package acgtk
Abstract Categorial Grammar development toolkit
Install
Dune Dependency
Authors
Maintainers
Sources
acg-2.1.0-20240219.tar.gz
sha512=5d380a947658fb1201895cb4cb449b1f60f54914c563e85181d628a89f045c1dd7b5b2226bb7865dd090f87caa9187e0ea6c7a4ee3dc3dda340d404c4e76c7c2
doc/src/acgtk.datalogLib/datalog.ml.html
Source file datalog.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
open UtilsLib open Focused_list open Containers open Datalog_AbstractSyntax module ASPred = AbstractSyntax.Predicate module ASRule = AbstractSyntax.Rule module ASProg = AbstractSyntax.Program module Log = UtilsLib.Xlog.Make (struct let name = "Datalog" end) module type Datalog_Sig = sig exception Fails module UF : UnionFind.S module Predicate : sig type predicate = { p_id : ASPred.pred_id; arity : int } val make_predicate : Datalog_AbstractSyntax.AbstractSyntax.Predicate.predicate -> predicate module PredMap : Map.S with type key = ASPred.pred_id module FactSet : Set.S with type elt = ASPred.predicate val conditionnal_add : FactSet.elt -> FactSet.t -> FactSet.t -> FactSet.t -> FactSet.t val pp_facts : ASPred.PredIdTable.table -> Datalog_AbstractSyntax.ConstGen.Table.table -> Format.formatter -> FactSet.t PredMap.t -> unit module PredicateMap : Map.S with type key = ASPred.predicate module Premise : sig type t = ASPred.predicate list * int * int (* the first int parameter is meant to be the rule id and the second one to be the number of intensional predicates occurring in it*) val pp_premises : ?with_id:bool -> ASPred.PredIdTable.table -> Datalog_AbstractSyntax.ConstGen.Table.table -> Format.formatter -> t -> unit end module PremiseSet : Set.S with type elt = Premise.t val pp_facts_from_premises : ?with_id:bool -> ASPred.PredIdTable.table -> Datalog_AbstractSyntax.ConstGen.Table.table -> Format.formatter -> PremiseSet.t PredicateMap.t -> unit val format_derivations2 : ?query:Datalog_AbstractSyntax.AbstractSyntax.Predicate.predicate -> ASPred.PredIdTable.table -> Datalog_AbstractSyntax.ConstGen.Table.table -> PremiseSet.t PredicateMap.t -> unit val add_pred_arguments_to_content : ASPred.term list -> Datalog_AbstractSyntax.ConstGen.id UF.content list * int * int Datalog_AbstractSyntax.VarGen.IdMap.t -> Datalog_AbstractSyntax.ConstGen.id UF.content list * int * int Datalog_AbstractSyntax.VarGen.IdMap.t end module Rule : sig type rule = { id : int; lhs : Predicate.predicate; e_rhs : (Predicate.predicate * int) list; i_rhs : (Predicate.predicate * int) list; i_rhs_num : int; (* stores the number of intensional predicates occurring in the rule *) content : Datalog_AbstractSyntax.ConstGen.id UF.t; } val make_rule : ASRule.rule -> rule val cyclic_unify : int -> int -> 'a UF.t -> 'a UF.t val extract_consequence : rule -> Datalog_AbstractSyntax.ConstGen.id UF.t -> ASPred.predicate module FactArray : sig type row = Predicate.FactSet.t type array = row list val collect_results : ('a -> (int * Datalog_AbstractSyntax.ConstGen.id UF.t) * Predicate.FactSet.elt list -> 'a) -> 'a -> (int * Datalog_AbstractSyntax.ConstGen.id UF.t) * Predicate.FactSet.elt list -> array -> 'a end val immediate_consequence_of_rule : rule -> FactArray.row Predicate.PredMap.t -> ASPred.predicate list val to_abstract : rule -> ASPred.PredIdTable.table -> ASRule.rule module Rules : Set.S with type elt = rule end module Program : sig type program = { (* rules : Rule.rule list Predicate.PredMap.t; *) rules : Rule.Rules.t Predicate.PredMap.t; edb : ASPred.pred_id list; edb_facts : Predicate.FactSet.t Predicate.PredMap.t; idb : ASPred.pred_id list; pred_table : ASPred.PredIdTable.table; const_table : Datalog_AbstractSyntax.ConstGen.Table.table; rule_id_gen : IdGenerator.IntIdGen.t; abstract_rules : ASRule.Rules.t; } val empty : program val make_program : ASProg.program -> program val temp_facts : Rule.rule -> Rule.FactArray.row Predicate.PredMap.t -> Rule.FactArray.row Predicate.PredMap.t -> Rule.FactArray.row Predicate.PredMap.t -> Rule.FactArray.row Predicate.PredMap.t -> (ASPred.predicate * Predicate.FactSet.elt list -> Rule.rule -> 'a -> 'a) -> 'a -> ASPred.PredIdTable.table -> Datalog_AbstractSyntax.ConstGen.Table.table -> 'a val p_semantics_for_predicate : Predicate.PredMap.key -> program -> Rule.FactArray.row Predicate.PredMap.t -> Rule.FactArray.row Predicate.PredMap.t -> Rule.FactArray.row Predicate.PredMap.t -> Rule.FactArray.row Predicate.PredMap.t -> Predicate.PremiseSet.t Predicate.PredicateMap.t -> Predicate.FactSet.t * Predicate.PremiseSet.t Predicate.PredicateMap.t val seminaive : program -> Rule.FactArray.row Predicate.PredMap.t * Predicate.PremiseSet.t Predicate.PredicateMap.t val to_abstract : program -> ASProg.program val extend : program -> ASProg.modifier -> program val add_e_facts : program -> ASRule.rule list * Datalog_AbstractSyntax.ConstGen.Table.table * IdGenerator.IntIdGen.t -> program val add_rule : intensional:bool -> ASRule.rule -> program -> program (** [add_rule i r p] adds a [ASRule.rule] to a [Datalog.Program] with the assumption that it will not change the {em nature} of any predicate (that is making it change from extensional to intensional). If [i] is set to true, then the rule concerns an intensional predicate. If it is set to [false] then it concerns an extensional predicate and the rhs of the rule should be empty.*) val remove_rule : int -> ASPred.pred_id -> program -> program (** [remove_rule id p] returns the program [p] from which the rule with id [id] has been removed. IMPORTANT: This function only deals with rules introducing intensional predicate, because it is used when a constant is given several interpretations in a lexicon. *) val get_fresh_rule_id : program -> int * program val get_fresh_cst_id : string -> program -> Datalog_AbstractSyntax.ConstGen.id * program val add_pred_sym : string -> program -> ASPred.pred_id * program val build_forest : ?query:Datalog_AbstractSyntax.AbstractSyntax.Predicate.predicate -> Predicate.PremiseSet.t Predicate.PredicateMap.t -> program -> int SharedForest.SharedForest.forest list val pp_edb : Format.formatter -> program -> unit end end module Make (S : UnionFind.Store) = struct exception Fails module UF = UnionFind.Make (S) module Predicate = struct type predicate = { p_id : ASPred.pred_id; arity : int } (** For the type of the predicates, we use the same identifiers as for the predicates of the datalog abstract syntax {! Datalog_AbstractSyntax.AbstractSyntax.Predicate} *) (** [make_predicate p] returns an actual predicate from some abstract syntax representation {! Datalog_AbstractSyntax.AbstractSyntax.Predicate} *) let make_predicate p = { p_id = p.ASPred.p_id; arity = p.ASPred.arity } (** [to_abstract p (s,content) (vars,vargen)] returns a triple [(abs_p,vars',vargen')] where [abs_p] is the [p] predicate translated into an equivalent predicate from the datalog abstract syntax. In order to be able to perform this translation, we need [s] and index and [content] a indexed storage data structure which is meant to contain the arguments of [p] starting at index [s]. Then, in case some variable are still present, to be able to translate them according to the other variables that could be in the content [content], we need to check in [vars] if it's index already was associated to some [VarGen.id] generated by [vargen]. In this case [vars'=vars] and [vargen'=vargen], otherwise [vars'] is [var] with a new variable generated by [vargen] associated to the variable index, and [vargen'] is the result of generating this new variable from [vargen].*) let to_abstract { p_id = id; arity } (start, content) (vars, vargen) pred_table = Log.debug (fun m -> m "Starting the extraction of predicate \"%a/%d\" from the \ following content:@,\ @[<v> @[%a@]@]" (ASPred.pp pred_table ConstGen.Table.empty) { ASPred.p_id = id; ASPred.arity; ASPred.arguments = [] } arity (UF.pp ?size:None) content); let get_var i (vars, vargen) = try (Utils.IntMap.find i vars, (vars, vargen)) with Not_found -> let new_var, new_vargen = VarGen.get_fresh_id vargen in Log.debug (fun m -> m "Generated the variable: %s" (VarGen.id_to_string new_var)); (new_var, (Utils.IntMap.add i new_var vars, new_vargen)) in let new_vars, new_vargen, rev_arguments = List.fold_left (fun (vars, vargen, acc) -> function | UF.Value v -> (vars, vargen, ASPred.Const v :: acc) | UF.Link_to i -> let var, (new_vars, new_vargen) = get_var i (vars, vargen) in (new_vars, new_vargen, ASPred.Var var :: acc)) (vars, vargen, []) (UF.extract ~start arity content) in ( { ASPred.p_id = id; ASPred.arity; arguments = List.rev rev_arguments }, new_vars, new_vargen ) (** [lst_to_abstract lst (start,content) (vars,vargen)] returns a 5-uple [(abs_p_lst,length,start',vars',vargen')] where all the predicates of [lst] have been translated and put into [abs_p_lst] whose length is [length]. The predicates in [lst] are supposed to be represented in [content] starting at index [start] in an adjacent way. [start'] indexes the component of the next predicate in [content], and [vars'] and [vargen'] keep track of the variable that can have been generated. *) let lst_to_abstract lst (start, content) (vars, vargen) pred_table = let next_idx, vars', vargen', abs_preds, length = List.fold_left (fun (s, l_vars, l_vargen, acc, l) (p, pos) -> let abs_p, new_vars, new_vargen = to_abstract p (s, content) (l_vars, l_vargen) pred_table in (s + p.arity, new_vars, new_vargen, (abs_p, pos) :: acc, l + 1)) (start, vars, vargen, [], 0) lst in (List.rev abs_preds, length, next_idx, vars', vargen') (** [instantiate_with p (i,c)] instantiates the content [c] with the fact [p] starting at [i]. It returns a pair [(i',c')] when [i] is the index of the first component of the [p] predicate in the content [c] {e THIS IS NOT CHECKED HERE}. [i'=i+a] where [a] is the arity of [p] (it means [i'] should index the first component of the next predicate in the content of the rule) and [c'] is a new content where all the components between [i] and [i'-1] have been instantiated with the components of [p]. When such an instantiation fails, it raises {! UF.Union_Failure} *) let instantiate_with { ASPred.p_id = _; ASPred.arity = _; ASPred.arguments = args } (idx, content) = let last_i, (new_c, _) = List.fold_left (fun (i, (cont, vars)) value -> ( i + 1, match value with | ASPred.Const v -> (UF.instantiate i v cont, vars) | ASPred.Var var -> ( try (UF.union i (VarGen.IdMap.find var vars) cont, vars) with Not_found -> (cont, VarGen.IdMap.add var i vars)) )) (idx, (content, VarGen.IdMap.empty)) args in (last_i, new_c) [@@@warning "-69"] type unifiable_predicate = { u_p_id : ASPred.pred_id; u_arity : int; content : ConstGen.id UF.t; } [@@@warning "+69"] (** [add_pred_arguments_to_content arguments (content,idx,mapped_vars)] returns a triple (content',idx',mapped_vars') where [content'] is the list [content] to which has been added {e *in the reverse order*} the information from [arguments]. The update is such that if the argument of [arguments] is a [Var i] then it is replaced by a [Link_to j] such that [j] is the index at which the variable [Var i] was met for the first time (it is stored in [mapped_vars]. If the argument is a [Const c], then a [Value c] is added at the current position. [idx'] is the value of the next position if another list of arguments has to be added. And [mapped_vars'] is a map from variables [Var i] to positions (i.e. [int]) in which these variables first occur in [content'] - [arguments] is the list of the arguments of some predicate - [content] is a list meant to become the content of a rule, i.e. an indexed storage data structure that is meant to be extended with [arguments]. *BE CAREFUL: IT COMES IN INVERSE ORDER* - [idx] is the index to be given for the next element of [content] - [mapped_vars] is a mapping from [P.Var i] variables to the index at which they've been stored in [content]. When such a variable is met for the first time, as expected in the UnionFind data structure, the content at [idx] is [Link_to]'ed itself. *) let add_pred_arguments_to_content arguments (content, idx, mapped_vars) = List.fold_left (fun (cont, i, vars) (arg : ASPred.term) -> match arg with | ASPred.Var v -> ( try let var_index = VarGen.IdMap.find v vars in (UF.Link_to var_index :: cont, i + 1, vars) with Not_found -> (UF.Link_to i :: cont, i + 1, VarGen.IdMap.add v i vars)) | ASPred.Const c -> (UF.Value c :: cont, i + 1, vars)) (content, idx, mapped_vars) arguments let make_unifiable_predicate { ASPred.p_id; ASPred.arity; ASPred.arguments } = let content_as_lst, _, _ = add_pred_arguments_to_content arguments ([], 1, VarGen.IdMap.empty) in { u_p_id = p_id; u_arity = arity; content = UF.create (List.rev content_as_lst); } let unifiable p u_p = try if p.ASPred.p_id = u_p.u_p_id then let _ = instantiate_with p (1, u_p.content) in true else false with UF.Union_Failure -> false module PredMap = ASPred.PredIdMap (** A map whose key is of type of the predicates identifers *) (* TODO: Could it be replaced by predicate id only? *) (** A map whose key is of type [predicate] *) module FactSet = Set.Make (struct type t = ASPred.predicate let compare = ASPred.compare ~with_arguments:true end) let pp_facts pred_table cst_table fmt facts = PredMap.iter (fun _ facts_for_pred -> FactSet.iter (fun fact -> Format.fprintf fmt "%a.@;" (ASPred.pp pred_table cst_table) fact) facts_for_pred) facts (** [conditionnal_add e s1 s2 s3] adds [e] to the set [s1] only if [e] doesn't belong to [s2] nor to [s3]*) let conditionnal_add e s1 s2 s3 = if FactSet.mem e s2 then s1 else if FactSet.mem e s3 then s1 else FactSet.add e s1 (** A map indexed by integers to store facts at step (or time) [i] in the seminaive algorithm. These facts are also indexed by [predicate_id_type]. *) (* module Indexed_Facts=Utils.IntMap *) module Premise = struct type t = ASPred.predicate list * int * int (* the first int parameter is meant to be the rule id and the second one to be the number of intensional predicates occurring in it*) let rec lst_compare pred_lst_1 pred_lst_2 = match (pred_lst_1, pred_lst_2) with | [], [] -> 0 | _, [] -> 1 | [], _ -> -1 | p1 :: tl1, p2 :: tl2 -> let diff = ASPred.compare p1 p2 in if diff <> 0 then diff else lst_compare tl1 tl2 let compare (pred_lst_1, r_id_1, child_num_1) (pred_lst_2, r_id_2, child_num_2) = let cmp = r_id_1 - r_id_2 in if cmp <> 0 then cmp else let cmp = child_num_1 - child_num_2 in if cmp <> 0 then cmp else lst_compare pred_lst_1 pred_lst_2 let pp_premises ?(with_id = false) pred_table const_table fmt (premises, r_id, i_num) = Format.fprintf fmt "@[<v>%a@]@[(rule id: %d,@ number of intensional predicates: %d)@]" (Utils.pp_list ~sep:"," (ASPred.pp ~with_id pred_table const_table)) premises r_id i_num end module PremiseSet = Set.Make (Premise) module PredicateMap = Map.Make (struct type t = ASPred.predicate let compare = ASPred.compare ~with_arguments:true end) let rec format_derivations2 ?query pred_table cst_table map = let u_query = match query with | Some q -> Some (make_unifiable_predicate q) | None -> None in PredicateMap.iter (fun k v -> match u_query with | Some q when not (unifiable k q) -> () | _ -> let () = format_derivation "" k v pred_table cst_table map FactSet.empty in Printf.fprintf stdout "\n") map and format_derivation prefix k v pred_table cst_table map set = if FactSet.mem k set then Printf.printf "... (infinite loop on %s)" (Format.asprintf "%a" (ASPred.pp pred_table cst_table) k) else let new_set = FactSet.add k set in let _ = PremiseSet.fold (fun (premises, rule_id, _) (first, length) -> let new_length, new_prefix = match first with | true -> let s = Format.asprintf "%a" (ASPred.pp pred_table cst_table) k in let () = Printf.fprintf stdout "%s" s in let n_l = String.length s in (n_l, Printf.sprintf "%s%s" prefix (String.make n_l ' ')) | false -> let () = Printf.fprintf stdout "\n%s %s" prefix (String.make (length - 2) '>') in ( length, Printf.sprintf "%s %s" prefix (String.make (length - 2) ' ') ) in let () = format_premises2 new_prefix (List.rev premises) rule_id true pred_table cst_table map new_set in (* let () = Printf.fprintf stdout "\n" in*) (false, new_length)) v (true, 0) in () and format_premises2 prefix premises rule_id first pred_table cst_table map set = let rule_info = Printf.sprintf " (rule %d) " rule_id in let space_holder = String.make (String.length rule_info) ' ' in let () = match first with | true -> Printf.fprintf stdout "%s:--" rule_info | false -> Printf.fprintf stdout "\n%s%s|--" prefix space_holder in match premises with | [] -> () | [ p ] -> let () = try format_derivation (Printf.sprintf "%s%s " prefix space_holder) p (PredicateMap.find p map) pred_table cst_table map set with Not_found -> Printf.fprintf stdout "%s (not found)" (Format.asprintf "%a" (ASPred.pp pred_table cst_table) p) in Printf.fprintf stdout "" | p :: tl -> let () = try format_derivation (Printf.sprintf "%s%s " prefix space_holder) p (PredicateMap.find p map) pred_table cst_table map set with Not_found -> Printf.fprintf stdout "%s" (Format.asprintf "%a" (ASPred.pp pred_table cst_table) p) in let () = format_premises2 prefix tl rule_id false pred_table cst_table map set in Printf.fprintf stdout "" let pp_facts_from_premises ?(with_id = false) pred_table cst_table fmt facts = PredicateMap.iter (fun pred pred_facts -> PremiseSet.iter (fun premise -> Format.fprintf fmt "@[<v>%a <-@[ @[<v>%a@]@]@]" (ASPred.pp ~with_id pred_table cst_table) pred (Premise.pp_premises ~with_id pred_table cst_table) premise) pred_facts) facts let add_to_map_to_set k v m = let current_set = try PredicateMap.find k m with Not_found -> PremiseSet.empty in PredicateMap.add k (PremiseSet.add v current_set) m end module Derivation = struct end module Rule = struct type rule = { id : int; lhs : Predicate.predicate; e_rhs : (Predicate.predicate * int) list; i_rhs : (Predicate.predicate * int) list; i_rhs_num : int; (* stores the number of intensional predicates occurring in the rule *) content : ConstGen.id UF.t; (* TODO: Maybe put the label of the predicate in the content in order to enforce checking of the current instantiation *) (* abs_rule:ASRule.rule;*) } (** In a [rule], all the compoments of all the predicates are stored in a {! UnionFind} indexed data structure. We assume here that from [1] to [lhs.arity] the components of the left hand side predicate are stored, then from [lhs.arity+1] to [lhs.arity+(hd rhs).arity] the components of the first predicate on the right hand side are stored, etc. It is assumed that this structure is correct (no cycle, links within the range, etc.) *) module Rules = Set.Make (struct type t = rule let compare { id = i; _ } { id = j; _ } = i - j end) (** [make_rule r] returns an internal rule, that is one whose content is now a {! UnionFind.UnionFind} indexed data structure *) let make_rule ASRule.{ id; lhs; e_rhs; i_rhs; i_rhs_num; rhs_num = _ } = (* Be careful, the list of the rhs is reversed *) Log.debug (fun m -> m "Preparing the lhs content..."); let lhs_content = Predicate.add_pred_arguments_to_content lhs.ASPred.arguments ([], 1, VarGen.IdMap.empty) in Log.debug (fun m -> m "Done."); Log.debug (fun m -> m "Preparing the e_rhs..."); let e_rhs, e_rhs_content = List.fold_left (fun (rhs, content) ( { ASPred.p_id = n; ASPred.arity = k; ASPred.arguments = pred_args; }, pos ) -> ( ({ Predicate.p_id = n; Predicate.arity = k }, pos) :: rhs, Predicate.add_pred_arguments_to_content pred_args content )) ([], lhs_content) e_rhs in Log.debug (fun m -> m "Done."); Log.debug (fun m -> m "Preparing the i_rhs..."); let i_rhs, (content, _, _) = List.fold_left (fun (rhs, content) ( { ASPred.p_id = n; ASPred.arity = k; ASPred.arguments = pred_args; }, pos ) -> ( ({ Predicate.p_id = n; Predicate.arity = k }, pos) :: rhs, Predicate.add_pred_arguments_to_content pred_args content )) ([], e_rhs_content) i_rhs in Log.debug (fun m -> m "Done. Content is of size %d" (List.length content)); let internal_content = UF.create (List.rev content) in Log.debug (fun m -> m "It is represented by:@,@[<v> @[%a@]@]" (UF.pp ?size:None) internal_content); { id; lhs = Predicate.make_predicate lhs; e_rhs = List.rev e_rhs; i_rhs = List.rev i_rhs; i_rhs_num; content = internal_content; } (* the [dag] parameter [h] is meant to be the components of some predicate or rule *) let cyclic_unify i j h = match UF.cyclic i h with | true, _ -> raise Fails | _, _h' -> ( try UF.union i j h with UF.Union_Failure -> raise Fails) (** [extract_consequence r content] returns a fact from content. The arguments are of the form [Const c] or [Var v] (that is something of type {! Datalog_AbstractSyntax.AbstractSyntax.Predicate.term}). When it is a [Var v], it means that when this variable range over the constants of the program, it still are facts (= provable). *) let extract_consequence r content = let args, _, _ = List.fold_left (fun (args, varmap, vargen) elt -> match elt with | UF.Value v -> (ASPred.Const v :: args, varmap, vargen) | UF.Link_to i -> let new_var, new_varmap, new_vargen = try (Utils.IntMap.find i varmap, varmap, vargen) with Not_found -> let n_v, n_vg = VarGen.get_fresh_id vargen in (n_v, Utils.IntMap.add i n_v varmap, n_vg) in (ASPred.Var new_var :: args, new_varmap, new_vargen)) ([], Utils.IntMap.empty, VarGen.init ()) (UF.extract r.lhs.Predicate.arity content) in { ASPred.p_id = r.lhs.Predicate.p_id; ASPred.arity = r.lhs.Predicate.arity; ASPred.arguments = List.rev args; } (* TODO: Directly extract from content, then the list would be crossed only once *) (** [to_abstract r table] returns a datalog abstract syntax rule where the arguments of all (datalog abstract syntax) predicates have been computed using [r.content] and the symbol are the one stored in [table]. *) let to_abstract { id; lhs; e_rhs; i_rhs; i_rhs_num; content } pred_table = Log.debug (fun m -> m "Going to work with the following content:@,@[<v> @[%a@]@]" (UF.pp ?size:None) content); let abs_lhs, vars, vargen = Predicate.to_abstract lhs (1, content) (Utils.IntMap.empty, VarGen.init ()) pred_table in let abs_e_rhs, e_rhs_length, start', vars', vargen' = Predicate.lst_to_abstract e_rhs (1 + lhs.Predicate.arity, content) (vars, vargen) pred_table in let abs_i_rhs, i_rhs_length, _, _, _ = Predicate.lst_to_abstract i_rhs (start', content) (vars', vargen') pred_table in let abs_rule = { ASRule.id; ASRule.lhs = abs_lhs; ASRule.e_rhs = abs_e_rhs; ASRule.i_rhs = abs_i_rhs; ASRule.i_rhs_num; ASRule.rhs_num = e_rhs_length + i_rhs_length; } in abs_rule (** [FactArray] is a module implementing a traversal of facts using the {! ArrayTraversal.Make} functor. The [update] function is such that we don't consider cells (i.e. facts) that don't unify with the rule (i.e. a {! UF.Union_Failure} exception was raised).*) module FactArray = ArrayTraversal.Make2 (struct type cell = Predicate.FactSet.elt (*P.fact *) type state = (int * ConstGen.id UF.t) * cell list (* The state [(i,c),lst] stores the next index [i] of the content [c] where the update should start, and [lst] keep track of the facts against which the content has been unified. {e Be careful:} it stores them in the reverse order.*) module CellSet = Predicate.FactSet let update (s, cells) c = try Some (Predicate.instantiate_with c s, c :: cells) with UF.Union_Failure -> None end) (** [immediate_consequence_of_rule r db] returns a list of facts generated by the rule [r] using the facts stored in [db]. {e *these facts are not added to [db] when collecting the new facts*}. Note that it is important that resulting states need to be processed otherwise they will be lost in backtracking when using {! PersistentArray}.*) let immediate_consequence_of_rule r db = (* We collect all the contents compatible with the facts of the database corresponding to intensional predicates *) let make_search_array_i_pred = List.map (fun (pred, _) -> Predicate.PredMap.find pred.Predicate.p_id db) r.i_rhs in (* We define the function to be run on each reached end state of the instantiation with the extensional predicates *) let resume_on_i_pred acc state = FactArray.collect_results (fun l_acc ((_, content), _) -> extract_consequence r content :: l_acc) acc state make_search_array_i_pred in (* We now collect all the contents compatible with the facts of the extensional database (facts of the database corresponding to extensional predicates). *) let make_search_array_e_pred = List.map (fun (pred, _) -> Predicate.PredMap.find pred.Predicate.p_id db) r.e_rhs in FactArray.collect_results (fun acc s -> resume_on_i_pred acc s) [] ((r.lhs.Predicate.arity + 1, r.content), []) make_search_array_e_pred end module Program = struct type program = { (* rules : Rule.rule list Predicate.PredMap.t; *) (* the list of the rules of the program indexed by the id of the lhs predicate *) rules : Rule.Rules.t Predicate.PredMap.t; (* the set of the rules of the program indexed by the id of the lhs predicate *) edb : ASPred.pred_id list; (* the list of the ids of the extensional predicates *) edb_facts : Predicate.FactSet.t Predicate.PredMap.t; (* a map from predicate ids to facts for this predicate*) idb : ASPred.pred_id list; (* the list of the ids of the intensional predicates *) pred_table : ASPred.PredIdTable.table; (* the table to record the translation from ids to sym of the predicate *) const_table : ConstGen.Table.table; (* the table to record the translation from ids to sym of the constants *) rule_id_gen : IdGenerator.IntIdGen.t; (* the id generator for the rules in case rules are to be added after the first built of the program*) abstract_rules : ASRule.Rules.t; (* the corresponding abstract program is kept in order not to regenerate it when building the magic programs *) (* e_pred_to_rules: Rule.Rules.t AbstractSyntax.Predicate.PredIdMap.t; *) (* a map keeping track of the rules where extensional predicates occur so that when a rule is dynamically added, if it turns an extensional predicate into an intensional one, we can modify the rules accordingly *) (* This feature is an overkill for the kind of extensions we're interested in for ACG parsing, where only facts with edb predicates are added when extending the program. To it is suppressed for the moment *) } let empty = { rules = Predicate.PredMap.empty; edb = []; idb = []; edb_facts = Predicate.PredMap.empty; pred_table = ASPred.PredIdTable.empty; const_table = ConstGen.Table.empty; rule_id_gen = IdGenerator.IntIdGen.init (); abstract_rules = ASRule.Rules.empty; } let extend_map_to_list k v map_list = try let lst = Predicate.PredMap.find k map_list in Predicate.PredMap.add k (v :: lst) map_list with Not_found -> Predicate.PredMap.add k [ v ] map_list [@@warning "-32"] let extend_map_to_rule_set k v map_to_set = let current_set = try Predicate.PredMap.find k map_to_set with Not_found -> Rule.Rules.empty in Predicate.PredMap.add k (Rule.Rules.add v current_set) map_to_set let extend_map_to_set k v map_to_set = let current_set = try Predicate.PredMap.find k map_to_set with Not_found -> Predicate.FactSet.empty in Predicate.PredMap.add k (Predicate.FactSet.add v current_set) map_to_set let make_program { ASProg.rules = r; ASProg.pred_table; ASProg.const_table = cst_table; ASProg.i_preds; ASProg.rule_id_gen; ASProg.head_to_rules = _; ASProg.e_pred_to_rules = _; } = let rules, e_facts, _rule_to_rule_map = ASRule.Rules.fold (fun ({ ASRule.lhs; _ } as r) (acc, e_facts, r_to_r) -> let () = Log.info (fun m -> m "Processing abstract rule:@;@[%a@]@?" (ASRule.pp pred_table cst_table) r) in let new_rule = Rule.make_rule r in let updated_e_facts = if not (ASPred.PredIds.mem lhs.ASPred.p_id i_preds) then extend_map_to_set lhs.ASPred.p_id lhs e_facts else e_facts in ( extend_map_to_rule_set lhs.ASPred.p_id new_rule acc, updated_e_facts, ASRule.RuleMap.add r new_rule r_to_r )) r ( Predicate.PredMap.empty, Predicate.PredMap.empty, ASRule.RuleMap.empty ) in Log.debug (fun m -> m "All rules done."); Log.debug (fun m -> m "Now separate the e and i predicates."); let edb, idb = ASPred.PredIdTable.fold (fun k _ (e, i) -> if ASPred.PredIds.mem k i_preds then (e, k :: i) else (k :: e, i)) pred_table ([], []) in Log.debug (fun m -> m "Done."); { rules; edb; edb_facts = e_facts; idb; pred_table; const_table = cst_table; rule_id_gen; abstract_rules = r (*e_pred_to_rules= AbstractSyntax.Predicate.PredIdMap.map (fun rules -> AbstractSyntax.Rule.Rules.fold (fun r acc -> Rule.Rules.add (ASRule.RuleMap.find r rule_to_rule_map) acc) rules Rule.Rules.empty) e_pred_to_rules*); } let to_abstract { rules = r; idb; pred_table; const_table = cst_table; rule_id_gen; edb_facts; _; (*e_pred_to_rules*) } = Log.debug (fun m -> m "Transforming internal rules into abstract ones..."); let rules = Predicate.PredMap.fold (fun _ rules acc -> Rule.Rules.fold (fun rule acc' -> ASRule.Rules.add (Rule.to_abstract rule pred_table) acc') rules acc) r ASRule.Rules.empty in Log.debug (fun m -> m "Done."); Log.debug (fun m -> m "Transforming facts into rules"); let rules, rule_id_gen = Predicate.PredMap.fold (fun _pred fact_set (acc, gen) -> Predicate.FactSet.fold (fun fact (l_acc, id_rule_gen) -> let id_rule, id_rule_gen = IdGenerator.IntIdGen.get_fresh_id id_rule_gen in let r = ASRule. { id = id_rule; lhs = fact; e_rhs = []; i_rhs = []; i_rhs_num = 0; rhs_num = 0; } in Log.debug (fun m -> m "Adding fact: %a" (ASRule.pp pred_table cst_table) r); (ASRule.Rules.add r l_acc, id_rule_gen)) fact_set (acc, gen)) edb_facts (rules, rule_id_gen) in Log.debug (fun m -> m "Done."); let i_preds = List.fold_left (fun acc id -> ASPred.PredIds.add id acc) ASPred.PredIds.empty idb in ASProg. { rules; pred_table; const_table = cst_table; i_preds; rule_id_gen; (* OPTIMIZATION : compute head_to_rules while computing rules *) head_to_rules = ASRule.Rules.fold (fun r acc -> match ASPred.PredIdMap.find_opt r.ASRule.lhs.ASPred.p_id acc with | None -> ASPred.PredIdMap.add r.ASRule.lhs.ASPred.p_id (ASRule.Rules.singleton r) acc | Some ruls -> ASPred.PredIdMap.add r.ASRule.lhs.ASPred.p_id (ASRule.Rules.add r ruls) acc) rules ASPred.PredIdMap.empty; e_pred_to_rules = AbstractSyntax.Predicate.PredIdMap.empty; } (** [temp_facts r e_facts previous_step_facts facts delta_facts agg_f start] returns the result of applying [agg_f] to [start] and to all the facts that are deduced from [temp]{^ [time+1]}{_ [S]} where [S] is the head predicate of the rule [r] and [temp] is the set of temporary rules associated with [r] as in the algorithm described in {{: http://webdam.inria.fr/Alice/pdfs/Chapter-13.pdf} Chap. 13 of "Foundations of Databases", Abiteboul, Hull, and Vianu} (p.315). [previous_step_facts] and [facts] denote the intentional facts at the two required successive steps and [delta_facts] denote the new facts that are computed during this step. *) (* TODO: if a set of facts for a predicate of the rhs is empty, we can stop the computation *) let temp_facts r e_facts previous_step_facts facts delta_facts agg_function start pred_table cst_table = Log.debug (fun m -> m "Scanning the rule: %a" (ASRule.pp pred_table cst_table) (Rule.to_abstract r pred_table)); (* We first collect all the contents compatible with the facts of the intensional database. They depend on the intensional predicate [delta_position] and the ones that are before it ([rev_pred_lst]) and the ones that are after it ([pred_lst]). This triple correspond to a {!Focused_list.t} type. *) let make_search_array_i_pred (rev_pred_lst, delta_position, pred_lst) = Log.debug (fun m -> m "@[<v2>@[<hov>Looking for facts for predicate %a in the \ following facts:@]@,\ @[<v> @[%a@]@]@]" (ASPred.pp pred_table cst_table) { ASPred.p_id = delta_position.Predicate.p_id; ASPred.arity = 0; ASPred.arguments = []; } (Predicate.pp_facts pred_table cst_table) delta_facts); Log.debug (fun m -> m "Ready to process."); let facts_at_delta_position = try let res = Predicate.PredMap.find delta_position.Predicate.p_id delta_facts in Log.debug (fun m -> m "Found some"); res with Not_found -> Log.debug (fun m -> m "Found none"); Predicate.FactSet.empty in let end_pred_facts = List.map (fun pred -> try Predicate.PredMap.find pred.Predicate.p_id previous_step_facts with Not_found -> Predicate.FactSet.empty) pred_lst in List.fold_left (fun acc pred -> try Predicate.PredMap.find pred.Predicate.p_id facts :: acc with Not_found -> Predicate.FactSet.empty :: acc) (facts_at_delta_position :: end_pred_facts) rev_pred_lst in (* We define the function to be run on each reached end state of the instantiation with the extensional predicates. This function will run a result collection (with [FactArray.collect_results]) for each of the possible [delta_facts], that is for each of the possible [Focused_list] that can be reach from [zip] (including [zip] itself). *) let resume_on_i_pred acc (((_i, content), premises) as state) = match r.Rule.i_rhs with | [] -> agg_function (Rule.extract_consequence r content, premises) r acc | _ -> (* We now init the focused list corresponding to the intensional predicates of the rule [r] *) let zip = Focused_list.init (fst (List.split r.Rule.i_rhs)) in Focused_list.fold (fun l_acc focus -> (* For a given focus in the intensional list of predicates of [r], we extract all the possible facts from the rule [r] *) Rule.FactArray.collect_results (fun ll_acc ((_, content), premises) -> agg_function (Rule.extract_consequence r content, premises) r ll_acc) l_acc state (make_search_array_i_pred focus)) acc zip in (* We now collect all the contents compatible with the facts of the extensional database *) let make_search_array_e_pred = List.map (fun (pred, _) -> try Predicate.PredMap.find pred.Predicate.p_id e_facts with Not_found -> Predicate.FactSet.empty) r.Rule.e_rhs in Rule.FactArray.collect_results (fun acc s -> (* For each partial completion of the rule on the extensional database, we need to take into account the remaining intensional predicates. *) resume_on_i_pred acc s) start ((r.Rule.lhs.Predicate.arity + 1, r.Rule.content), []) make_search_array_e_pred let custom_find k map = try Predicate.PredMap.find k map with Not_found -> Predicate.FactSet.empty (** [p_semantics_for_predicate s prog e_facts previous_step_facts facts delta_facts] returns a set of all the facts that can deduced by all the rules in [prog] at a given step and whose lhs predicate is [s] when the edb is [e_facts], the step has produced [facts] and the previous step has produced [previous_step_facts] and the variation of facts at this step are [delta_facts]. It corresponds to [P]{^ [time]}{_ [S]} [(edb,T]{^ [time -1]}{_ [1]}[,...,T]{^ [time-1]}{_ [l]}[,T]{^ [time]}{_ [1]}[,...,T]{^ [time]}{_ [l]}[, Delta]{^ [time]}{_ [T]{_ [1]}},...,[Delta]{^ [time]}{_ [T]{_ [l]}}) in {{: http://webdam.inria.fr/Alice/pdfs/Chapter-13.pdf} Chap. 13 of "Foundations of Databases", Abiteboul, Hull, and Vianu} *) let p_semantics_for_predicate s_id prog e_facts previous_step_facts facts delta_facts derivations = let () = Log.info (fun m -> m "Looking for pred_id \"%a\".@,Current rules from predicates are:@,@[<v>@[%a@]@]" ASPred.pp_pred_id s_id (fun fmt id_to_rules -> Predicate.PredMap.iter (fun id rules -> Format.fprintf fmt "Pred with id \"%a\":@,@[<v> @[%a@]@]@," ASPred.pp_pred_id id (fun fmt rules -> Rule.Rules.iter (fun r -> Format.fprintf fmt "----> %a@," (AbstractSyntax.Rule.pp ~with_position:false ~with_id:true prog.pred_table prog.const_table) (Rule.to_abstract r prog.pred_table)) rules) rules) id_to_rules) prog.rules) in match Predicate.PredMap.find_opt s_id prog.rules with | None -> (* It can happen that an intensional predicate, derived from an abstract atomic type, is not associated to any rule because it is not the resulting type of any constant, so we ski this case *) (Predicate.FactSet.empty, derivations) | Some rules -> Rule.Rules.fold (fun r acc -> temp_facts r e_facts previous_step_facts facts delta_facts (fun (new_fact, from_premises) r (new_fact_set, new_fact_derivations) -> ( Predicate.conditionnal_add new_fact new_fact_set (custom_find r.Rule.lhs.Predicate.p_id previous_step_facts) (custom_find r.Rule.lhs.Predicate.p_id delta_facts), Predicate.add_to_map_to_set new_fact (from_premises, r.Rule.id, r.Rule.i_rhs_num) new_fact_derivations )) acc prog.pred_table prog.const_table) rules (Predicate.FactSet.empty, derivations) (** [seminaive p] returns a pair [(facts,derivations)] of facts and their derivations from program [p] (typically also including facts) *) let seminaive prog = (* [seminaive_aux facts delta_facts] returns [(S]{^ [i]}[,][Delta]{^ [i+1]}{_ [S]}[)] for all [S] when [facts] corresponds to [S]{^ [i-1]} for all [S] and [delta_facts] to [Delta]{^ [i]}{_ [S]} for all [S] *) let seminaive_aux facts delta_facts derivations = (* TODO: Check that PredMap has all intensional predicates of prog *) let new_facts = Predicate.PredMap.merge (fun _pred_id v1 v2 -> match (v1, v2) with | Some l1, Some l2 -> Some (Predicate.FactSet.union l1 l2) | (Some _ as v), None -> v | None, (Some _ as v) -> v | None, None -> None) facts delta_facts in let new_delta_facts, new_derivations_for_all_i_pred = List.fold_left (fun (acc, derivations) pred -> Log.debug (fun m -> m "Trying to derive facts for: %a" (ASPred.pp prog.pred_table prog.const_table) { ASPred.p_id = pred; ASPred.arity = 0; ASPred.arguments = []; }); let new_facts_for_pred, new_derivations = p_semantics_for_predicate pred prog prog.edb_facts facts new_facts delta_facts derivations in if Predicate.FactSet.is_empty new_facts_for_pred then (acc, new_derivations) else ( Predicate.PredMap.add pred new_facts_for_pred acc, new_derivations )) (Predicate.PredMap.empty, derivations) prog.idb in Log.debug (fun m -> m "%d new facts:@,@[<v> @[%a@]@]" (Predicate.PredMap.fold (fun _ v acc -> acc + Predicate.FactSet.cardinal v) new_delta_facts 0) (Predicate.pp_facts prog.pred_table prog.const_table) new_delta_facts); (new_facts, new_delta_facts, new_derivations_for_all_i_pred) in (* [seminaive_rec (facts,delta_facts)] returns the result when the fixpoint is reached, ie when [seminaive_aux facts delta_facts] does not produce any new fact. This is the iteration at step 5 in the seminaive algo. *) let rec seminaive_rec (facts, delta_facts, derivations) = if Predicate.PredMap.is_empty delta_facts then (facts, derivations) else seminaive_rec (seminaive_aux facts delta_facts derivations) in let first_step_results = seminaive_aux prog.edb_facts Predicate.PredMap.empty Predicate.PredicateMap.empty in seminaive_rec first_step_results let extend prog { ASProg.modified_rules; ASProg.new_pred_table; ASProg.new_const_table; ASProg.new_i_preds; ASProg.new_e_preds; ASProg.new_rule_id_gen; } = let i_preds = ASPred.PredIds.fold (fun e acc -> if List.mem e prog.idb then acc else e :: acc) new_i_preds prog.idb in let internal_modified_rules, updated_e_facts, updated_abstract_rules = ASRule.Rules.fold (fun r (acc, e_facts, u_a_r) -> let new_rule = Rule.make_rule r in let updated_e_facts = if (not (ASPred.PredIds.mem r.ASRule.lhs.ASPred.p_id new_i_preds)) && not (List.mem r.ASRule.lhs.ASPred.p_id prog.idb) then extend_map_to_set r.ASRule.lhs.ASPred.p_id r.ASRule.lhs e_facts else e_facts in ( Rule.Rules.add new_rule acc, updated_e_facts, ASRule.Rules.add r u_a_r )) modified_rules (Rule.Rules.empty, prog.edb_facts, prog.abstract_rules) in let updated_internal_rules = Rule.Rules.fold (fun ({ Rule.lhs; _ } as rule) acc -> try Predicate.PredMap.add lhs.Predicate.p_id (* ATTENTION: Possible bug? filter or filter_out (i.e., r.id<>rule.id)? *) Rule.( Rules.add rule (Rules.filter (fun r -> r.id = rule.id) (Predicate.PredMap.find lhs.Predicate.p_id acc))) acc with Not_found -> Predicate.PredMap.add lhs.Predicate.p_id Rule.Rules.(add rule empty) acc) internal_modified_rules prog.rules in { rules = updated_internal_rules; edb = ASPred.PredIds.fold (fun e acc -> if List.mem e prog.idb then acc else e :: acc) new_e_preds prog.edb; edb_facts = updated_e_facts; idb = i_preds; pred_table = new_pred_table; const_table = new_const_table; rule_id_gen = new_rule_id_gen; abstract_rules = updated_abstract_rules; } let add_e_fact prog (r, const_table, rule_id_gen) = if List.mem r.ASRule.lhs.ASPred.p_id prog.idb then failwith (Format.asprintf "BUG: You're not supposed to extend a program with an intensional \ predicate \"%a\"" (ASPred.pp prog.pred_table ConstGen.Table.empty) { ASPred.p_id = r.ASRule.lhs.ASPred.p_id; ASPred.arity = r.ASRule.lhs.ASPred.arity; ASPred.arguments = []; }) else { prog with edb_facts = extend_map_to_set r.ASRule.lhs.ASPred.p_id r.ASRule.lhs prog.edb_facts; const_table; rule_id_gen; } [@@warning "-32"] let add_e_facts prog (r_lst, const_table, rule_id_gen) = let edb, edb_facts = List.fold_left (fun (edb, edb_facts) r -> let p_id = r.ASRule.lhs.ASPred.p_id in let edb = if List.mem p_id edb then edb else p_id :: edb in let edb_facts = if List.mem r.ASRule.lhs.ASPred.p_id prog.idb then failwith (Format.asprintf "BUG: You're not supposed to extend a program with an \ intensional predicate \"%a\"" (ASPred.pp prog.pred_table ConstGen.Table.empty) { ASPred.p_id = r.ASRule.lhs.ASPred.p_id; ASPred.arity = r.ASRule.lhs.ASPred.arity; ASPred.arguments = []; }) else extend_map_to_set r.ASRule.lhs.ASPred.p_id r.ASRule.lhs edb_facts in (edb, edb_facts)) (prog.edb, prog.edb_facts) r_lst in { prog with edb; edb_facts; const_table; rule_id_gen } (* {prog with edb= List.fold_left (fun acc r -> let p_id=r.ASRule.lhs.ASPred.p_id in if List.mem p_id acc then acc else p_id::ac) prog.edb edb_facts= List.fold_left (fun acc r -> if List.mem r.ASRule.lhs.ASPred.p_id prog.idb then failwith (Printf.sprintf "BUG: You're not supposed to extend a program with an intensional predicate \"%s\"" (ASPred.to_string {ASPred.p_id=r.ASRule.lhs.ASPred.p_id;ASPred.arity=r.ASRule.lhs.ASPred.arity;ASPred.arguments=[]} prog.pred_table ConstGen.Table.empty)) else extend_map_to_set r.ASRule.lhs.ASPred.p_id r.ASRule.lhs acc) prog.edb_facts r_lst; const_table; rule_id_gen} *) (** TODO: only useful until we change the type of idb and idb to sets *) let rec list_extension_aux a lst scanned_lst = match lst with | [] -> List.rev (a :: scanned_lst) | b :: _tl when a = b -> List.rev_append scanned_lst lst | b :: tl -> list_extension_aux a tl (b :: scanned_lst) let list_extension a lst = list_extension_aux a lst [] (** [add_rule r p] adds a [ASRule.rule] to a [Datalog.Program] with the assumption that it will not change the {em nature} of a predicate (that is making it change from extensional to intensional). *) let add_rule ~intensional r prog = let new_rule = Rule.make_rule r in let lhs_pred = r.ASRule.lhs.ASPred.p_id in let new_e_facts, new_edb, new_idb = match (intensional, r.ASRule.e_rhs, r.ASRule.i_rhs) with | false, [], [] -> ( extend_map_to_set lhs_pred r.ASRule.lhs prog.edb_facts, list_extension lhs_pred prog.edb, prog.idb ) | false, _, _ -> failwith "Bug: addition of a rule for an extensional predicate with non \ empty rhs" | true, _, i_rhs -> (* First, add the lhs predicate to the list of intensional predicates *) let new_idb = list_extension lhs_pred prog.idb in (* Then, add all the predicates from the i_rhs of the abstract syntax rule to the idb. It indeed sometimes happens that such a predicate is never the head of a rule, when derived from an ACG, hence it will not appear in the concrete program as intentional. *) let new_idb = List.fold_left (fun acc (p, _) -> list_extension p.ASPred.p_id acc) new_idb i_rhs in (prog.edb_facts, prog.edb, new_idb) in { prog with rules = extend_map_to_rule_set lhs_pred new_rule prog.rules; edb_facts = new_e_facts; edb = new_edb; idb = new_idb; abstract_rules = ASRule.Rules.add r prog.abstract_rules; } let remove_rule id pred prog = try (* create a fake rule with the relevant id since the set of rules only look at the ids to compare elements *) let fake_lhs = Predicate.{ p_id = ASPred.fake_pred_id; arity = -1 } in let fake_rule = Rule. { id; lhs = fake_lhs; e_rhs = []; i_rhs = []; i_rhs_num = 0; content = UF.create []; } in let new_rules_for_pred = Rule.Rules.remove fake_rule (Predicate.PredMap.find pred prog.rules) in let new_rules = Predicate.PredMap.add pred new_rules_for_pred prog.rules in let new_abstract_rules = ASRule.(Rules.filter (fun l_r -> l_r.id <> id) prog.abstract_rules) in if new_rules_for_pred = Rule.Rules.empty then (* if new_rules_for_pred is empty, the pred is not an intensional predicate anymore and should be removed from the list *) { prog with rules = new_rules; idb = List.filter (fun i -> not (i = pred)) prog.idb; abstract_rules = new_abstract_rules; } else { prog with rules = new_rules; abstract_rules = new_abstract_rules } with Not_found -> failwith "Bug: should not try to remove a rule with a lhs predicate that has \ no rule" let get_fresh_rule_id ({ rule_id_gen; _ } as prog) = let new_id, rule_id_gen = IdGenerator.IntIdGen.get_fresh_id rule_id_gen in (new_id, { prog with rule_id_gen }) let get_fresh_cst_id name ({ const_table; _ } as prog) = let id, const_table = ConstGen.Table.add_sym name const_table in (id, { prog with const_table }) let add_pred_sym name ({ pred_table; _ } as prog) = let p_id, pred_table = ASPred.PredIdTable.add_sym name pred_table in (p_id, { prog with pred_table }) let rec build_children alt_num parent_address children_num facts derivations visited_facts prog = List.fold_left (fun (l_acc, child_num, l_visit) fact -> Log.debug (fun m -> m "Analysing fact: %a" (ASPred.pp prog.pred_table prog.const_table) fact); if List.mem fact.ASPred.p_id prog.edb then ( Log.debug (fun m -> m "Skipping it"); (l_acc, child_num, l_visit)) else ( Log.debug (fun m -> m "Keeping it"); let cur_add = (alt_num, child_num) :: parent_address in Log.debug (fun m -> m "It will have address %a" SharedForest.SharedForest.pp_address (List.rev cur_add)); try let existing_add = Predicate.PredicateMap.find fact l_visit in let patch = SharedForest.SharedForest.diff (List.rev cur_add) (List.rev existing_add) in Log.debug (fun m -> m "Will point to: %a with patch %a" SharedForest.SharedForest.pp_address (List.rev existing_add) SharedForest.SharedForest.pp_path patch); (SharedForest.SharedForest.Link_to patch :: l_acc, child_num - 1, l_visit) with Not_found -> let l_visit = Predicate.PredicateMap.add fact cur_add l_visit in let premises = try Predicate.PredicateMap.find fact derivations with Not_found -> Predicate.PremiseSet.empty in let l_forest, _, l_visit = build_forest_aux fact premises derivations cur_add l_visit prog in ( SharedForest.SharedForest.Forest (List.rev l_forest) :: l_acc, child_num - 1, l_visit ))) ([], children_num, visited_facts) facts and build_forest_aux _fact premises derivations add visited_facts_addresses prog = Predicate.PremiseSet.fold (fun (facts, rule_id, i_rhs_num) (acc, alt_num, l_visited_facts) -> let children_rev, _, l_visited_facts = build_children alt_num add i_rhs_num facts derivations l_visited_facts prog in ( SharedForest.SharedForest.Node (rule_id, children_rev) :: acc, alt_num + 1, l_visited_facts )) premises ([], 1, visited_facts_addresses) let build_forest_from_root fact premises derivations prog = Predicate.PremiseSet.fold (fun (facts, rule_id, i_rhs_num) (acc, alt_num, visited_facts_addresses) -> Log.debug (fun m -> m "Building alt_tree for root: rule %d" rule_id); let cur_address = [] in let visited_facts_addresses = Predicate.PredicateMap.add fact cur_address visited_facts_addresses in let children_rev, _, visited_facts_addresses = build_children alt_num [] i_rhs_num facts derivations visited_facts_addresses prog in ( (SharedForest.SharedForest.Node (rule_id, children_rev)) :: acc, alt_num + 1, visited_facts_addresses )) premises ([], 1, Predicate.PredicateMap.empty) let build_forest ?query map prog = let u_query = match query with | Some q -> Some (Predicate.make_unifiable_predicate q) | None -> None in let list_of_forest_trees = Predicate.PredicateMap.fold (fun fact premises acc -> match u_query with | Some q when not (Predicate.unifiable fact q) -> acc | _ -> let numbered_forest, _, _ = build_forest_from_root fact premises map prog in (List.rev numbered_forest) :: acc) map [] in list_of_forest_trees let pp_edb fmt prog = Predicate.pp_facts prog.pred_table prog.const_table fmt prog.edb_facts end end module Datalog = Make (UnionFind.StoreAsMap) (* module Datalog=Make(PersistentArray) *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>