmlib open Common open Alba_core open Ast type type_in_context = Build_context.type_in_context let description_of_type_in_context (nargs: int) (lst: (type_in_context * type_in_context) list) : Build_problem.description = let open Build_problem in if 0 < nargs then Not_a_function (List.map snd lst) else Wrong_type lst module Name_map = Name_map module Result = Fmlib.Result.Make (Build_problem) module List_fold = List.Monadic (Result) module Interval_monadic = Interval.Monadic (Result) module Algo = Gamma_algo.Make (Gamma) type t = { names: Name_map.t; base: Gamma.t; bcs: Build_context.t list; } let count_base (builder: t): int = Gamma.count builder.base let push_bound (name: string) (builder: t): t = {builder with names = Name_map.add_local name builder.names} let set_names (names: Name_map.t) (builder: t) : (t, Build_problem.t) result = Ok {builder with names} let make (c: Context.t): t = { names = Context.name_map c; base = Context.gamma c; bcs = [Build_context.make (Context.gamma c)] } type 'a build_monad = t -> ('a, Build_problem.t) result let map_bcs_list (f: Build_context.t -> Build_context.t) (builder: t): t = {builder with bcs = List.map f builder.bcs} let map_bcs0 (f: Build_context.t -> ('a, 'b) result) (g: 'b list -> Build_problem.t) : 'a list build_monad = fun builder -> let lst, errors = List.fold_left (fun (lst, errors) bc -> match f bc with | Ok a -> a :: lst, errors | Error problem -> lst, problem :: errors) ([], []) builder.bcs in if lst <> [] then Ok lst else Error (g errors) let map_bcs (f: Build_context.t -> (Build_context.t, 'a) result) (g: 'a list -> Build_problem.t) : t build_monad = fun builder -> Result.map (fun bcs -> {builder with bcs}) (map_bcs0 f g builder) let next_formal_argument (name: string Located.t) (typed: bool) (builder: t) : t = let str = Located.value name in map_bcs_list (Build_context.next_formal_argument name typed) builder |> push_bound str let check_formal_arguments (fargs: Expression.formal_argument list) : t build_monad = map_bcs (Build_context.Product.check (List.length fargs)) (fun lst -> let i_min = List.fold_left (fun i_min i -> min i_min i) (List.length fargs) lst in let name, _ = List.nth_strict i_min fargs in Located.range name, Cannot_infer_bound) let end_product (range: range) (nargs_outer: int) (nargs_inner: int) : t build_monad = map_bcs (Build_context.Product.end_ nargs_outer nargs_inner) (fun lst -> range, description_of_type_in_context nargs_outer lst) let base_candidates (range: range) (candidates: Term.t list) (nargs: int) : t build_monad = fun builder -> let candidates, _ = List.fold_right (fun term (candidates, variant) -> (term, variant) :: candidates, variant + 1) candidates ([], 0) in let bcs = List.( builder.bcs >>= fun bc -> candidates >>= fun (term, variant) -> Option.to_list (Build_context.base_candidate range variant term nargs bc)) in if bcs = [] then let acts = List.map (fun (term, _) -> [], Algo.type_of_term term builder.base, builder.base) candidates and reqs = List.map Build_context.required_type_in_context builder.bcs in if 0 < nargs then Error (range, Not_a_function acts) else Error (range, Wrong_base (reqs, acts)) else Ok {builder with bcs} let rec build0 (exp: Expression.t) (nargs: int) : t build_monad = fun builder -> let open Expression in let range = Located.range exp in match Located.value exp with | Number str -> let lst = Term.number_values str in if lst = [] then Error (range, Overflow) else base_candidates range lst nargs builder | Char code -> base_candidates range [Term.char code] nargs builder | String str -> base_candidates range [Term.string str] nargs builder | Proposition -> base_candidates range [Term.proposition] nargs builder | Any -> base_candidates range [Term.any] nargs builder | Identifier name | Operator (name, _) -> let cnt_base = count_base builder in ( match Name_map.find name builder.names with | [] -> Error (range, No_name) | [level] when cnt_base <= level -> map_bcs (Build_context.bound (level - cnt_base) nargs) (fun lst -> range, description_of_type_in_context nargs lst) builder | lst -> base_candidates range (List.map (fun level -> Gamma.variable_at_level level builder.base) lst) nargs builder ) | Typed (exp, tp) -> let open Result in (map_bcs_list Build_context.Typed.start builder |> build0 tp 0) >>= fun builder -> (map_bcs_list Build_context.Typed.expression builder |> build0 exp 0) >>= map_bcs (Build_context.Typed.end_ nargs) (fun lst -> range, description_of_type_in_context nargs lst) | Product (fargs, res) -> let open Result in let names = builder.names in build_signature fargs (Some res) (map_bcs_list Build_context.Product.start builder) >>= check_formal_arguments fargs >>= end_product range nargs (List.length fargs) >>= set_names names | Application (f, args) -> let open Result in (* Get a position number for each argument and the total number of arguments. *) let nargs, args = List.fold_right (fun (arg, mode) (n,args) -> n + 1, (n,arg,mode) :: args) args (0, []) in (* Build the function term. *) build0 f nargs (map_bcs_list (Build_context.Application.start nargs) builder) >>= (* Build the arguments. *) List_fold.fold_left (fun (n, arg, mode) builder -> let mode = match mode with | Expression.Normal -> Term.Application_info.Normal | Expression.Operand -> assert (nargs = 1 || nargs = 2); if nargs = 2 then Term.Application_info.Binary else Term.Application_info.Unary in build0 arg 0 builder >>= map_bcs (Build_context.Application.apply n mode) (fun lst -> (fst range, Located.end_ arg), description_of_type_in_context n lst) ) args | Function (fargs, res, exp) -> let open Result in let names = builder.names in build_signature fargs res (map_bcs_list Build_context.Lambda.start builder) >>= fun builder -> Ok (map_bcs_list Build_context.Lambda.inner builder) >>= fun builder -> build0 exp 0 builder >>= map_bcs (Build_context.Lambda.end_ nargs (List.length fargs) (res <> None)) (fun lst -> range, description_of_type_in_context nargs lst) >>= set_names names | Where (exp, defs) -> let open Result in let rec build_where defs builder = match defs with | [] -> build0 exp 0 builder | def :: defs -> let name, _, _, _ = Located.value def in let str = Located.value name and names = builder.names in build_where defs (map_bcs_list (Build_context.Where.start name) builder |> push_bound str) >>= map_bcs Build_context.Where.end_inner (fun lst -> range, description_of_type_in_context 1 lst) >>= set_names names >>= build_definition0 def >>= map_bcs (Build_context.Where.end_ nargs) (fun lst -> range, description_of_type_in_context 0 lst) in build_where defs builder | List _ -> Error (range, Not_yet_implemented "Literal list") and build_formal_argument ((name, tp): Expression.formal_argument) : t build_monad = fun builder -> let next typed builder = next_formal_argument name typed builder in match tp with | None -> Ok (next false builder) | Some tp -> Result.map (next true) (build0 tp 0 builder) and build_signature (fargs: Expression.formal_argument list) (res: Expression.t option) : t build_monad = fun builder -> let open Result in List_fold.fold_left build_formal_argument fargs builder >>= fun builder -> match res with | None -> Ok builder | Some res -> build0 res 0 builder and build_definition0 (def: Expression.definition) : t build_monad = let open Expression in let name, fargs, res_tp, def_exp = Located.value def in if fargs = [] && res_tp = None then build0 def_exp 0 else if fargs = [] then build0 Located.(make (start name) (Typed (def_exp, Option.value res_tp)) (end_ name)) 0 else build0 Located.(make (start name) (Function (fargs, res_tp, def_exp)) (end_ name)) 0 let check_ambiguity (c: Context.t) (builder: t) : (Build_context.t, Build_problem.t) result = match builder.bcs with | [] -> assert false (* Cannot happen! *) | _ :: _ :: _ -> let range, base_terms = Build_context.find_last_ambiguous builder.bcs in Error ( range, Ambiguous ( List.map (fun (_, typ) -> [], typ, Context.gamma c) base_terms ) ) | [bc] -> Ok bc let check_formal_arguments (bc: Build_context.t) : (Build_context.t, Build_problem.t) result = match Build_context.find_first_untyped_formal bc with | None -> Ok bc | Some range -> Error (range, Cannot_infer_bound) let check_name_violations (bc: Build_context.t) : (Build_context.t, Build_problem.t) result = match Build_context.find_first_name_violation bc with | None -> Ok bc | Some (range, case, kind) -> Error (range, Name_violation (case, kind)) let check_incomplete (range: range) (bc: Build_context.t) : (Term.t * Term.typ, Build_problem.t) result = match Build_context.final bc with | Error err -> Error (range, Incomplete_type err) | Ok (_, term, typ) -> Ok (term, typ) let build (exp: Expression.t) (c: Context.t) : (Term.t * Term.typ, Build_problem.t) result = let open Result in build0 exp 0 (make c) >>= check_ambiguity c >>= check_formal_arguments >>= check_name_violations >>= check_incomplete (Located.range exp) let build_definition (def: Expression.definition) (c: Context.t) : (Term.t * Term.typ, Build_problem.t) result = let open Fmlib.Result in build_definition0 def (make c) >>= check_ambiguity c >>= check_formal_arguments >>= check_name_violations >>= check_incomplete (Located.range def) let build_named_type (name: string Located.t) (exp: Expression.t) (c: Context.t) : (Term.typ, Build_problem.t) result = let open Fmlib.Result in build exp c >>= fun (typ, _) -> match Algo.check_naming_convention (Located.value name) typ (Context.gamma c) with | Ok _ -> Ok typ | Error violation -> let case, kind = Gamma_algo.strings_of_violation violation in Error ( Located.range name, Build_problem.Name_violation (case, kind) )
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>