package alba

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file build_context.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
open Fmlib
open Common
open Alba_core


module Algo = Gamma_algo.Make (Gamma_holes)
module Uni  = Unifier.Make (Gamma_holes)


module Stack =
struct
    let split (stack: 'a list): 'a * 'a list =
        match stack with
        | [] ->
            assert false (* Illegal call! *)
        | hd :: tl ->
            hd, tl

    let swap (sp: 'a) (stack: 'a list): 'a * 'a list =
        match stack with
        | hd :: tl ->
            hd, sp :: tl
        | _ ->
            assert false (* Illegal call! *)

    let rec pop (nargs: int) (sp: 'a) (stack: 'a list): 'a * 'a list =
        if nargs = 0 then
            sp, stack
        else
            match stack with
            | [] ->
                assert false (* Illegal call! *)
            | sp :: stack ->
                pop (nargs - 1) sp stack
end






type entry = {
    cnt0: int;
}


type t = {
    gh: Gamma_holes.t;
    sp: int;
    stack: int list;
    entry: entry;
    entries: entry list;
}


type type_in_context = int list * Term.typ * Gamma.t




let index_of_level (level: int) (bc: t): int =
    Gamma_holes.index_of_level level bc.gh


let string_of_term (term: Term.t) (bc: t): string =
    Term_printer.string_of_term term (Gamma_holes.context bc.gh)
let _ = string_of_term



let count (bc: t): int =
    Gamma_holes.count bc.gh

let count_base (bc: t): int =
    Gamma_holes.count_base bc.gh


let count_locals (bc: t): int =
    Gamma_holes.count_locals bc.gh


let count_bounds (bc: t): int =
    Gamma_holes.count_bounds bc.gh

let context (bc: t): Gamma.t =
    Gamma_holes.context bc.gh

let type_at_level (level: int) (bc: t): Term.typ =
    assert (level < count bc);
    Gamma_holes.type_at_level level bc.gh


let type_of_term (term: Term.t) (bc: t): Term.typ =
    Algo.type_of_term term bc.gh



let key_normal (term: Term.t) (bc: t): Term.t =
    Algo.key_normal term bc.gh


let is_kind (typ: Term.typ) (bc: t): bool =
    Algo.is_kind typ bc.gh



let required_type (bc: t): Term.typ =
    type_at_level bc.sp bc



let term_at_level (level: int) (bc: t): Term.t =
    Gamma_holes.expand
        (Term.Variable (index_of_level level bc))
        bc.gh



let top_term (bc: t): Term.t =
    term_at_level bc.sp bc


let unfilled_holes (term: Term.t) (bc: t): int list =
    Int_set.elements
        (Gamma_holes.unfilled_holes
            (count_base bc)
            term
            bc.gh)


let type_in_context (typ: Term.typ) (bc: t): type_in_context =
    unfilled_holes typ bc,
    typ,
    context bc


let required_type_in_context (bc: t): type_in_context =
    type_in_context (required_type bc) bc


let add_one_implicit
    (term: Term.t) (typ: Term.typ) (bc: t)
    : (Term.t * Term.typ * t) option
    =
    let open Term in
    match typ with
    | Pi (arg, res, _) when is_kind arg bc && has_variable 0 res ->
        Some (
            Appl (
                up1 term,
                Variable 0,
                Application_info.Implicit),
            res,
            {bc with gh = Gamma_holes.push_hole arg bc.gh}
        )
    | _ ->
        None






let add_implicits
    (term: Term.t) (typ: Term.typ) (bc: t)
    : Term.t * Term.typ * t
    =
    let rec add term typ bc =
        match add_one_implicit term typ bc with
        | None ->
            term, typ, bc
        | Some (term, typ, bc) ->
            add term typ bc
    in
    add term typ bc




let unify (act: Term.typ) (bc: t): t option =
    let req = required_type bc in
    Option.map
        (fun gh -> {bc with gh})
        (Uni.unify act req true bc.gh)



let unify_plus (term: Term.t) (bc: t): (Term.t * t) option =
    let rec uni term tp bc =
        let tp = key_normal tp bc
        and req = required_type bc in
        match Uni.unify tp req true bc.gh with
        | Some gh ->
            Some (Gamma_holes.expand term gh, {bc with gh})
        | None ->
            Option.(add_one_implicit term tp bc
                    >>= fun (term, tp, bc) ->
                    uni term tp bc)
    in
    uni term (type_of_term term bc) bc




let set_term (term: Term.t) (bc: t): t =
    {bc with
        gh =
            Gamma_holes.fill_hole (index_of_level bc.sp bc) term bc.gh}



let make (gamma: Gamma.t): t =
    let cnt0 = Gamma.count gamma in
    {
        gh =
            Gamma_holes.(
                make gamma
                |> push_hole Term.(any_uni 2)
                |> push_hole Term.(Variable 0)
            );

        sp = cnt0 + 1;

        stack = [];

        entry = {
            cnt0;
        };

        entries = [];
   }




let final
    (bc: t)
    : (Term.t * Term.typ, int list * Term.typ * Gamma.t) result
    =
    let cnt0 = count_base bc
    and nlocs = count_locals bc in
    assert (bc.stack = []);
    assert (bc.entries = []);
    assert (bc.sp = cnt0 + 1);
    let term = top_term bc in
    let typ  = type_of_term term bc in
    match Term.down nlocs term, Term.down nlocs typ with
    | Some term, Some typ ->
        Ok (term, typ)
    | _ ->
        let gamma = Gamma_holes.context bc.gh in
        Error(
            unfilled_holes typ bc,
            typ,
            gamma
        )




let candidate
    (term: Term.t) (nargs: int) (bc: t)
    : (t, type_in_context * type_in_context) result
    =
    if 0 < nargs then
        let tp = type_of_term term bc in
        let term, tp, bc = add_implicits term tp bc in
        match unify tp bc with
        | None ->
            Error (required_type_in_context bc, type_in_context tp bc)
        | Some bc ->
            let bc = set_term term bc in
            let sp, stack = Stack.swap bc.sp bc.stack in
            Ok {bc with sp; stack}
    else
        match unify_plus term bc with
        | None ->
            Error (
                required_type_in_context bc,
                type_in_context (type_of_term term bc) bc
            )
        | Some (term, bc) ->
            Ok (set_term term bc)



let base_candidate
    (term: Term.t)
    (nargs: int)
    (bc: t)
    : t option
    =
    let term = Term.up (count_locals bc) term in
    match candidate term nargs bc with
    | Ok bc ->
        Some bc
    | Error _ ->
        None



let bound
    (ibound: int) (nargs: int) (bc: t)
    : (t, type_in_context * type_in_context) result
    =
    candidate (Gamma_holes.variable_of_bound ibound bc.gh) nargs bc





let next_formal_argument (name: string) (typed: bool) (bc: t): t =
    let cnt0 = count bc
    and tp = top_term bc
    in
    {bc with
        gh =
            Gamma_holes.(
                push_bound name typed tp bc.gh
                |> push_hole Term.(any_uni 1)
            );

        stack = bc.sp :: bc.stack;

        sp = cnt0 + 1
    }




module Product =
(* ... A: Any1, x: A, B: Any1, y: B, ... , RT: Any1 *)
struct
    let start (bc: t): t =
        let cnt0 = count bc
        in
        {
            gh = Gamma_holes.push_hole Term.(any_uni 1) bc.gh;

            stack = bc.sp :: bc.stack;

            sp = cnt0;

            entries = bc.entry :: bc.entries;

            entry = {cnt0}
        }

    let  check
        (nbounds: int)
        (bc: t)
        : (t, int) result
        =
        assert (0 < nbounds);
        let arg_tps, _ =
            let rec args nbounds stack tps =
                if nbounds = 0 then
                    tps, stack
                else
                    let sp, stack = Stack.split stack in
                    args (nbounds - 1) stack (term_at_level sp bc :: tps)
            in
            args nbounds bc.stack []
        in
        let rec find_incomplete i tps =
            if i = nbounds then
                None
            else
                let tp, tps = Stack.split tps in
                if Int_set.is_empty
                    (Gamma_holes.unfilled_holes bc.entry.cnt0 tp bc.gh)
                then
                    find_incomplete (i + 1) tps
                else
                    Some i
        in
        match find_incomplete 0 arg_tps with
        | Some i ->
            Error i
        | None ->
            Ok bc


    let end_
        (nargs: int)
        (nbounds: int)
        (bc: t)
        : (t, type_in_context * type_in_context) result
        =
        assert (0 < nbounds);
        let res = top_term bc
        and sp, stack = Stack.pop (nbounds + 1) bc.sp bc.stack
        in
        let tp = Gamma_holes.pi nbounds res bc.gh in
        let entry, entries = Stack.split bc.entries in
        candidate
            tp
            nargs
            {
                gh = Gamma_holes.remove_bounds nbounds bc.gh;
                sp;
                stack;
                entry;
                entries;
            }
end






module Typed =
(* [exp : tp] *)
struct
    let start (bc: t): t =
        (* Expect the type term. *)
        let cnt0 = count bc in
        {bc with
            gh = Gamma_holes.push_hole Term.(any_uni 1) bc.gh;

            stack = bc.sp :: bc.stack;

            sp = cnt0
        }

    let expression (bc: t): t =
        (* Expect the expression. *)
        let cnt0 = count bc in
        {bc with
            gh = Gamma_holes.push_hole (top_term bc) bc.gh;

            stack = bc.sp :: bc.stack;

            sp = cnt0;
        }

    let end_
        (nargs: int) (bc: t)
        : (t, type_in_context * type_in_context) result
        =
        let tp, stack = Stack.split bc.stack in
        let sp, stack = Stack.split stack in
        let tp = term_at_level tp bc
        and exp = top_term bc
        in
        let term = Term.Typed (exp, tp)
        and bc = {bc with sp; stack} in
        candidate term nargs bc
end






module Application =
(* [f a b c ...]

    f   a   b   c
    . g .
    .    h  .


For each argument we introduce 4 holes:

    A: Any(1)
    F: A -> Any(1)
    a: A
    f: all (x: A): F x
    ...

    stack = f a g b h c ...

*)
struct
    let start (nargs: int) (bc: t): t =
        let cnt0 = count bc in
        let rec shift cnt0 n gh sp stack =
            if n = 0 then
                gh, sp, stack
            else
                let open Gamma_holes in
                shift
                    (cnt0 + 4)
                    (n - 1)
                    (push_hole Term.(any_uni 1) gh  (* A: Any(1) *)
                    |> push_hole                    (* F: A -> Any(1) *)
                        Term.(Pi (Variable 0, any_uni 1, Pi_info.arrow))
                    |> push_hole Term.(Variable 1)  (* a: A *)
                    |> push_hole Term.(             (* f: all (x:A): F x *)
                        Pi (Variable 2,
                            Appl (
                                Variable 2,
                                Variable 0,
                                Application_info.Normal),
                            Pi_info.typed "x")))
                    (cnt0 + 3)
                    (cnt0 + 2 :: sp :: stack)
        in
        let gh, sp, stack = shift cnt0 nargs bc.gh bc.sp bc.stack in
        {bc with
            gh;
            stack;
            sp}


    let apply
        (n_remaining: int)
        (mode: Term.Application_info.t)
        (bc: t)
        : (t, type_in_context * type_in_context) result
        =
        match bc.stack with
        | f :: e :: stack ->
            let open Term in
            let term = Appl (
                    term_at_level f bc,
                    term_at_level bc.sp bc,
                    mode)
            in
            candidate
                term
                n_remaining
                {bc with
                    stack;
                    sp = e}
        | _ ->
            assert false (* Illegal call! *)
end (* Application *)





module Lambda =
(*
    \ (x: A) (y: B) ... : T := t

One placeholder for each optional argument type, one placeholder for the
optional result type and one placeholder for the inner expression.

    stack = t T ... B A ...
*)
struct
    let start (bc: t): t =
    (* Push a placeholder for the first argument type. I.e. expect the first
    argument type. *)
        let cnt0 = count bc in
        {bc with
            gh = Gamma_holes.push_hole Term.(any_uni 1) bc.gh;

            stack = bc.sp :: bc.stack;

            sp = cnt0
        }


    let inner (bc: t): t =
    (* Push a placeholder based on the result type (the previously analyzed ast),
    i.e. expect the inner term of the function abstraction. *)
        let cnt0 = count bc
        and tp = top_term bc
        in
        let open Gamma_holes in
        {bc with
            gh = push_hole tp bc.gh;

            stack = bc.sp :: bc.stack;

            sp = cnt0
        }


    let end_
        (nargs: int) (nbounds: int) (typed: bool) (bc: t)
        : (t, type_in_context * type_in_context) result
        =
        let exp = top_term bc in
        let sp, stack = Stack.split bc.stack in
        let exp =
            if typed then
                Term.Typed (exp, term_at_level sp bc)
            else
                exp
        in
        let lam = Gamma_holes.lambda nbounds exp bc.gh in
        let sp, stack = Stack.pop (nbounds + 1) sp stack
        in
        candidate
            lam
            nargs
            {bc with
                gh = Gamma_holes.remove_bounds nbounds bc.gh;
                sp;
                stack
            }
end





module Where =
struct
    let start (name: string) (bc: t): t =
        Application.start 1 bc
        |> Lambda.start
        |> next_formal_argument name false
        |> Lambda.inner



    let end_inner (bc: t): (t, type_in_context * type_in_context) result =
        Lambda.end_ 1 1 false bc


    let end_
        (nargs: int)
        (bc: t)
        : (t, type_in_context * type_in_context) result
        =
        match bc.stack with
        | f :: e :: stack ->
            let open Term in
            (
                match term_at_level f bc with
                | Lambda (tp, exp, info) ->
                    let term =
                        Where (
                            Lambda_info.name info,
                            tp,
                            exp,
                            term_at_level bc.sp bc
                        )
                    in
                    candidate term nargs {bc with stack; sp = e}
                | _ ->
                    assert false (* Illegal call! *)
            )
        | _ ->
            assert false (* Illegal call! *)
end
OCaml

Innovation. Community. Security.