Source file builder.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
open Fmlib
open Common
module Parser = Parser_lang
module Expression = Ast.Expression
module Position = Character_parser.Position
type pos = Position.t
type range = pos * pos
module Located =
Character_parser.Located
type type_in_context = Build_context.type_in_context
type problem_description =
| Overflow
| No_name
| Incomplete_type of (int list * Term.typ * Gamma.t) list
| Cannot_infer_bound
| Not_a_function of type_in_context list
| Wrong_type of (type_in_context * type_in_context) list
| Wrong_base of type_in_context list * type_in_context list
let description_of_type_in_context
(nargs: int)
(lst: (type_in_context * type_in_context) list)
: problem_description
=
if 0 < nargs then
Not_a_function (List.map snd lst)
else
Wrong_type lst
type problem = range * problem_description
module Name_map = Context.Name_map
module Result = Monad.Result (struct type t = problem end)
module List_fold = List.Monadic_fold (Result)
module Interval_monadic = Interval.Monadic (Result)
module Algo = Gamma_algo.Make (Gamma)
type t = {
names: Name_map.t;
base: Gamma.t;
bcs: Build_context.t list;
}
let count_base (builder: t): int =
Gamma.count builder.base
let push_bound (name: string) (builder: t): t =
{builder with
names = Name_map.add_local name builder.names}
let make (c: Context.t): t =
{
names = Context.name_map c;
base = Context.gamma c;
bcs = [Build_context.make (Context.gamma c)]
}
let base_candidates
(range: range)
(candidates: Term.t list)
(nargs: int)
(builder: t)
: (t, problem) result
=
let bcs =
List.(
builder.bcs >>= fun bc ->
candidates >>= fun term ->
Option.to_list (Build_context.base_candidate term nargs bc))
in
if bcs = [] then
let acts =
List.map
(fun term ->
[],
Algo.type_of_term term builder.base,
builder.base)
candidates
and reqs =
List.map Build_context.required_type_in_context builder.bcs
in
if 0 < nargs then
Error (range, Not_a_function acts)
else
Error (range, Wrong_base (reqs, acts))
else
Ok {builder with bcs}
let map_bcs_list (f: Build_context.t -> Build_context.t) (builder: t): t =
{builder with bcs = List.map f builder.bcs}
let map_bcs0
(f: Build_context.t -> ('a, 'b) result)
(g: 'b list -> problem)
(builder: t)
: ('a list, problem) result
=
let lst, errors =
List.fold_left
(fun (lst, errors) bc ->
match f bc with
| Ok a ->
a :: lst, errors
| Error problem ->
lst, problem :: errors)
([], [])
builder.bcs
in
if lst <> [] then
Ok lst
else
Error (g errors)
let map_bcs
(f: Build_context.t -> (Build_context.t, 'a) result)
(g: 'a list -> problem)
(builder: t)
: (t, problem) result
=
Result.map
(fun bcs -> {builder with bcs})
(map_bcs0 f g builder)
let rec build0
(exp: Expression.t)
(nargs: int)
(builder: t)
: (t, problem) result
=
let open Expression in
let range = Located.range exp in
match
Located.value exp
with
| Number str ->
let lst = Term.number_values str in
if lst = [] then
Error (range, Overflow)
else
base_candidates range lst nargs builder
| Char code ->
base_candidates range [Term.char code] nargs builder
| String str ->
base_candidates range [Term.string str] nargs builder
| Proposition ->
base_candidates range [Term.proposition] nargs builder
| Any ->
base_candidates range [Term.any] nargs builder
| Identifier name | Operator (name, _) ->
let cnt_base = count_base builder in
(
match Name_map.find name builder.names with
| [] ->
Error (range, No_name)
| [level] when cnt_base <= level ->
map_bcs
(Build_context.bound (level - cnt_base) nargs)
(fun lst ->
range,
description_of_type_in_context nargs lst)
builder
| lst ->
base_candidates
range
(List.map
(fun level -> Gamma.variable_at_level level builder.base)
lst)
nargs
builder
)
| Typed (exp, tp) ->
let open Result in
(map_bcs_list Build_context.Typed.start builder
|> build0 tp 0)
>>= fun builder ->
(map_bcs_list Build_context.Typed.expression builder
|> build0 exp 0)
>>=
map_bcs
(Build_context.Typed.end_ nargs)
(fun lst ->
range,
description_of_type_in_context nargs lst)
| Product (fargs, res) ->
let open Result in
List_fold.fold_left
(fun (name, arg_tp) builder ->
let name_str = Located.value name in
let next typed builder =
map_bcs_list
(Build_context.Product.next name_str typed)
builder
|> push_bound (Located.value name)
in
match arg_tp with
| None ->
Ok (next false builder)
| Some tp ->
map
(next true)
(build0 tp 0 builder))
fargs
(map_bcs_list Build_context.Product.start builder)
>>= build0 res 0
>>= map_bcs
(Build_context.Product.end_ (List.length fargs))
(fun lst ->
let i_min =
List.fold_left
(fun i_min i -> min i_min i)
(List.length fargs)
lst
in
let name, _ = List.nth_strict i_min fargs in
Located.range name, Cannot_infer_bound)
| Application (f, args) ->
let open Result in
let nargs, args =
List.fold_right
(fun (arg, mode) (n,args) -> n + 1, (n,arg,mode) :: args)
args
(0, [])
in
build0
f
nargs
(map_bcs_list
(Build_context.Application.start nargs)
builder)
>>=
List_fold.fold_left
(fun (n, arg, mode) builder ->
let mode =
match mode with
| Ast.Expression.Normal ->
Term.Application_info.Normal
| Ast.Expression.Operand ->
Term.Application_info.Binary
in
build0 arg 0 builder
>>=
map_bcs
(Build_context.Application.apply n mode)
(fun lst ->
(fst range, Located.end_ arg),
description_of_type_in_context n lst)
)
args
| Function (args, res, exp) ->
let open Result in
List_fold.fold_left
(fun (name, tp) builder ->
let str = Located.value name
in
let next typed builder=
map_bcs_list
(Build_context.Lambda.next str typed)
builder
|> push_bound str
in
match tp with
| None ->
Ok (next false builder)
| Some tp ->
map (next true) (build0 tp 0 builder)
)
args
(map_bcs_list Build_context.Lambda.start builder)
>>= fun builder ->
(
let inner = map_bcs_list Build_context.Lambda.inner
in
match res with
| None ->
Ok (inner builder)
| Some res ->
map inner (build0 res 0 builder)
)
>>= fun builder ->
build0 exp 0 builder
>>=
map_bcs
(Build_context.Lambda.end_
nargs
(List.length args)
(res <> None))
(fun lst ->
range,
description_of_type_in_context nargs lst)
let build
(exp: Ast.Expression.t)
(c: Context.t)
: ((Term.t * Term.typ) list, problem) result
=
let open Result
in
build0 exp 0 (make c)
>>=
map_bcs0
Build_context.final
(fun lst -> Located.range exp, Incomplete_type lst)
module Print (P: Pretty_printer.SIG) =
struct
module PP = Term_printer.Pretty (Gamma) (P)
let with_plural_s (l: 'a list) (s: string): P.t =
match l with
| [_] ->
P.string s
| _ :: _ :: _ ->
P.(string s <+> char 's')
| _ ->
assert false
let type_or_types (l: 'a list): P.t =
match l with
| [_] ->
P.wrap_words "the type"
| _ :: _ :: _ ->
P.wrap_words "one of the types"
| _ ->
assert false
let typ (holes: int list) (tp: Term.typ) (gamma: Gamma.t): P.t =
let tp = PP.print tp gamma in
let open P in
match holes with
| [] ->
tp
| _ ->
let holes =
char '['
<+>
list_separated
(char ',' <+> group space)
(List.map
(fun level ->
let v = Gamma.variable_at_level level gamma
and vtp = Gamma.type_at_level level gamma in
PP.print v gamma <+> char ':' <+> char ' '
<+> PP.print vtp gamma)
holes)
<+> char ']'
in
holes <+> space <+> tp
let type_list (lst: type_in_context list): P.t =
let open P in
nest 4
(list_separated
cut
(List.map
(fun (holes, tp, gamma) ->
group (typ holes tp gamma))
lst))
let wrong_type
(reqs: type_in_context list)
(acts: type_in_context list)
: P.t
=
let open P in
wrap_words "I was expecting a term which has"
<+> group space
<+> type_or_types reqs
<+> cut <+> cut
<+> type_list reqs
<+> cut <+> cut
<+> wrap_words "but the expression has"
<+> group space
<+> type_or_types acts
<+> cut <+> cut
<+> type_list acts
<+> cut <+> cut
let description (descr: problem_description): P.t =
let open P in
match descr with
| Overflow ->
wrap_words "The number does not fit into a machine word" <+> cut
| No_name ->
string "I cannot find this name or operator" <+> cut
| Cannot_infer_bound ->
wrap_words "I cannot infer a type for this variable" <+> cut
| Incomplete_type lst ->
assert (lst <> []);
wrap_words "I cannot infer a complete type of the expression. \
Only the incomplete"
<+> group space
<+> with_plural_s lst "type"
<+> cut <+> cut
<+> type_list lst
<+> cut <+> cut
<+> wrap_words "This usually happens if I cannot infer the types \
of some bound variables."
<+> cut
| Not_a_function lst ->
assert (lst <> []);
wrap_words "I was expecting a function which can be applied to \
arguments. But the expression has"
<+> group space
<+> type_or_types lst
<+> cut <+> cut
<+> type_list lst
<+> cut <+> cut
<+> wrap_words "which is not a function type." <+> cut
| Wrong_type lst ->
assert (lst <> []);
let reqs, acts = List.split lst in
wrong_type reqs acts
| Wrong_base (reqs, acts) ->
wrong_type reqs acts
end
module Pretty_printer = Pretty_printer.Pretty (String_printer)
module Term_print = Context.Pretty (Pretty_printer)
module Expression_parser = Parser_lang.Make (Expression)
let standard_context: Context.t =
Context.standard ()
let string_of_term_type (term: Term.t) (typ: Term.t): string
=
String_printer.run (
Pretty_printer.run 0 200 200
(Term_print.print (Term.Typed (term,typ)) standard_context))
let _ = string_of_term_type
let build_expression
(str: string)
: ((Term.t * Term.typ) list, problem) result
=
let open Expression_parser in
let p = run (expression ()) str in
assert (has_ended p);
assert (has_succeeded p);
build Option.(value (result p)) standard_context
let%test _ =
match build_expression "Proposition" with
| Ok ([term,typ]) ->
string_of_term_type term typ
= "Proposition: Any"
| _ ->
false
let%test _ =
match build_expression "Any" with
| Ok [term,typ] ->
string_of_term_type term typ
= "Any: Any(1)"
| _ ->
false
let%test _ =
match build_expression "Int" with
| Ok [term,typ] ->
string_of_term_type term typ
= "Int: Any"
| _ ->
false
let%test _ =
match build_expression "abc" with
| Error (_, No_name) ->
true
| _ ->
false
let%test _ =
match build_expression "(|>)" with
| Ok [term,typ] ->
string_of_term_type term typ
= "(|>): all (A: Any) (a: A) (B: Any) (f: A -> B): B"
| _ ->
false
let%test _ =
match build_expression "Int -> all (B: Any): (Int -> B) -> B" with
| Ok [term,typ] ->
string_of_term_type term typ
= "Int -> (all (B: Any): (Int -> B) -> B): Any(1)"
| _ ->
false
let%test _ =
match build_expression "'a' : Character : Any" with
| Ok [term, typ] ->
string_of_term_type term typ
= "('a': Character: Any): Character: Any"
| _ ->
false
let%test _ =
match build_expression "identity" with
| Ok ([term,typ]) ->
string_of_term_type term typ
= "identity: all (A: Any): A -> A"
| _ ->
false
let%test _ =
match build_expression "identity: Int -> Int" with
| Ok ([term,typ]) ->
string_of_term_type term typ
= "(identity: Int -> Int): Int -> Int"
| _ ->
false
let%test _ =
let tp_str = "Int -> (all (B: Any): (Int -> B) -> B)"
in
match build_expression ("(|>): " ^ tp_str) with
| Ok [term, typ] ->
string_of_term_type term typ
=
"((|>): " ^ tp_str ^ "): " ^ tp_str
| _ ->
false
let%test _ =
let tp_str = "(Character -> String) -> String"
in
match build_expression ("(|>) 'a': " ^ tp_str) with
| Ok [term, typ] ->
string_of_term_type term typ
=
"((|>) 'a': " ^ tp_str ^ "): " ^ tp_str
| _ ->
false
let%test _ =
match build_expression "all a b: a = b" with
| Error (_, Cannot_infer_bound) ->
true
| _ ->
false
let%test _ =
match build_expression "all a b: 'x' = b" with
| Error (_, Cannot_infer_bound) ->
true
| _ ->
false
let%test _ =
match build_expression "all a (b: Int): a = b" with
| Ok [term, typ] ->
string_of_term_type term typ
=
"(all a (b: Int): a = b): Proposition"
| _ ->
false
let%test _ =
match build_expression "(|>) \"A\" (+) \"a\"" with
| Ok [term, typ] ->
string_of_term_type term typ
=
"(|>) \"A\" (+) \"a\": String"
| _ ->
false
let%test _ =
match build_expression "1 |> (+) 2" with
| Ok [term, typ] ->
string_of_term_type term typ
=
"1 |> (+) 2: Int"
| _ ->
false
let%test _ =
match build_expression "'a'= 'b' " with
| Ok [term,typ] ->
string_of_term_type term typ
= "'a' = 'b': Proposition"
| _ ->
false
let%test _ =
match build_expression "1 + 2" with
| Ok [term,typ] ->
string_of_term_type term typ
= "1 + 2: Int"
| _ ->
false
let%test _ =
match build_expression "all x: x + 2 = 3" with
| Ok [term,typ] ->
string_of_term_type term typ
= "(all x: x + 2 = 3): Proposition"
| _ ->
false
let%test _ =
match build_expression "(\\x := x + 2) 1" with
| Ok [term,typ] ->
string_of_term_type term typ
=
"(\\ x := x + 2) 1: Int"
| _ ->
false
let%test _ =
match build_expression "(\\x f := f x) 1 ((+) 2)" with
| Ok [term, typ] ->
string_of_term_type term typ
=
"(\\ x f := f x) 1 ((+) 2): Int"
| _ ->
false
let%test _ =
match build_expression "(\\x y f := f x y) 1 2 (+)" with
| Ok [term, typ] ->
string_of_term_type term typ
=
"(\\ x y f := f x y) 1 2 (+): Int"
| _ ->
false
let%test _ =
match build_expression "\\ x y := x = y" with
| Error (_, Incomplete_type _) ->
true
| _ ->
false