package alba
Alba compiler
Install
Dune Dependency
Authors
Maintainers
Sources
0.4.3.tar.gz
sha256=062f33c55ef39706c4290dff67d5a00bf009051fd757f9352be527f629ae21fc
md5=eb4edc4d6b7e15b83d6397bd34994153
doc/src/alba.core/gamma.ml.html
Source file gamma.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
open Fmlib open Common module Pi_info = Term.Pi_info module Lambda_info = Term.Lambda_info let builtin_functions: Term.Value.t String_map.t = let open String_map in empty |> add "int_plus" Term.Value.int_plus |> add "int_minus" Term.Value.int_minus |> add "int_times" Term.Value.int_times |> add "int_negate" Term.Value.int_negate |> add "string_concat" Term.Value.string_concat let _ = String_map.mem "int_plus" builtin_functions type definition = | Axiom | Assumption | Builtin_type of string | Builtin of string * Term.Value.t | Definition of Term.t | Inductive_type of int * int | Constructor of int * int * int type entry = { name: string; typ: Term.typ; definition: definition } type t = { entries: entry Sequence.t; inductives: (int * Inductive.t) Sequence.t; builtin_types: int String_map.t; } let empty: t = { entries = Sequence.empty; inductives = Sequence.empty; builtin_types = String_map.empty; } let bruijn_convert (i:int) (n:int): int = n - i - 1 let count (c:t): int = Sequence.length c.entries let count_inductive (c: t): int = Sequence.length c.inductives let is_valid_index (i:int) (c:t): bool = 0 <= i && i < count c let index_of_level (i:int) (c:t): int = bruijn_convert i (count c) let level_of_index (i:int) (c:t): int = bruijn_convert i (count c) let level_forall (p: int -> bool) (term: Term.t) (c: t): bool = Term.forall (fun level -> p (index_of_level level c)) term let level_has (p: int -> bool) (term: Term.t) (c: t): bool = Term.has (fun level -> p (index_of_level level c)) term let entry (level: int) (c: t): entry = assert (level < count c); Sequence.elem level c.entries let raw_type_at_level (i:int) (c:t): Term.typ = (entry i c).typ let type_at_level (i:int) (c:t): Term.typ = let cnt = count c in Term.up (cnt - i) (entry i c).typ let variable_at_level (i:int) (c:t): Term.t = Term.Variable (index_of_level i c) let name_at_level (level: int) (gamma: t): string = (entry level gamma).name let name_of_index (i: int) (gamma: t): string = (entry (bruijn_convert i (count gamma)) gamma).name let push (name: string) (typ: Term.typ) (definition: definition) (c: t): t = {c with entries = Sequence.push {name; typ; definition} c.entries; } let push_local (nme: string) (typ: Term.typ) (c:t): t = push nme typ Assumption c let add_definition (name: string) (typ: Term.typ) (def: Term.t) (c: t) : t = push name typ (Definition def) c let add_axiom (name: string) (typ: Term.typ) (c: t): t = push name typ Axiom c let add_builtin_type (descr: string) (name: string) (typ: Term.typ) (c: t): t = let cnt = count c in push name typ (Builtin_type descr) {c with builtin_types = String_map.add descr cnt c.builtin_types} let add_builtin_function (descr: string) (name: string) (typ: Term.typ) (c: t): t = let value = String_map.find descr builtin_functions in push name typ (Builtin (descr, value)) c let add_inductive (ind: Inductive.t) (c: t): t = let cnti0 = count_inductive c and cnt0 = count c and ntypes = Inductive.count_types ind in let open Common.Interval in let c1 = fold c (fun i -> let name, typ = Inductive.ith_type i ind in push name (Term.up i typ) (Inductive_type (cnti0, i)) ) 0 ntypes in let c2 = fold c1 (fun i c -> let nprevious = Inductive.count_previous_constructors i ind in fold c (fun j -> let name, typ = Inductive.constructor i j ind in push name (Term.up (nprevious + j) typ) (Constructor (cnti0, i, j)) ) 0 (Inductive.count_constructors i ind) ) 0 ntypes in { c2 with inductives = Sequence.push (cnt0, ind) c.inductives; } let inductive_at_level (level: int) (c: t): Inductive.t option = match (Sequence.elem level c.entries).definition with | Inductive_type (i, _) -> let cnt0, ind = Sequence.elem i c.inductives in Some (Inductive.up (count c - cnt0) ind) | _ -> None let int_type (c:t) = Term.Variable ( index_of_level (String_map.find "int_type" c.builtin_types) c ) let char_type (c:t) = Term.Variable ( index_of_level (String_map.find "character_type" c.builtin_types) c ) let string_type (c:t) = Term.Variable ( index_of_level (String_map.find "string_type" c.builtin_types) c ) let type_of_literal (v: Term.Value.t) (c: t): Term.typ = let open Term in match v with | Value.Int _ -> int_type c | Value.Char _ -> char_type c | Value.String _ -> string_type c | Value.Unary _ | Value.Binary _ -> assert false (* Illegal call! *) let type_of_variable (i: int) (c: t): Term.typ = type_at_level (level_of_index i c) c let definition_term (idx: int) (c: t): Term.t option = let level = level_of_index idx c in match (entry level c).definition with | Definition def -> Some (Term.up (count c - level) def) | _ -> None let compute (t:Term.t) (c:t): Term.t = let open Term in let rec compute term steps c = match term with | Sort _ | Value _ -> term, steps | Variable i -> let level = level_of_index i c in ( match (entry level c).definition with | Axiom | Assumption | Builtin_type _ -> term, steps | Builtin (_, v) -> Term.Value v, steps + 1 | Definition def -> Term.up (count c - level) def, steps + 1 | Inductive_type _ | Constructor _ -> term, steps ) | Typed (e, _ ) -> compute e (steps + 1) c | Appl (Value f, Value arg, _) -> Value (Value.apply f arg), steps + 1 | Appl (Value f, arg, mode) -> let arg, new_steps = compute arg steps c in if steps < new_steps then compute (Appl (Value f, arg, mode)) new_steps c else Appl (Value f, arg, mode), steps | Appl (Lambda (_, exp, _), arg, _) -> compute (apply exp arg) (steps + 1) c | Appl (Variable i, arg, mode) -> let f, new_steps = compute (Variable i) steps c in if steps < new_steps then compute (Appl (f, arg, mode)) new_steps c else term, new_steps | Appl (f, arg, mode) -> let f, new_steps = compute f steps c in if steps < new_steps then compute (Appl (f, arg, mode)) new_steps c else term, new_steps | Lambda _ -> term, steps | Pi (arg_tp, res_tp, info) -> let c_inner = push_local (Pi_info.name info) arg_tp c in let res_tp, new_steps = compute res_tp steps c_inner in if steps < new_steps then compute (Pi (arg_tp, res_tp, info)) new_steps c else term, steps | Where (_, _, exp, def) -> compute (apply exp def) (steps + 1) c in fst (compute t 0 c)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>