package acgtk
Abstract Categorial Grammar development toolkit
Install
Dune Dependency
Authors
Maintainers
Sources
acg-2.1.0-20240219.tar.gz
sha512=5d380a947658fb1201895cb4cb449b1f60f54914c563e85181d628a89f045c1dd7b5b2226bb7865dd090f87caa9187e0ea6c7a4ee3dc3dda340d404c4e76c7c2
doc/src/acgtk.logic/lambda.ml.html
Source file lambda.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
(**************************************************************************) (* *) (* ACG development toolkit *) (* *) (* Copyright 2008-2023 INRIA *) (* *) (* More information on "https://acg.loria.fr/" *) (* License: CeCILL, see the LICENSE file or "http://www.cecill.info" *) (* Authors: see the AUTHORS file *) (* *) (* *) (* *) (* *) (* *) (**************************************************************************) open UtilsLib open Abstract_syntax module Lambda = struct exception Not_yet_implemented type kind = Type | Depend of stype * kind (* the kind of a dependant type *) and stype = | Atom of int (* atomic type *) | DAtom of int (* defined atomic type *) | LFun of stype * stype (* linear functional type *) | Fun of stype * stype (* non linear functional type *) | Dprod of string * stype * stype (* dependant product *) | Record of int * stype list (* records *) | Variant of int * stype list (* variants *) | TAbs of string * stype (* type abstraction *) | TApp of stype * term (* type application *) and term = | Var of int (* lambda variable *) | LVar of int (* linear lambda variable *) | Const of int (* constant *) | DConst of int (* defined constant *) | Abs of string * term (* lambda-abstraction *) | LAbs of string * term (* linear lambda abstraction *) | App of term * term (* application *) | Rcons of int * term list (* record constructor: *) (* - the integer is the tag of *) (* the corresponding type. *) | Proj of int * int * term (* projection: *) (* - the first integer is the tag of *) (* the corresponding type; *) (* - the second integer is the index *) (* of the projection. *) | Vcons of int * int * term (* variant constructor: *) (* - the first integer is the tag of *) (* the corresponding type; *) (* - the second integer is the number *) (* of the constructor. *) | Case of int * term * (string * term) list (* case analysis: *) (* - the integer is the tag of *) (* the corresponding type. *) | Unknown of int (* meta-variable - used in higher-order *) (* matching *) type env = (int * string) list type consts = int -> Abstract_syntax.syntactic_behavior * string let rec generate_var_name x (l_env, env) = if List.exists (fun (_, s) -> x = s) (l_env @ env) then generate_var_name (Printf.sprintf "%s'" x) (l_env, env) else x let rec unfold_labs acc level (l_env, env) = function | LAbs (x, t) -> let x' = generate_var_name x (l_env, env) in unfold_labs ((level, x') :: acc) (level + 1) ((level, x') :: l_env, env) t | t -> (acc, level, t) let rec unfold_abs acc level (l_env, env) = function | Abs (x, t) -> let x' = generate_var_name x (l_env, env) in unfold_abs ((level, x') :: acc) (level + 1) (l_env, (level, x') :: env) t | t -> (acc, level, t) let rec unfold_app acc = function | App (t1, t2) -> unfold_app (t2 :: acc) t1 | t -> (acc, t) let is_binder id id_to_sym = match id_to_sym id with Abstract_syntax.Binder, _ -> true | _ -> false let is_infix id id_to_sym = match id_to_sym id with Abstract_syntax.Infix _, _ -> true | _ -> false let is_prefix id id_to_sym = match id_to_sym id with | (Abstract_syntax.Prefix | Abstract_syntax.Default), _ -> true | _ -> false let rec unfold_binder binder l_level level id_to_sym acc (l_env, env) = function | App (Const i, LAbs (x, u)) when is_binder i id_to_sym && i = binder -> let x' = generate_var_name x (l_env, env) in unfold_binder binder (l_level + 1) level id_to_sym ((l_level, (x', Abstract_syntax.Linear)) :: acc) ((l_level, x') :: l_env, env) u | App (Const i, Abs (x, u)) when is_binder i id_to_sym && i = binder -> let x' = generate_var_name x (l_env, env) in unfold_binder binder l_level (level + 1) id_to_sym ((level, (x', Abstract_syntax.Non_linear)) :: acc) (l_env, (level, x') :: env) u | t -> (acc, l_level, level, t) let parenthesize (s, b) = match b with true -> s | false -> Printf.sprintf "(%s)" s let left_paren = function true -> "(" | false -> "" let right_paren = function true -> ")" | false -> "" let pp_type id_to_sym fmt ty = let rec pp_type_aux paren fmt ty = match ty with | Atom i -> Format.fprintf fmt "@[%s@]" (snd (id_to_sym i)) | DAtom i -> Format.fprintf fmt "@[%s@]" (snd (id_to_sym i)) | LFun (ty1, ty2) -> Format.fprintf fmt "@[%s%a →@[@ %a%s@]@]" (left_paren paren) (pp_type_aux true) ty1 (pp_type_aux true) ty2 (right_paren paren) | Fun (ty1, ty2) -> Format.fprintf fmt "@[%s%a ⇒@[@ %a%s@]@]" (left_paren paren) (pp_type_aux true) ty1 (pp_type_aux true) ty2 (right_paren paren) | _ -> failwith "Not yet implemented" in pp_type_aux false fmt ty let rec pp_kind id_to_sym fmt = function | Type -> Format.fprintf fmt "@[type@]" | Depend (ty, k') -> Format.fprintf fmt "@[@[(%a)@]%a@]" (pp_type id_to_sym) ty (pp_kind id_to_sym) k' let pp_term id_to_sym fmt t = let pp_vars = Utils.pp_list ~sep:" " (fun fmt (_, var) -> Format.pp_print_string fmt var) in let pp_binder_vars = Utils.pp_list ~sep:" " (fun fmt (_, (var, _)) -> Format.pp_print_string fmt var) in let rec pp_term_aux paren l_level level (l_env, env) fmt t = match t with | Var i -> Format.fprintf fmt "@[%s@]" (List.assoc (level - 1 - i) env) | LVar i -> Format.fprintf fmt "@[%s@]" (List.assoc (l_level - 1 - i) l_env) | Const i -> let _, x = id_to_sym i in Format.fprintf fmt "@[%s@]" x | DConst i -> let _, x = id_to_sym i in Format.fprintf fmt "@[%s@]" x | Abs (x, t) -> let x' = generate_var_name x (l_env, env) in let vars, l, u = unfold_abs [ (level, x') ] (level + 1) (l_env, (level, x') :: env) t in Format.fprintf fmt "@[@[%s@[<3>λ %a.@ @[@[%a@]@]@]%s@]@]" (left_paren paren) pp_vars (List.rev vars) (pp_term_aux false l_level l (l_env, vars @ env)) u (right_paren paren) | LAbs (x, t) -> let x' = generate_var_name x (l_env, env) in let vars, l, u = unfold_labs [ (l_level, x') ] (l_level + 1) ((l_level, x') :: l_env, env) t in Format.fprintf fmt "@[@[%s@[<3>λ⁰ %a.@ @[@[%a@]@]@]%s@]@]" (left_paren paren) pp_vars (List.rev vars) (pp_term_aux false l level (vars @ l_env, env)) u (right_paren paren) | App ((Const s | DConst s), Abs (x, u)) when is_binder s id_to_sym -> let x' = generate_var_name x (l_env, env) in let vars, l_l, l, u = unfold_binder s l_level (level + 1) id_to_sym [ (level, (x', Abstract_syntax.Non_linear)) ] (l_env, (level, x') :: env) u in let new_env = List.fold_right (fun (l, (x, abs)) (l_acc, acc) -> match abs with | Abstract_syntax.Non_linear -> (l_acc, (l, x) :: acc) | Abstract_syntax.Linear -> ((l, x) :: l_acc, acc)) vars (l_env, env) in Format.fprintf fmt "@[@[%s@[<3>%s %a.@ @[@[%a@]@]@]%s@]@]" (left_paren paren) (snd (id_to_sym s)) pp_binder_vars (List.rev vars) (pp_term_aux false l_l l new_env) u (right_paren paren) | App ((Const s | DConst s), LAbs (x, u)) when is_binder s id_to_sym -> let x' = generate_var_name x (l_env, env) in let vars, l_l, l, u = unfold_binder s (l_level + 1) level id_to_sym [ (l_level, (x', Abstract_syntax.Linear)) ] ((l_level, x') :: l_env, env) u in let new_env = List.fold_right (fun (l, (x, abs)) (l_acc, acc) -> match abs with | Abstract_syntax.Non_linear -> (l_acc, (l, x) :: acc) | Abstract_syntax.Linear -> ((l, x) :: l_acc, acc)) vars (l_env, env) in Format.fprintf fmt "@[@[%s@[<3>%s %a.@ @[@[%a@]@]@]%s@]@]" (left_paren paren) (snd (id_to_sym s)) pp_binder_vars (List.rev vars) (pp_term_aux false l_l l new_env) u (right_paren paren) | App (App ((Const s | DConst s), t1), t2) when is_infix s id_to_sym -> Format.fprintf fmt "@[@[%s@[%a@]@ %s@ @[@[%a@]@]%s@]@]" (left_paren paren) (pp_term_aux true l_level level (l_env, env)) t1 (snd (id_to_sym s)) (pp_term_aux true l_level level (l_env, env)) t2 (right_paren paren) | App (t1, t2) -> let args, t11 = unfold_app [ t2 ] t1 in Format.fprintf fmt "@[@[%s@[%a@]@[@ @,%a@]%s@]@]" (left_paren paren) (pp_term_aux true l_level level (l_env, env)) t11 (Utils.pp_list ~sep:"@ " (fun fmt arg -> Format.fprintf fmt "@[%a@]" (pp_term_aux true l_level level (l_env, env)) arg)) args (right_paren paren) | _ -> failwith "Not yet implemented" in pp_term_aux false 0 0 ([], []) fmt t let rec raw_to_string_aux = function | Var i -> (Printf.sprintf "(nl: %d)" i, true) | LVar i -> (Printf.sprintf "(l:%d)" i, true) | Const i | DConst i -> (Printf.sprintf "[%d]" i, true) | Abs (_, t) -> (Printf.sprintf "λ.%s" (fst (raw_to_string_aux t)), false) | LAbs (_, t) -> (Printf.sprintf "λ⁰.%s" (fst (raw_to_string_aux t)), false) | App (t, u) -> ( Printf.sprintf "%s %s" (parenthesize (raw_to_string_aux t)) (parenthesize (raw_to_string_aux u)), false ) | _ -> raise Not_yet_implemented let raw_to_string t = fst (raw_to_string_aux t) let rec raw_to_caml = function | Var i -> Printf.sprintf "(Var %d)" i | LVar i -> Printf.sprintf "(LVar %d)" i | Const i -> Printf.sprintf "(Const %d)" i | DConst i -> Printf.sprintf "(DConst %d)" i | Abs (x, t) -> Printf.sprintf "(Abs (\"%s\",%s))" x (raw_to_caml t) | LAbs (x, t) -> Printf.sprintf "(LAbs (\"%s\",%s))" x (raw_to_caml t) | App (t, u) -> Printf.sprintf "(App (%s,%s))" (raw_to_caml t) (raw_to_caml u) | _ -> raise Not_yet_implemented let rec raw_type_to_string_aux = function | Atom i -> (Printf.sprintf "(%d)" i, true) | DAtom i -> (Printf.sprintf "[%d]" i, true) | LFun (alpha, beta) -> ( Printf.sprintf "%s → %s" (parenthesize (raw_type_to_string_aux alpha)) (parenthesize (raw_type_to_string_aux beta)), false ) | Fun (alpha, beta) -> ( Printf.sprintf "%s ⇒ %s" (parenthesize (raw_type_to_string_aux alpha)) (fst (raw_type_to_string_aux beta)), false ) | _ -> failwith "Bug: Not yet implemented" let raw_type_to_string t = fst (raw_type_to_string_aux t) let rec raw_type_to_caml = function | Atom i -> Printf.sprintf "(Atom %d)" i | DAtom i -> Printf.sprintf "(DAtom %d)" i | LFun (alpha, beta) -> Printf.sprintf "(LFun (%s,%s))" (raw_type_to_caml alpha) (raw_type_to_caml beta) | Fun (alpha, beta) -> Printf.sprintf "(Fun (%s,%s))" (raw_type_to_caml alpha) (raw_type_to_caml beta) | _ -> failwith "Bug: Not yet implemented" (* [is_linear tm] true if the lambda-term [tm] is such *) (* that "x" occurs linearly in "lambda x. tm", i.e., *) (* the linear abstraction [LAbs ("x",tm)] satisfies *) (* the linearity constraint. *) let is_linear tm = let rec lin_occur n tm = match tm with | Var _ -> false | LVar m -> m = n | Const _ -> false | Abs (_, t) -> lin_occur n t | LAbs (_, t) -> lin_occur (n + 1) t | App (t1, t2) -> lin_occur n t1 <> lin_occur n t2 | _ -> raise Not_yet_implemented in lin_occur 0 tm [@@warning "-32"] (* [is_lclosed tm] true if the lambda-term [tm] does not *) (* contain any free linear variable. *) let is_lclosed tm = let rec lclosed n tm = match tm with | Var _ -> true | LVar m -> m < n | Const _ -> true | Unknown _ -> true | Abs (_, t) -> lclosed n t | LAbs (_, t) -> lclosed (n + 1) t | App (t1, t2) -> lclosed n t1 && lclosed n t2 | _ -> raise Not_yet_implemented in lclosed 0 tm [@@warning "-32"] (* de Bruijn's indices lifting *) let lift l_i nl_i tm = let rec lift_aux l_level nl_level tm = match tm with | Var i -> if i < nl_level then tm else Var (i + nl_i) | LVar i -> if i < l_level then tm else LVar (i + l_i) | Const _ -> tm | Unknown _ -> tm | Abs (x, t) -> Abs (x, lift_aux l_level (nl_level + 1) t) | LAbs (x, t) -> LAbs (x, lift_aux (l_level + 1) nl_level t) | App (t1, t2) -> App (lift_aux l_level nl_level t1, lift_aux l_level nl_level t2) | _ -> raise Not_yet_implemented in lift_aux 0 0 tm (* substitution of a non-linear variable tm1 [x:=tm2] *) let var_subst tm1 tm2 = let rec subst l_level nl_level tm = match tm with | Var i -> if i = nl_level then lift l_level nl_level tm2 else if i < nl_level then tm else Var (i - 1) | LVar _ -> tm | Const _ -> tm | Unknown _ -> tm | Abs (x, t) -> Abs (x, subst l_level (nl_level + 1) t) | LAbs (x, t) -> LAbs (x, subst (l_level + 1) nl_level t) | App (t1, t2) -> App (subst l_level nl_level t1, subst l_level nl_level t2) | _ -> raise Not_yet_implemented in subst 0 0 tm1 (* substitution of a linear variable tm1 [x:=tm2] *) let lvar_subst tm1 tm2 = let rec subst l_level nl_level tm = match tm with | Var _ -> tm | LVar i -> if i = l_level then lift l_level nl_level tm2 else if i < l_level then tm else LVar (i - 1) | Const _ -> tm | Unknown _ -> tm | Abs (x, t) -> Abs (x, subst l_level (nl_level + 1) t) | LAbs (x, t) -> LAbs (x, subst (l_level + 1) nl_level t) | App (t1, t2) -> App (subst l_level nl_level t1, subst l_level nl_level t2) | _ -> raise Not_yet_implemented in subst 0 0 tm1 (* substitution of a term in a type "ty [x:=tm]" *) (* tm cannot contain any free linear variable *) let subst_in_type ty tm = let rec subst_tm level tm1 = match tm1 with | Var i -> if i = level then lift 0 level tm else if i < level then tm else Var (i - 1) | LVar _ -> tm | Const _ -> tm | Unknown _ -> tm | Abs (x, t) -> Abs (x, subst_tm (level + 1) t) | LAbs (x, t) -> LAbs (x, subst_tm level t) | App (t1, t2) -> App (subst_tm level t1, subst_tm level t2) | _ -> raise Not_yet_implemented in let rec subst_ty level ty = match ty with | Atom _ -> ty | LFun (ty1, ty2) -> LFun (subst_ty level ty1, subst_ty level ty2) | Fun (ty1, ty2) -> Fun (subst_ty level ty1, subst_ty level ty2) | Dprod (x, ty1, ty2) -> Dprod (x, subst_ty level ty1, subst_ty (level + 1) ty2) | TApp (ty1, tm) -> TApp (subst_ty level ty1, subst_tm level tm) | _ -> raise Not_yet_implemented in subst_ty 0 ty (* [is_vacuous ty] true when "ty" deos not effectively depend on "x" *) (* in the dependent type "Dprod (x, t, ty)" *) let is_vacuous ty = let rec vacuous_tm n tm = match tm with | Var i -> i <> n | LVar _ -> true | Const _ -> true | Unknown _ -> true | Abs (_, t) -> vacuous_tm (n + 1) t | LAbs (_, t) -> vacuous_tm n t | App (t1, t2) -> vacuous_tm n t1 && vacuous_tm n t2 | _ -> raise Not_yet_implemented in let rec vacuous_ty n ty = match ty with | Atom _ -> true | LFun (ty1, ty2) -> vacuous_ty n ty1 && vacuous_ty n ty2 | Fun (ty1, ty2) -> vacuous_ty n ty1 && vacuous_ty n ty2 | Dprod (_, ty1, ty2) -> vacuous_ty n ty1 && vacuous_ty (n + 1) ty2 | TApp (ty1, tm) -> vacuous_ty n ty1 && vacuous_tm n tm | _ -> raise Not_yet_implemented in vacuous_ty 0 ty [@@warning "-32"] (* beta-normalization *) let rec head_normalize ?id_to_term tm = match tm with | Var _ -> tm | LVar _ -> tm | Const _ -> tm | DConst i -> ( match id_to_term with | None -> tm | Some f -> head_normalize ?id_to_term (f i)) | Unknown _ -> tm | Abs (x, t1) -> Abs (x, head_normalize ?id_to_term t1) | LAbs (x, t1) -> LAbs (x, head_normalize ?id_to_term t1) | App (t1, t2) -> ( match head_normalize ?id_to_term t1 with | Abs (_, t) -> head_normalize ?id_to_term (var_subst t t2) | LAbs (_, t) -> head_normalize ?id_to_term (lvar_subst t t2) | nt1 -> App (nt1, t2)) | _ -> raise Not_yet_implemented let rec normalize ?id_to_term tm = match tm with | Var _ -> tm | LVar _ -> tm | Const _ -> tm | DConst i -> ( match id_to_term with | None -> tm | Some f -> normalize ?id_to_term (f i)) | Unknown _ -> tm | Abs (x, t) -> Abs (x, normalize ?id_to_term t) | LAbs (x, t) -> LAbs (x, normalize ?id_to_term t) | App (t1, t2) -> ( let nt2 = normalize ?id_to_term t2 in match normalize ?id_to_term t1 with | Abs (_, t) -> normalize ?id_to_term (var_subst t nt2) | LAbs (_, t) -> normalize ?id_to_term (lvar_subst t nt2) | nt1 -> App (nt1, nt2)) | _ -> raise Not_yet_implemented (* beta-equivalence *) let beta_convert tm1 tm2 = let rec convert tm1 tm2 = match (tm1, tm2) with | Var i, Var j -> i = j | LVar i, LVar j -> i = j | Const i, Const j -> i = j | Unknown i, Unknown j -> i = j | Abs (_, tm11), Abs (_, tm12) -> convert tm11 tm12 | LAbs (_, tm11), LAbs (_, tm12) -> convert tm11 tm12 | App (tm11, tm12), App (tm21, tm22) -> convert tm11 tm21 && convert (head_normalize tm12) (head_normalize tm22) | _ -> false in convert (head_normalize tm1) (head_normalize tm2) (* type-normalization *) let rec type_normalize ty = match ty with | Atom _ -> ty | LFun (ty1, ty2) -> LFun (type_normalize ty1, type_normalize ty2) | Fun (ty1, ty2) -> Fun (type_normalize ty1, type_normalize ty2) | Dprod (x, ty1, ty2) -> Dprod (x, type_normalize ty1, type_normalize ty2) | TAbs (x, ty1) -> TAbs (x, type_normalize ty1) | TApp (ty1, tm) -> ( match type_normalize ty1 with | TAbs (_, nty1) -> subst_in_type nty1 tm | nty1 -> TApp (nty1, tm)) | _ -> raise Not_yet_implemented (* type beta-equivalence *) let type_convert ty1 ty2 = let rec convert ty1 ty2 = match (ty1, ty2) with | Atom i, Atom j -> i = j | LFun (ty11, ty12), LFun (ty21, ty22) -> convert ty11 ty21 && convert ty12 ty22 | Fun (ty11, ty12), Fun (ty21, ty22) -> convert ty11 ty21 && convert ty12 ty22 | Dprod (_, ty11, ty12), Dprod (_, ty21, ty22) -> convert ty11 ty21 && convert ty12 ty22 | TAbs (_, ty11), TAbs (_, ty21) -> convert ty11 ty21 | TApp (ty11, tm1), TApp (ty21, tm2) -> convert ty11 ty21 && beta_convert tm1 tm2 | _, _ -> false in convert (type_normalize ty1) (type_normalize ty2) [@@warning "-32"] let eta_long_form term stype f_get_type_of_constant = let rec eta_long_form_rec term stype ~is_functor linear_typing_env non_linear_typing_env = match (term, stype, is_functor) with | LVar i, None, is_f -> eta_long_form_rec (LVar i) (Some (List.nth linear_typing_env i)) ~is_functor:is_f linear_typing_env non_linear_typing_env | LVar i, Some (Atom _ as ty), false -> let () = assert (ty = List.nth linear_typing_env i) in (LVar i, ty) | LVar i, Some (LFun (_a, _b) as ty), true -> let () = assert (ty = List.nth linear_typing_env i) in (LVar i, ty) | LVar i, Some (LFun (a, b) as ty), false -> let () = assert (ty = List.nth linear_typing_env i) in let new_var, _ = eta_long_form_rec (LVar 0) (Some a) ~is_functor:false [ a ] [] in let res, _ = eta_long_form_rec (App (LVar (i + 1), new_var)) (Some b) ~is_functor:false (a :: linear_typing_env) non_linear_typing_env in (LAbs ("x", res), ty) | LVar i, Some (Fun (a, b) as ty), true -> let () = assert (Fun (a, b) = List.nth linear_typing_env i) in (LVar i, ty) | LVar i, Some (Fun (a, b) as ty), false -> let () = assert (Fun (a, b) = List.nth linear_typing_env i) in let new_var, _ = eta_long_form_rec (Var 0) (Some a) ~is_functor:false [] [ a ] in let res, _ = eta_long_form_rec (App (LVar i, new_var)) (Some b) ~is_functor:false linear_typing_env (a :: non_linear_typing_env) in (Abs ("x", res), ty) | Var i, None, is_f -> eta_long_form_rec (Var i) (Some (List.nth non_linear_typing_env i)) ~is_functor:is_f linear_typing_env non_linear_typing_env | Var i, Some (Atom j as ty), false -> let () = assert (Atom j = List.nth non_linear_typing_env i) in (Var i, ty) | Var i, Some (LFun (a, b) as ty), true -> let () = assert (LFun (a, b) = List.nth non_linear_typing_env i) in (Var i, ty) | Var i, Some (LFun (a, b) as ty), false -> let () = assert (LFun (a, b) = List.nth non_linear_typing_env i) in let new_var, _ = eta_long_form_rec (LVar 0) (Some a) ~is_functor:false [ a ] [] in let res, _ = eta_long_form_rec (App (Var i, new_var)) (Some b) ~is_functor:false (a :: linear_typing_env) non_linear_typing_env in (LAbs ("x", res), ty) | Var i, Some (Fun (a, b) as ty), true -> let () = assert (Fun (a, b) = List.nth non_linear_typing_env i) in (Var i, ty) | Var i, Some (Fun (a, b) as ty), false -> let () = assert (Fun (a, b) = List.nth non_linear_typing_env i) in let new_var, _ = eta_long_form_rec (Var 0) (Some a) ~is_functor:false [] [ a ] in let res, _ = eta_long_form_rec (App (Var (i + 1), new_var)) (Some b) ~is_functor:false linear_typing_env (a :: non_linear_typing_env) in (Abs ("x", res), ty) | Const i, None, true -> (term, f_get_type_of_constant i) | Const i, None, false -> eta_long_form_rec term (Some (f_get_type_of_constant i)) ~is_functor:false linear_typing_env non_linear_typing_env | Const _, Some (Atom _ as ty), false -> (term, ty) | Const _, Some (LFun (_a, _b) as ty), true -> (term, ty) | Const _, Some (Fun (_a, _b) as ty), true -> (term, ty) | Const _, Some (LFun (a, b) as ty), false -> let new_var, _ = eta_long_form_rec (LVar 0) (Some a) ~is_functor:false [ a ] [] in let term = lift 1 0 term in let res, _ = eta_long_form_rec (App (term, new_var)) (Some b) ~is_functor:false (a :: linear_typing_env) non_linear_typing_env in (LAbs ("x", res), ty) | Const _, Some (Fun (a, b) as ty), false -> let new_var, _ = eta_long_form_rec (Var 0) (Some a) ~is_functor:false [] [ a ] in let term = lift 0 1 term in let res, _ = eta_long_form_rec (App (term, new_var)) (Some b) ~is_functor:false linear_typing_env (a :: non_linear_typing_env) in (Abs ("x", res), ty) | DConst _, _, _ -> failwith "All the definitions should have been unfolded" | Abs (x, t), Some (Fun (a, b) as ty), false -> let t', _ = eta_long_form_rec t (Some b) ~is_functor:false linear_typing_env (a :: non_linear_typing_env) in (Abs (x, t'), ty) | Abs _, None, _ -> failwith "The Term should be in normal form" | Abs (_x, _t), _, false -> failwith "Bad typing" | Abs (_x, _t), _, true -> failwith "The Term should be in normal form" | LAbs (x, t), Some (LFun (a, b) as ty), false -> let t', _ = eta_long_form_rec t (Some b) ~is_functor:false (a :: linear_typing_env) non_linear_typing_env in (LAbs (x, t'), ty) | LAbs _, None, _ -> failwith "The Term should be in normal form" | LAbs (_x, _t), _, true -> failwith "The Term should be in normal form" | LAbs (_x, _t), _, _ -> failwith "Bad typing" | App (u, v), Some (Atom _ as ty), _ -> ( let u', u_type = eta_long_form_rec u None ~is_functor:true linear_typing_env non_linear_typing_env in match u_type with | LFun (a, b) | Fun (a, b) -> let () = assert (b = ty) in let v', _v_type = eta_long_form_rec v (Some a) ~is_functor:false linear_typing_env non_linear_typing_env in (App (u', v'), b) | _ -> failwith "Should be well typed 1") | App (u, v), Some (Fun (_, _) as ty), true -> ( let u', u_type = eta_long_form_rec u None ~is_functor:true linear_typing_env non_linear_typing_env in match u_type with | LFun (a, b) | Fun (a, b) -> let () = assert (b = ty) in let v', _v_type = eta_long_form_rec v (Some a) ~is_functor:false linear_typing_env non_linear_typing_env in (App (u', v'), b) | _ -> failwith "Should be well typed 2") | App (u, v), Some (Fun (a', b') as ty), false -> ( let var', _ = eta_long_form_rec (Var 0) (Some a') ~is_functor:false [] [ a' ] in let u = lift 0 1 u in let u', u_type = eta_long_form_rec u None ~is_functor:true linear_typing_env (a' :: non_linear_typing_env) in match u_type with | LFun (a, b) | Fun (a, b) -> let () = assert (b = ty) in let v = lift 0 1 v in let v', _v_type = eta_long_form_rec v (Some a) ~is_functor:false linear_typing_env (a' :: non_linear_typing_env) in let res, _ = eta_long_form_rec (App (App (u', v'), var')) (Some b') ~is_functor:false linear_typing_env (a' :: non_linear_typing_env) in (Abs ("x", res), b) | _ -> failwith "Should be well typed 3") | App (u, v), Some (LFun (_, _) as ty), true -> ( let u', u_type = eta_long_form_rec u None ~is_functor:true linear_typing_env non_linear_typing_env in match u_type with | LFun (a, b) | Fun (a, b) -> let () = assert (b = ty) in let v', _v_type = eta_long_form_rec v (Some a) ~is_functor:false linear_typing_env non_linear_typing_env in (App (u', v'), b) | _ -> failwith "Should be well typed 4") | App (u, v), Some (LFun (a', b') as ty), false -> ( let var', _ = eta_long_form_rec (LVar 0) (Some a') ~is_functor:false [ a' ] [] in let u = lift 1 0 u in let u', u_type = eta_long_form_rec u None ~is_functor:true (a' :: linear_typing_env) non_linear_typing_env in match u_type with | LFun (a, b) | Fun (a, b) -> let () = assert (b = ty) in let v = lift 1 0 v in let v', _v_type = eta_long_form_rec v (Some a) ~is_functor:false (a' :: linear_typing_env) non_linear_typing_env in let res, _ = eta_long_form_rec (App (App (u', v'), var')) (Some b') ~is_functor:false (a' :: linear_typing_env) non_linear_typing_env in (LAbs ("x", res), b) | _ -> failwith "Should be well typed 5") | App (u, v), None, true -> ( let u', u_type = eta_long_form_rec u None ~is_functor:true linear_typing_env non_linear_typing_env in match u_type with | LFun (a, b) | Fun (a, b) -> let v', _v_type = eta_long_form_rec v (Some a) ~is_functor:false linear_typing_env non_linear_typing_env in (App (u', v'), b) | _ -> failwith "Should be well typed 6") | App (_u, _v), None, false -> failwith "Probably a bug: the term cannot be a in a non functor position \ and an unknown type" | _, Some (DAtom _), _ -> failwith "type definitions should have been unfolded" | LVar _, Some ty, b -> failwith (Printf.sprintf "LVar Term should be well typed. Type: %s. Is_functor: %B" (raw_type_to_string ty) b) | Var _, _, _ -> failwith "Var Term should be well typed" | _ -> raise Not_yet_implemented in let term', _ = eta_long_form_rec term (Some stype) ~is_functor:false [] [] in term' (* We assume here that types in [ty] have been unfolded*) let rec order stype f_unfold_defined_type = match stype with | Atom _ -> 1 | DAtom i -> order (f_unfold_defined_type i) f_unfold_defined_type | LFun (alpha, beta) -> max (order alpha f_unfold_defined_type + 1) (order beta f_unfold_defined_type) | Fun (alpha, beta) -> max (order alpha f_unfold_defined_type + 1) (order beta f_unfold_defined_type) | _ -> failwith "Bug: order of type not defined for this type constructor" let is_2nd_order stype f_unfold_defined_type = order stype f_unfold_defined_type <= 2 let rec is_atomic stype f_unfold_defined_type = match stype with | Atom _ -> true | DAtom i -> is_atomic (f_unfold_defined_type i) f_unfold_defined_type | LFun _ | Fun _ -> false | _ -> failwith "Bug: atomicity of type not defined for this type constructor" let rec unlinearize_term = function | Var i -> Var i | LVar i -> Var i | Const i -> Const i | DConst i -> DConst i | Abs (x, t) -> Abs (x, unlinearize_term t) | LAbs (x, t) -> Abs (x, unlinearize_term t) | App (t, u) -> App (unlinearize_term t, unlinearize_term u) | _ -> failwith "Unlinearization not implemented for this term" let rec unlinearize_type = function | Atom i -> Atom i | DAtom i -> DAtom i | LFun (ty1, ty2) -> Fun (unlinearize_type ty1, unlinearize_type ty2) | Fun (ty1, ty2) -> Fun (unlinearize_type ty1, unlinearize_type ty2) | _ -> failwith "Unlinearization not implemented for this type" let size ~id_to_term term = let rec size_aux = function | Var _ | LVar _ | Const _-> 1, 1 | DConst _ -> failwith "Bug: defined terms in the term should already be expanded" | Abs (_, t) | LAbs (_, t) -> let d, s = size_aux t in (d+1, s) | (App _) as t -> let params, head = unfold_app [] t in let head_depth, head_size = size_aux head in let params_d, params_s = List.fold_left (fun (d, s) t -> let d', s' = size_aux t in if d < d' then d', s+s' else d, s+s') (0, 0) params in head_depth + params_d, head_size + params_s | _ -> failwith "Not yet implemented" in let term = normalize ~id_to_term term in size_aux term let equal ~id_to_term ~type_of_const (t1, alpha1) (t2,alpha2) = let rec equal_aux = function | Var i, Var j when i = j -> true | LVar i, LVar j when i = j -> true | Const i, Const j when i = j -> true | DConst i, DConst j when i = j -> true | Abs (_, t1), Abs (_, t2) -> equal_aux (t1, t2) | LAbs (_, t1), LAbs (_, t2) -> equal_aux (t1, t2) | App (t1, u1), App (t2, u2) -> (equal_aux (t1, t2)) && (equal_aux (u1, u2)) | _, _ -> false in let t1 = eta_long_form (normalize ~id_to_term t1) alpha1 type_of_const in let t2 = eta_long_form (normalize ~id_to_term t2) alpha2 type_of_const in equal_aux (t1, t2) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>