package alba
Alba compiler
Install
Dune Dependency
Authors
Maintainers
Sources
0.4.3.tar.gz
sha256=062f33c55ef39706c4290dff67d5a00bf009051fd757f9352be527f629ae21fc
md5=eb4edc4d6b7e15b83d6397bd34994153
doc/src/alba.core/inductive.ml.html
Source file inductive.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
(* A pure representation of inductive types. *) open Fmlib open Common type params = (string * Term.typ) array (* Valid in the initial context. *) let push_params (n: int) (params: params) (res: Term.typ): Term.typ = (* Push parameters in front of a type. For an inductive kind [n] must be zero. For a constructor type [n] must be the number of types. *) Array.foldi_right (fun iparam (name, typ) res -> Term.(Pi (up_from iparam n typ, res, Pi_info.typed name))) params res module Header = struct type t = { name: string; kind: Term.typ; (* only indices, valid in a context with parameters *) indices: (Term.Pi_info.t * Term.typ) array; (* kind arguments *) sort: Term.Sort.t; } (* [indices] and [sort] represent the normalized version of [kind]*) let make name kind indices sort = {name; kind; indices = Array.of_list indices; sort} let name header = header.name let count_indices (header: t): int = Array.length header.indices let has_index (header: t): bool = 0 <> count_indices header let kind (params: params) (header: t): Term.typ = push_params 0 params header.kind let default_type (i:int) (params: params) (headers: t array) : Term.typ = (* Valid in a context with the types and the parameters. *) let nparams = Array.length params and ntypes = Array.length headers in let rec make k typ = if k = nparams then typ else make (k + 1) Term.( application typ (Variable (bruijn_convert k nparams)) ) in make 0 Term.(Variable (bruijn_convert i ntypes + nparams)) let is_well_constructed (i: int) (params: params) (headers: t array) (nargs: int) (typ: Term.typ) : bool = (* Check that [typ] has the form [I p1 p2 ... i1 i2 ...] where [I] corresponds to the [i]th inductive type, [p1 p2 ...] are the parameters and [i1 i2 ... ] are the indices. *) let open Term in let nparams = Array.length params and ntypes = Array.length headers and f, params_index = split_application typ in let params_index = Array.of_list params_index in let inductive_variable = Variable (bruijn_convert i (ntypes + nparams + nargs)) and param_variable k = Variable (bruijn_convert k (nparams + nargs)) in f = inductive_variable && Common.Interval.forall (fun k -> assert (k < Array.length params_index); param_variable k = fst params_index.(k) ) 0 nparams end (* Header *) module Constructor = struct type t = { name: string; typ: Term.typ; (* Valid in context with all types of the family and the parameters. *) } let make name typ = {name; typ} let get co = co.name, co.typ end module Type = struct type t = { nprevious: int; (* number of previous constructors *) header: Header.t; constructors: Constructor.t array; } let make nprevious header constructors = {nprevious; header; constructors} end (* Type *) type t = { n_up: int; params: params; positive_params: Int_set.t; types: Type.t array; } let make params positive_params types = {n_up = 0; params; positive_params; types} let up (n: int) (ind: t): t = {ind with n_up = n + ind.n_up} let count_types (ind: t): int = Array.length ind.types let count_params (ind: t): int = Array.length ind.params let is_param_positive (iparam: int) (ind: t): bool = iparam < count_params ind && Common.Int_set.mem iparam ind.positive_params let parameter_name (iparam: int) (ind: t): string = assert (iparam < count_params ind); fst ind.params.(iparam) let parameters (ind: t): params = let n = ind.n_up + count_types ind in Array.map (fun (name, typ) -> name, Term.up n typ) ind.params let ith_type (i: int) (ind: t): string * Term.typ = assert (i < count_types ind); let header = ind.types.(i).header in Header.name header , Term.up ind.n_up (Header.kind ind.params header) let count_constructors (i: int) (ind: t): int = assert (i < count_types ind); Array.length ind.types.(i).constructors let count_previous_constructors (i: int) (ind: t): int = assert (i < count_types ind); ind.types.(i).nprevious let raw_constructor (i: int) (j: int) (ind: t): string * Term.typ = assert (i < count_types ind); assert (j < count_constructors i ind); let name, typ = Constructor.get ind.types.(i).constructors.(j) in name, Term.up_from (count_params ind + count_types ind) ind.n_up typ let constructor (i: int) (j: int) (ind: t): string * Term.typ = let ntypes = count_types ind in assert (i < ntypes); assert (j < count_constructors i ind); let name, typ = Constructor.get ind.types.(i).constructors.(j) in let typ = push_params ntypes ind.params typ in name, Term.up_from ntypes ind.n_up typ
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>