package acgtk
Abstract Categorial Grammar development toolkit
Install
Dune Dependency
Authors
Maintainers
Sources
acg-2.1.0-20240219.tar.gz
sha512=5d380a947658fb1201895cb4cb449b1f60f54914c563e85181d628a89f045c1dd7b5b2226bb7865dd090f87caa9187e0ea6c7a4ee3dc3dda340d404c4e76c7c2
doc/src/acgtk.acgData/type_system.ml.html
Source file type_system.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
(**************************************************************************) (* *) (* ACG development toolkit *) (* *) (* Copyright 2008-2023 INRIA *) (* *) (* More information on "https://acg.loria.fr/" *) (* License: CeCILL, see the LICENSE file or "http://www.cecill.info" *) (* Authors: see the AUTHORS file *) (* *) (* *) (* *) (* *) (* *) (**************************************************************************) open UtilsLib open Logic.Abstract_syntax open Logic.Lambda let get_location = function | Abstract_syntax.Var (_, l) -> l | Abstract_syntax.Const (_, l) -> l | Abstract_syntax.Abs (_, _, _, l) -> l | Abstract_syntax.LAbs (_, _, _, l) -> l | Abstract_syntax.App (_, _, l) -> l module Log = Xlog.Make (struct let name = "Type_system" end) module type SIG_ACCESS = sig exception Not_found type t val unfold_type_definition : int -> t -> Lambda.stype (** [unfold_type_definition id t] returns the actual type for the type defined by [id] as the identifier of a type definition in the signature [t]. Fails with "Bug" if [id] does not correspond to a type definition *) val expand_type : Lambda.stype -> t -> Lambda.stype val find_term : string -> t -> Lambda.term * Lambda.stype val pp_type : t -> Format.formatter -> Lambda.stype -> unit val pp_term : t -> Format.formatter -> Lambda.term -> unit end module Type_System = struct module Make (Signature : SIG_ACCESS) = struct exception Not_functional_type exception Functional_type of Abstract_syntax.abstraction exception Not_normal_term exception Vacuous_abstraction of (string * Abstract_syntax.location * Abstract_syntax.location) exception Non_empty_linear_context of (string * Abstract_syntax.location) exception Not_linear of (Abstract_syntax.location * Abstract_syntax.location) exception Type_mismatch of (Abstract_syntax.location * Lambda.stype * Lambda.stype) let decompose_functional_type ty sg = match Signature.expand_type ty sg with | Lambda.LFun (ty1, ty2) -> (ty1, ty2, Abstract_syntax.Linear) | Lambda.Fun (ty1, ty2) -> (ty1, ty2, Abstract_syntax.Non_linear) (* | Lambda.DAtom i -> decompose_functional_type (Signature.unfold_type_definition i sg) sg *) | _ -> raise Not_functional_type (* [get_typing x loc typing_env] returns [l,t,e] where [l] is the level of [x] and [t] its type in the typing environment [typing_env] when [x] is a variable located at [loc]. [e] is the new environment where [x] as been marked as used at location [l]. If [x] has been used alread once (this is marked by the [Some l], 3rd projection in the association list), the function raises [Not_linear (l,loc)] where [l] is the location of the former usage of [x]. If [x] is not in the typing environment [typing_env], it raises Not_found *) let get_typing x loc lst = let rec get_typing_aux lst k = match lst with | [] -> raise Not_found | (s, (level, ty, None)) :: tl when s = x -> k (level, ty, (s, (level, ty, Some loc)) :: tl) | (s, (_, _, Some l)) :: _ when s = x -> raise (Not_linear (l, loc)) | hd :: tl -> get_typing_aux tl (fun (level, ty, r) -> k (level, ty, hd :: r)) in get_typing_aux lst (fun (level, ty, env) -> (level, ty, env)) [@@warning "-32"] type typing_env_content = | Delay of (int -> int -> Abstract_syntax.location -> Lambda.term) | Eval of (int -> int -> Abstract_syntax.location -> Lambda.term * typing_env_content) type typing_environment = { linear_level : int; (* The depth of the term with respect to the number of linear abstraction. Starting at 0 *) level : int; (* The depth of the term with respect to the number of non linear abstraction. Starting at 0 *) env : (typing_env_content * Lambda.stype * Abstract_syntax.abstraction * int) Utils.StringMap.t; (* the last int parameter is the nomber of occurences of the variable with name the key of the map *) wrapper : (Abstract_syntax.location * Lambda.stype * Abstract_syntax.location) option; almost_linearity : bool; } let remove_lin_context env = Utils.StringMap.fold (fun k ((_, _, abs, _) as v) (l_acc, nl_acc) -> match abs with | Abstract_syntax.Linear -> (Utils.StringMap.add k v l_acc, nl_acc) | Abstract_syntax.Non_linear -> (l_acc, Utils.StringMap.add k v nl_acc)) env (Utils.StringMap.empty, Utils.StringMap.empty) let insert_lin_var (ty : Lambda.stype) (env : typing_environment) = ( Eval (fun l_level _ loc -> (* let i = (l_level - 1 - env.linear_level) in let () = Printf.printf "Inserting variable %d - 1 - %d = %d\n%!" l_level env.linear_level i in *) ( Lambda.LVar (l_level - 1 - env.linear_level), Delay (fun _ _ l -> raise (Not_linear (l, loc))) )), ty, Abstract_syntax.Linear, 0 ) let insert_non_lin_var (ty : Lambda.stype) (env : typing_environment) = ( Delay (fun _ level _ -> Lambda.Var (level - 1 - env.level)), ty, Abstract_syntax.Non_linear, 0 ) let compute (k : typing_env_content) (env : typing_environment) (l : Abstract_syntax.location) = match k with | Delay f -> (f env.linear_level env.level l, Delay f) | Eval f -> f env.linear_level env.level l let get_binding x map = try Some (Utils.StringMap.find x map) with Not_found -> None let replace_binding x v map = match v with | None -> Utils.StringMap.remove x map | Some b -> Utils.StringMap.add x b map let typecheck (t : Abstract_syntax.term) (ty : Lambda.stype) (sg : Signature.t) : Lambda.term * bool = let local_expand ty = Signature.expand_type ty sg in let rec typecheck_aux t ty (tenv : typing_environment) = match t with | Abstract_syntax.Var (x, l) -> ( try let f_var, var_type, lin, nb_occ = Utils.StringMap.find x tenv.env in let var, new_f = compute f_var tenv l in match ty with | None -> ( var, var_type, { tenv with env = Utils.StringMap.add x (new_f, var_type, lin, nb_occ + 1) tenv.env; } ) | Some l_ty when l_ty = local_expand var_type -> ( var, var_type, { tenv with env = Utils.StringMap.add x (new_f, var_type, lin, nb_occ + 1) tenv.env; } ) | Some l_ty -> raise (Type_mismatch (l, l_ty, var_type)) with Not_found -> raise (Non_empty_linear_context (x, l))) | Abstract_syntax.Const (x, l) -> ( try let l_term, l_type = Signature.find_term x sg in match ty with | None -> (l_term, l_type, tenv) | Some l_ty when local_expand l_type = l_ty -> (l_term, l_type, tenv) | Some l_ty -> raise (Type_mismatch (l, l_ty, l_type)) with Signature.Not_found -> failwith "Bug") | Abstract_syntax.LAbs (x, l_x, u, l_u) -> ( match ty with | None -> raise Not_normal_term | Some l_ty -> ( let b = get_binding x tenv.env in try let ty1, ty2, lin = decompose_functional_type l_ty sg in match lin with | Abstract_syntax.Linear -> ( let u_term, _, new_typing_env = typecheck_aux u (Some (local_expand ty2)) { tenv with linear_level = tenv.linear_level + 1; env = Utils.StringMap.add x (insert_lin_var ty1 tenv) tenv.env; } in let f_var, _, _, nb_occ = Utils.StringMap.find x new_typing_env.env in try let _ = compute f_var new_typing_env l_x in (* if the Not_linear exception is not raised, it means the variable was not used in u_term *) let () = assert (nb_occ = 0) in raise (Vacuous_abstraction (x, l_x, get_location u)) with Not_linear _ -> let () = assert (nb_occ = 1) in ( Lambda.LAbs (x, u_term), l_ty, { new_typing_env with env = replace_binding x b new_typing_env.env; linear_level = tenv.linear_level; } )) | Abstract_syntax.Non_linear as l -> raise (Functional_type l) with | Not_functional_type | Functional_type Abstract_syntax.Non_linear -> Errors.(TypeErrors.emit (Type_l.IsUsed (Format.asprintf "%a" (Signature.pp_type sg) l_ty, "\"'a → 'b\" (linear abstraction)")) ~loc:l_u))) | Abstract_syntax.Abs (x, _, u, l_u) -> ( match ty with | None -> raise Not_normal_term | Some l_ty -> ( let b = get_binding x tenv.env in try let ty1, ty2, lin = decompose_functional_type l_ty sg in match lin with | Abstract_syntax.Non_linear -> let u_term, _, new_typing_env = typecheck_aux u (Some (local_expand ty2)) { tenv with level = tenv.level + 1; env = Utils.StringMap.add x (insert_non_lin_var ty1 tenv) tenv.env; } in let () = Log.debug (fun m -> m "Binding and occurrences:@,@[<v> @[%a@]@]" (fun fmt env -> Utils.StringMap.iter (fun var_name (_, ty, _, nb) -> Format.fprintf fmt "%s: \"%a\", %d" var_name (Signature.pp_type sg) ty nb) env) new_typing_env.env) in let is_almost_linear = match get_binding x new_typing_env.env with | Some (_, var_type, _, nb_occ) when nb_occ = 0 || nb_occ > 1 && not (Lambda.is_atomic var_type (fun i -> Signature.unfold_type_definition i sg)) -> let () = Log.info (fun m -> m "var \"%s\", nb occ: %d, atomic type: %b" x nb_occ (Lambda.is_atomic var_type (fun i -> Signature.unfold_type_definition i sg))) in false | None -> failwith "Bug: the variable should be given a type" | _ -> true in ( Lambda.Abs (x, u_term), l_ty, { new_typing_env with env = replace_binding x b new_typing_env.env; level = tenv.level; almost_linearity = new_typing_env.almost_linearity && is_almost_linear; } ) | Abstract_syntax.Linear as l -> raise (Functional_type l) with Not_functional_type | Functional_type _ -> Errors.( TypeErrors.emit (Type_l.IsUsed (Format.asprintf "%a" (Signature.pp_type sg) l_ty, "\"'a ⇒ 'b\" (non-linear abstraction)")) ~loc:l_u))) | Abstract_syntax.App (u, v, l) -> ( let u_term, u_type, new_typing_env = try typecheck_aux u None tenv with Not_normal_term -> Errors.(TypeErrors.emit Type_l.NotNormal ~loc:l) in let ty1, ty2, lin = try decompose_functional_type u_type sg with Not_functional_type -> let u_loc = get_location u in Errors.( TypeErrors.emit (Type_l.IsUsed (Format.asprintf "%a" (Signature.pp_type sg) u_type, "\"'a -> 'b\" or \"'a => 'b\" in order to enable application")) ~loc:u_loc) in let v_term, _, new_new_typing_env = match lin with | Abstract_syntax.Linear -> typecheck_aux v (Some (local_expand ty1)) new_typing_env | Abstract_syntax.Non_linear -> ( let lin_env, non_lin_env = remove_lin_context new_typing_env.env in let wrapper = (get_location u, u_type, get_location v) in try let v_t, v_ty, new_env (*{ wrapper = w; env = l_env; _ }*) = typecheck_aux v (Some (local_expand ty1)) { new_typing_env with env = non_lin_env; wrapper = Some wrapper; } in ( v_t, v_ty, { new_env with env = Utils.StringMap.union (fun _ _ _ -> failwith "Bug") lin_env new_env.env; } ) with Non_empty_linear_context (x, l) -> let func_loc, func_st, v_loc = match tenv.wrapper with None -> wrapper | Some a -> a in (* let v_loc = get_location v in*) Errors.( TypeErrors.emit (Type_l.NonEmptyContext (x, l, func_loc, (Format.asprintf "%a" (Signature.pp_type sg) func_st))) ~loc:v_loc)) in match ty with | None -> (Lambda.App (u_term, v_term), ty2, new_new_typing_env) | Some l_ty when l_ty = local_expand ty2 -> (Lambda.App (u_term, v_term), l_ty, new_new_typing_env) | Some l_ty -> raise (Type_mismatch (l, l_ty, ty2))) in try let t_term, t_type, ({ almost_linearity = b; _ } : typing_environment) = typecheck_aux t (Some (local_expand ty)) { linear_level = 0; level = 0; env = Utils.StringMap.empty; wrapper = None; almost_linearity = true; } in Log.debug (fun m -> m "@[Type-checked: @[%a:@[<2>@ %a@]@]@]" (Signature.pp_term sg) t_term (Signature.pp_type sg) t_type); (t_term, b) with | Type_mismatch (loc, t1, t2) -> Errors.( TypeErrors.emit (Type_l.IsUsed (Format.asprintf "%a" (Signature.pp_type sg) t1, Format.asprintf "\"%a\"" (Signature.pp_type sg) t2)) ~loc) | Not_linear (loc1, loc2) -> Errors.(TypeErrors.emit (Type_l.TwoOccurrencesOfLinearVariable loc1) ~loc:loc2) | Vacuous_abstraction (x, l1, l2) -> Errors.(TypeErrors.emit (Type_l.VacuousAbstraction (x, l2)) ~loc:l1) end end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>