package acgtk
Abstract Categorial Grammar development toolkit
Install
Dune Dependency
Authors
Maintainers
Sources
acg-2.1.0-20240219.tar.gz
sha512=5d380a947658fb1201895cb4cb449b1f60f54914c563e85181d628a89f045c1dd7b5b2226bb7865dd090f87caa9187e0ea6c7a4ee3dc3dda340d404c4e76c7c2
doc/src/acgtk.datalogLib/datalog_AbstractSyntax.ml.html
Source file datalog_AbstractSyntax.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
open UtilsLib.IdGenerator open UtilsLib.Utils module RuleIdMap = IntMap module Var = struct type t = Var of int let compare (Var i) (Var j) = i - j let succ (Var i) = Var (i + 1) let start = Var 0 let to_string (Var i) = let dec = decompose ~input:i ~base:26 in List.fold_left (fun acc i -> Printf.sprintf "%s%c" acc (char_of_int (97 + i))) "" dec let pp m (Var i) = let dec = decompose ~input:i ~base:26 in UtilsLib__Utils.pp_list ~sep:"" (fun m i -> Format.fprintf m "%c" (char_of_int (97 + i))) m dec end module VarGen = IdGen (Var) module Const = struct type t = Const of int let compare (Const i) (Const j) = i - j let start = Const 0 let succ (Const i) = Const (i + 1) let to_string (Const i) = string_of_int i let pp m (Const i) = Format.pp_print_int m i end module ConstGen = IdGen (Const) module Log = UtilsLib.Xlog.Make (struct let name = "datalog_AbstractSyntax" end) module AbstractSyntax = struct (** These modules are the abstract syntactic representations of the predicates, of the rules, and of the programs *) module Predicate = struct type term = Var of VarGen.id | Const of ConstGen.id module VarMap = Map.Make (Var) let map_content_compare (k1, map1) (k2, map2) = try let val1 = VarMap.find k1 map1 in try val1 - VarMap.find k2 map2 with Not_found -> 1 with Not_found -> ( try let _ = VarMap.find k2 map2 in -1 with Not_found -> 0) let term_compare l1 l2 = let rec term_compare_aux l1 l2 (l1_vars, l2_vars) pos = match (l1, l2) with | [], [] -> 0 | [], _ -> -1 | _, [] -> 1 | Const _ :: _, Var _ :: _ -> 1 | Var _ :: _, Const _ :: _ -> -1 | Const a1 :: tl1, Const a2 :: tl2 -> let res = ConstGen.compare a1 a2 in if ConstGen.compare a1 a2 <> 0 then res else term_compare_aux tl1 tl2 (l1_vars, l2_vars) (pos + 1) | Var a1 :: tl1, Var a2 :: tl2 -> let res = map_content_compare (a1, l1_vars) (a2, l2_vars) in if VarGen.compare a1 a2 <> 0 then res else term_compare_aux tl1 tl2 (VarMap.add a1 pos l1_vars, VarMap.add a2 pos l2_vars) (pos + 1) in term_compare_aux l1 l2 (VarMap.empty, VarMap.empty) 0 let pp_term cst_id_table fmt = function | Var v -> Var.pp fmt v | Const c -> Format.fprintf fmt "%s" (ConstGen.Table.find_sym_from_id c cst_id_table) type pred_id = int module PredIdMap = IntIdGen.IdMap module PredIdTable = IntIdGen.Table type predicate = { p_id : pred_id; arity : int; arguments : term list; (** It is assumed that the size of the list is the arity *) } let pp_pred_id = Format.pp_print_int let pp ?position ?(with_id = false) ?(with_arity = false) pred_id_table cst_id_table fmt predicate = let pp_id fmt id = match with_id with | false -> () | true -> Format.fprintf fmt "[p_id = %d]" id in let pp_position fmt position = match position with | None -> () | Some i -> Format.fprintf fmt "(* position: %d*)" i in let pp_arity fmt arity = match with_arity with | false -> () | true -> Format.fprintf fmt "/%d" arity in Format.fprintf fmt "@[<h>@[%s%a%a(@[%a@])%a@]@]" (PredIdTable.find_sym_from_id predicate.p_id pred_id_table) pp_arity predicate.arity pp_id predicate.p_id (pp_list ~sep:"," (pp_term cst_id_table)) predicate.arguments pp_position position let compare ?(with_arguments = true) ({ p_id = id1; arity = a1; arguments = l1 } : predicate) ({ p_id = id2; arity = a2; arguments = l2 } : predicate) = let res = id1 - id2 in if res <> 0 then res else let res = a1 - a2 in if res <> 0 then res else if with_arguments then term_compare l1 l2 else res let fake_pred_id = -1 module PredIds = IntSet module TermSet = Set.Make (struct type t = term let compare term1 term2 = match (term1, term2) with | Var id1, Var id2 -> VarGen.compare id1 id2 | Const id1, Const id2 -> ConstGen.compare id1 id2 | Var _, Const _ -> 1 | Const _, Var _ -> -1 end) let pp_terms cst_id_table fmt set = let first = ref true in TermSet.iter (fun term -> let () = if !first then pp_term cst_id_table fmt term else Format.fprintf fmt ",%a" (pp_term cst_id_table) term in first := false) set let get_variables pred = let is_variable arg = match arg with Var _ -> true | _ -> false in TermSet.of_list (List.filter is_variable pred.arguments) (** [variables_of_pred_aux acc pred] returns [acc'] where [acc'] is the union of the set of arguments (terms) of [pred] with [acc] *) let free_variables_of_pred_aux acc pred = List.fold_left (fun acc' term -> match term with Var _ -> TermSet.add term acc' | _ -> acc') acc pred.arguments let free_variables_of_preds_aux acc preds = List.fold_left free_variables_of_pred_aux acc preds let get_variables_of_preds preds = let new_free_variable_set = free_variables_of_preds_aux TermSet.empty preds in new_free_variable_set let copy_predicate ~new_id:id pred = { pred with p_id = id } let pp_predids pred_table fmt p_ids = PredIds.iter (fun elt -> Format.fprintf fmt "%s@," (PredIdTable.find_sym_from_id elt pred_table)) p_ids end module Proto_Rule = struct type t = { proto_id : int; proto_lhs : Predicate.predicate; proto_rhs : Predicate.predicate list; (** represents the predicates of the rule *) } let pp pred_id_table cst_id_table fmt r = let pp_head fmt lhs = Predicate.pp pred_id_table cst_id_table fmt lhs in let pp_tail fmt rhs = match rhs with | [] -> Format.fprintf fmt "." | _ -> Format.fprintf fmt ":- %a." (pp_list ~sep:"," (Predicate.pp pred_id_table cst_id_table)) rhs in Format.fprintf fmt "%a%a" pp_head r.proto_lhs pp_tail r.proto_rhs end module Rule = struct type rule = { id : int; lhs : Predicate.predicate; e_rhs : (Predicate.predicate * int) list; i_rhs : (Predicate.predicate * int) list; i_rhs_num : int; rhs_num : int; } let pp ?(with_position = false) ?(with_id = false) ?(with_arity = false) pred_id_table cst_id_table fmt r = let pp_head = Predicate.pp ~with_id ~with_arity pred_id_table cst_id_table in let vdash, e_i_sep = match (r.e_rhs, r.i_rhs) with | [], [] -> (".", format_of_string "") | [], _ -> (":-", format_of_string "") | _, [] -> (":-", format_of_string "") | _, _ -> (":-", format_of_string" ,@,") in let pp_pred fmt (pred, pos) = match with_position with | false -> Predicate.pp ~with_id ~with_arity pred_id_table cst_id_table fmt pred | true -> Predicate.pp ~position:pos ~with_id ~with_arity pred_id_table cst_id_table fmt pred in let pp_rule_id fmt id = if with_id then Format.fprintf fmt "(id: %6d)@;" id else () in Format.fprintf fmt ("@[%a@]@;%a %s@[ @[<hv>%a"^^e_i_sep^^"%a@]@]") pp_rule_id r.id pp_head r.lhs vdash (pp_list ~sep:",@," pp_pred) r.e_rhs (pp_list ~sep:",@," pp_pred) r.i_rhs module Rules = Set.Make (struct type t = rule let compare { id = i; _ } { id = j; _ } = i - j end) module RuleMap = Map.Make (struct type t = rule let compare { id = i; _ } { id = j; _ } = i - j end) let extend_head_id_map_to_rules id r m = match Predicate.PredIdMap.find_opt id m with | None -> Predicate.PredIdMap.add id Rules.(singleton r) m | Some rules -> Predicate.PredIdMap.add id Rules.(add r rules) m let ids_to_rules ids id_to_rule_map = IntSet.fold (fun e acc -> Rules.add (IntMap.find e id_to_rule_map) acc) ids Rules.empty let pp_rules ?(with_position = false) ?(with_id = false) pred_id_table cst_id_table fmt rules = let pp_rule = pp ~with_position ~with_id pred_id_table cst_id_table in Rules.iter (fun r -> Format.fprintf fmt "%a@," pp_rule r) rules let init_split_rhs proto_preds intensional_pred = let i_num, i_p, e_p, length = List.fold_left (fun (i_num, i_preds, e_preds, i) ({ Predicate.p_id; _ } as pred) -> if Predicate.PredIds.mem p_id intensional_pred then (i_num + 1, (pred, i) :: i_preds, e_preds, i + 1) else (i_num, i_preds, (pred, i) :: e_preds, i + 1)) (0, [], [], 1) proto_preds in (i_num, i_p, e_p, length - 1) let update_split_rhs init proto_preds intensional_pred = List.fold_left (fun (i_preds, e_preds) (({ Predicate.p_id; _ }, _) as pred) -> if Predicate.PredIds.mem p_id intensional_pred then (pred :: i_preds, e_preds) else (i_preds, pred :: e_preds)) init proto_preds let extend_map_to_set k v map_to_set = let current_set = try Predicate.PredIdMap.find k map_to_set with Not_found -> IntSet.empty in Predicate.PredIdMap.add k (IntSet.add v current_set) map_to_set let proto_rule_to_rule proto_rule intensional_pred = let i_num, i_preds, e_preds, length = init_split_rhs proto_rule.Proto_Rule.proto_rhs intensional_pred in { id = proto_rule.Proto_Rule.proto_id; lhs = proto_rule.Proto_Rule.proto_lhs; e_rhs = List.rev e_preds; i_rhs = List.rev i_preds; i_rhs_num = i_num; rhs_num = length; } let update rule intensional_pred = let i_preds, e_preds = update_split_rhs (rule.i_rhs, []) rule.e_rhs intensional_pred in { rule with e_rhs = e_preds; i_rhs = i_preds } let set_new_id id rule = { rule with id } (* Replace ********** { lhs = rule.lhs ; e_rhs = rule.e_rhs ; i_rhs = rule.i_rhs ; i_rhs_num = rule.i_rhs_num ; id } *) let set_new_id_from_gen rule gen = let new_id, new_gen = IntIdGen.get_fresh_id gen in (set_new_id new_id rule, new_gen) let get_variables_in_rule rule = let head_result = Predicate.get_variables rule.lhs in let variables = List.fold_left (fun acc (pred, _) -> Predicate.free_variables_of_pred_aux acc pred) head_result rule.i_rhs in let new_result = List.fold_left (fun acc (pred, _) -> Predicate.free_variables_of_pred_aux acc pred) variables rule.e_rhs in new_result (* Replace ********************** let i_rhs_result = Predicate.get_variables_of_preds (List.map fst rule.i_rhs) in let e_rhs_result = Predicate.get_variables_of_preds (List.map fst rule.e_rhs) in Predicate.TermSet.union head_result (Predicate.TermSet.union i_rhs_result e_rhs_result) *) let get_subgoal rule i = let new_result = match List.find_opt (fun (_pred, position) -> position = i + 1) rule.e_rhs with | Some s -> s | None -> ( match List.find_opt (fun (_pred, position) -> position = i + 1) rule.i_rhs with | Some s -> s | None -> failwith (Printf.sprintf "Bug: No subgoal: %d" i)) in new_result (* Replace *) (*****************) (* let rhs = rule.e_rhs @ rule.i_rhs in match List.find_opt (fun (_pred, position) -> position == i + 1) rhs with | Some s -> s | None -> failwith (Printf.sprintf "Error getting the subgoal : %d" i) *) end module Proto_Program = struct type t = { rules : Proto_Rule.t list; pred_table : Predicate.PredIdTable.table; const_table : ConstGen.Table.table; i_preds : Predicate.PredIds.t; rule_id_gen : IntIdGen.t; pred_to_rules : IntSet.t Predicate.PredIdMap.t; } type tables = Predicate.PredIdTable.table * (VarGen.Table.table * ConstGen.Table.table) let empty = { rules = []; pred_table = Predicate.PredIdTable.empty; const_table = ConstGen.Table.empty; i_preds = Predicate.PredIds.empty; rule_id_gen = IntIdGen.init (); pred_to_rules = Predicate.PredIdMap.empty; } let extension pred_table const_table rule_id_gen = { rules = []; pred_table; const_table; i_preds = Predicate.PredIds.empty; rule_id_gen; pred_to_rules = Predicate.PredIdMap.empty; } let add_proto_rule (f_lhs, f_rhs) prog = let rule_id, new_rule_id_gen = IntIdGen.get_fresh_id prog.rule_id_gen in let lhs, (new_pred_id_table, new_tables) = f_lhs (prog.pred_table, (VarGen.Table.empty, prog.const_table)) in let rhs, (new_pred_id_table', (_, new_const_table)) = f_rhs (new_pred_id_table, new_tables) in let new_i_preds = match rhs with | [] -> prog.i_preds | _ -> Predicate.PredIds.add lhs.Predicate.p_id prog.i_preds in let new_rule = { Proto_Rule.proto_id = rule_id; Proto_Rule.proto_lhs = lhs; Proto_Rule.proto_rhs = rhs; } in { rules = new_rule :: prog.rules; pred_table = new_pred_id_table'; const_table = new_const_table; i_preds = new_i_preds; rule_id_gen = new_rule_id_gen; pred_to_rules = List.fold_left (fun acc p -> Rule.extend_map_to_set p.Predicate.p_id rule_id acc) prog.pred_to_rules rhs; } end module Program = struct type program = { rules : Rule.Rules.t; pred_table : Predicate.PredIdTable.table; const_table : ConstGen.Table.table; i_preds : Predicate.PredIds.t; rule_id_gen : IntIdGen.t; head_to_rules : Rule.Rules.t Predicate.PredIdMap.t; e_pred_to_rules : Rule.Rules.t Predicate.PredIdMap.t; } type modifier = { modified_rules : Rule.Rules.t; new_pred_table : Predicate.PredIdTable.table; new_const_table : ConstGen.Table.table; new_i_preds : Predicate.PredIds.t; new_e_preds : Predicate.PredIds.t; new_rule_id_gen : IntIdGen.t; } let make_program { Proto_Program.rules; Proto_Program.pred_table; Proto_Program.const_table; Proto_Program.i_preds; Proto_Program.rule_id_gen; Proto_Program.pred_to_rules; } = let actual_rules, ids_to_rule_map, head_id_to_rules_map = List.fold_left (fun (acc, ids_to_rule_map, head_id_to_rules_map) p_rule -> let rule = Rule.proto_rule_to_rule p_rule i_preds in ( Rule.Rules.add rule acc, IntMap.add p_rule.Proto_Rule.proto_id rule ids_to_rule_map, Rule.extend_head_id_map_to_rules rule.Rule.lhs.Predicate.p_id rule head_id_to_rules_map )) (Rule.Rules.empty, IntMap.empty, Predicate.PredIdMap.empty) rules in { rules = actual_rules; pred_table; const_table; i_preds; rule_id_gen; head_to_rules = head_id_to_rules_map; e_pred_to_rules = Predicate.PredIdMap.fold (fun p rule_ids acc -> if Predicate.PredIds.mem p i_preds then Predicate.PredIdMap.remove p acc else Predicate.PredIdMap.add p (Rule.ids_to_rules rule_ids ids_to_rule_map) acc) pred_to_rules Predicate.PredIdMap.empty; } let extend prog { Proto_Program.rules; Proto_Program.pred_table; Proto_Program.const_table; Proto_Program.i_preds; Proto_Program.rule_id_gen; Proto_Program.pred_to_rules; } = let new_i_preds = Predicate.PredIds.union prog.i_preds i_preds in let updated_e_pred_map_to_r, updated_rules = (* all the rules that were pointed to by an extensional predicate that has to be turned into an intensional predicate because of the program extension have to be updated *) (* We check if some the new intensional predicates also are keys of the e_pred_to_rules map of the previous program *) Predicate.PredIds.fold (fun p_id ((e_p_to_r, rules_acc) as acc) -> try (* First we check wether this predicate was considered as an extensional one *) let to_be_modified_rules = Predicate.PredIdMap.find p_id prog.e_pred_to_rules in (* If yes, we nee to remove it from the map *) ( Predicate.PredIdMap.remove p_id e_p_to_r, (* And to modify the rules it pointed to *) Rule.Rules.fold (fun r acc -> Rule.Rules.add (Rule.update r new_i_preds) (Rule.Rules.remove r acc)) to_be_modified_rules rules_acc ) with (* If no, don't do anything *) | Not_found -> acc) i_preds (prog.e_pred_to_rules, prog.rules) in let new_rules, id_to_rule_map, new_head_to_rules = List.fold_left (fun (acc, id_to_rule_map, h_t_r) p_rule -> let rule = Rule.proto_rule_to_rule p_rule new_i_preds in ( Rule.Rules.add rule acc, IntMap.add p_rule.Proto_Rule.proto_id rule id_to_rule_map, Rule.extend_head_id_map_to_rules rule.Rule.lhs.Predicate.p_id rule h_t_r )) (updated_rules, IntMap.empty, prog.head_to_rules) rules in { rules = new_rules; pred_table; const_table; i_preds = new_i_preds; rule_id_gen; head_to_rules = new_head_to_rules; e_pred_to_rules = Predicate.PredIdMap.merge (fun _ opt_rule_ids opt_rules -> match (opt_rule_ids, opt_rules) with | None, None -> None | None, _ -> opt_rules | Some ids, None -> Some (Rule.ids_to_rules ids id_to_rule_map) | Some ids, Some rules -> Some (Rule.Rules.union rules (Rule.ids_to_rules ids id_to_rule_map))) pred_to_rules updated_e_pred_map_to_r; } let is_in_idb pred prog = Predicate.(PredIds.mem pred.p_id prog.i_preds) let is_head (pred : Predicate.predicate) (rule : Rule.rule) = let head = rule.Rule.lhs in let () = Log.info (fun m -> m "testing pred_id/arity %d/%d agains rule %d with head \ pred_id/arity %d/%d: %b and %b" pred.Predicate.p_id pred.Predicate.arity rule.Rule.id head.Predicate.p_id head.Predicate.arity Predicate.(head.p_id = pred.p_id) Predicate.(head.arity = pred.arity)) in Predicate.(head.p_id = pred.p_id && head.arity = pred.arity) let match_rules (predicate : Predicate.predicate) program = (* let () = Log.info (fun m -> let () = m "Rules by head:%!" in Predicate.PredIdMap.iter (fun pred_id l_rules -> Rule.Rules.iter (fun r -> Log.info (fun m -> m "head: %d -> Rule: %s" pred_id (Rule.to_string ~with_position:true ~with_id:true r program.pred_table program.const_table))) l_rules) program.head_to_rules) in let () = Log.info (fun m -> m "+++++++++++++++++++++++++++++++++++++++++++++++++++++++") in let () = Log.info (fun m -> let () = m "Program rules:%!" in Rule.Rules.iter (fun r -> Log.info (fun m -> m "head: %d -> Rule: %s" r.Rule.lhs.Predicate.p_id (Rule.to_string ~with_position:true ~with_id:true r program.pred_table program.const_table))) program.rules) in *) let new_res = match Predicate.PredIdMap.find_opt predicate.Predicate.p_id program.head_to_rules with | None -> Rule.Rules.empty | Some set -> set in let new_res_ids = List.map (fun r -> r.Rule.id) (Rule.Rules.elements new_res) in let () = Log.info (fun m -> m "New matching rules are: %s" (UtilsLib.Utils.string_of_list ", " (fun r -> string_of_int r.Rule.id) (Rule.Rules.elements new_res))) in let () = Log.info (fun m -> let () = m "Matching new rules:" in Rule.Rules.iter (fun r -> Log.info (fun m -> m "head: %d -> Rule: %a" r.Rule.lhs.Predicate.p_id (Rule.pp ~with_position:true ~with_id:true program.pred_table program.const_table) r)) new_res) in (* Replace *) let old_res = Rule.Rules.filter (is_head predicate) program.rules in let old_res_ids = List.map (fun r -> r.Rule.id) (Rule.Rules.elements old_res) in let () = Log.info (fun m -> m "Old matching rules are: %s" (UtilsLib.Utils.string_of_list ", " (fun r -> string_of_int r.Rule.id) (Rule.Rules.elements old_res))) in let () = assert (List.sort ( - ) new_res_ids = List.sort ( - ) old_res_ids) in let () = assert (Rule.Rules.equal new_res old_res) in (*new_res *) old_res let get_rule_by_id program id = let rules = program.rules in Rule.(Rules.find_first (fun x -> x.id = id) rules) let pp ?(with_position = false) ?(with_id = false) fmt prog = Format.fprintf fmt "@[<v>%a@]@,Intensional predicates are:@,@[<v> @[<v>%a@]@]" (Rule.pp_rules ~with_position ~with_id prog.pred_table prog.const_table) prog.rules (Predicate.pp_predids prog.pred_table) prog.i_preds end end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>