package acgtk
Abstract Categorial Grammar development toolkit
Install
Dune Dependency
Authors
Maintainers
Sources
acgtk-1.5.3.tar.gz
sha256=2743321ae4cc97400856eb503a876cbcbd08435ebc750276399a97481d001d41
md5=04c1e14f98e2c8fd966ef7ef30b38323
doc/src/acgtkLib.acgData/reduction.ml.html
Source file reduction.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
open Logic.Lambda open UtilsLib.Utils open DatalogLib.Datalog_AbstractSyntax open DatalogLib.Datalog module Make(Sg:Interface.Signature_sig with type term = Lambda.term and type stype = Lambda.stype) = struct let src = Logs.Src.create "ACGtkLib.reduction" ~doc:"logs ACGtkLib reduction events" module Log = (val Logs.src_log src : Logs.LOG) let rec sequentialize_rev stype sequence = match stype with | Lambda.Atom i -> i::sequence | Lambda.DAtom _ -> failwith "Bug: type definition should be unfolded" | Lambda.LFun (alpha,beta) | Lambda.Fun (alpha,beta) -> sequentialize_rev beta (sequentialize_rev alpha sequence) | _ -> failwith "Bug: Not a 2nd order type" let sequentialize stype = List.rev (sequentialize_rev stype []) (** [map_types abs_type obj_type sg] returns a list of triple [(id_n,name_n,image_n);...;(id_2,name_2,image_2);(id_1,name_1,image_1)] where [abst_type=Atom(id_1) -> Atom(id_2) -> ... Atom(id_n)] and is defined as [name_1 -> name_2 -> ... -> name_n] and [obj_type=image_1 -> image_2 -> ... -> image_n]. Note that the list is in the {em reverse order} and that [abs_type] should be 2nd order. *) let map_types abs_type obj_type sg = let rec map_types_aux abs_type obj_type lst = Log.debug (fun m -> m "Mapping (aux) type:%s" (Sg.type_to_string abs_type sg)); Log.debug (fun m -> m "On (aux): %s" (Lambda.raw_type_to_string obj_type)); match abs_type,obj_type with | Lambda.Atom i,_ -> (i,Sg.type_to_string abs_type sg,obj_type)::lst | Lambda.DAtom _,_ -> failwith (Printf.sprintf "Bug: type definition in \"%s\" as \"%s\" should be unfolded" (Sg.type_to_string abs_type sg) (Lambda.raw_type_to_string abs_type)) | Lambda.LFun (Lambda.Atom i as alpha,beta),Lambda.Fun (alpha',beta') | Lambda.Fun (Lambda.Atom i as alpha,beta),Lambda.Fun (alpha',beta') -> map_types_aux beta beta' ((i,Sg.type_to_string alpha sg,alpha')::lst) | Lambda.LFun _,Lambda.Fun _ | Lambda.Fun _,Lambda.Fun _ -> failwith "Bug: should be 2nd order type for abstract constant" | _,_ -> failwith "Bug: Not a 2nd order type or not corresponding abstract and object type" in Log.debug (fun m -> m "Mapping type:%s (%s)" (Sg.type_to_string abs_type sg) (Lambda.raw_type_to_string abs_type)); Log.debug (fun m -> m "On: %s" (Lambda.raw_type_to_string obj_type)); map_types_aux abs_type obj_type [] (** [build_predicate_w_var_args (name,obj_type) (prog,var_gen,type_to_var_map)] returns [(prog',var_gen',type_to_var_map')] where: - [name] is the name of an abstract type of some ACG that has to be turned into a predicate of the associated datalog program - [ob_type] is the principal type of its realisation by this ACG - [prog] is the current associated datalog program - [var_gen] is a variable generator that records the variable associated with this predicate (according to the principal type [obj_type] of its image). It can be updated to [var_gen'] if some new variables are needed - [type_to_var_map] records to which variable each atomic type of the principal type is associated with. It can be updated to [type_to_var_map'] if some new variables were needed. - [prog'] is [prog] where the bew predicate has been added *) let build_predicate_w_var_args (name,obj_type) (prog,var_gen,type_to_var_map) = let atom_sequence = sequentialize_rev obj_type [] in Log.debug (fun m -> m "Build predicate from %s:%s ([%s])" name (Lambda.raw_type_to_string obj_type) (string_of_list ";" string_of_int atom_sequence)); let var_sequence,var_gen,type_to_var_map = List.fold_left (fun (l_var_seq,l_var_gen,l_type_to_var_map) i -> let var,l_var_gen,l_type_to_var_map= try IntMap.find i l_type_to_var_map,l_var_gen,l_type_to_var_map with | Not_found -> let var,l_var_gen=VarGen.get_fresh_id l_var_gen in var,l_var_gen,IntMap.add i var l_type_to_var_map in (AbstractSyntax.Predicate.Var var)::l_var_seq,l_var_gen,l_type_to_var_map) ([],var_gen,type_to_var_map) atom_sequence in let p_id,prog=Datalog.Program.add_pred_sym name prog in AbstractSyntax.Predicate.({p_id=p_id;arity=List.length var_sequence;arguments=var_sequence}), (prog,var_gen,type_to_var_map) (** [build_predicate_w_cst_args (name,obj_type) prog] returns a fully instantiated predicate where: - [name] is the name of an abstract type of some ACG that has to be turned into a the querying predicate for the associated datalog program - [ob_type] is the principal type of its realisation by this ACG that is interpreted as Datalog constants - [prog] is the current associated datalog program *) let build_predicate_w_cst_args (name,obj_type) prog = let atom_sequence = sequentialize obj_type in Log.debug (fun m -> m "Build predicate from %s:%s ([%s])" name (Lambda.raw_type_to_string obj_type) (string_of_list ";" string_of_int atom_sequence)); let const_sequence,prog = List.fold_left (fun (l_const_seq,l_prog) i -> let const_id,l_prog=Datalog.Program.get_fresh_cst_id (string_of_int i) l_prog in (AbstractSyntax.Predicate.Const const_id)::l_const_seq,l_prog) ([],prog) atom_sequence in let p_id,prog=Datalog.Program.add_pred_sym name prog in AbstractSyntax.Predicate.({p_id=p_id;arity=List.length const_sequence;arguments=List.rev const_sequence}),prog (** [generate_and_add_rule ~abs_cst ~obj_princ_type ~obj_typing_env prog abs_sig obj_sig] returns a pair [(r,prog')] where: - [r] is the generated rule - [prog'] is [prog] where the rule [r] has been added - [abs_cst] is the abstract constant from the abstract signature [abs_sig] that triggers the rule generation - [obj_princ_type] is the principal type of the image by the lexicon of [abs_cst] - [obj_typing_env] is its typing environment. The latter maps the position of the object constants in the realisation of [abs_cst] to a pair [(t,ty)] where [t] is the object constant itself, and [ty] the type associated by the principal typing environment. - [prog] is the current datalog program - [abs_sig] and [obj_sig] are the abstract signature and the object signature of some ACG. *) let generate_and_add_rule ~abs_cst:(_,abs_t_type) ~obj_princ_type:principle_type ~obj_typing_env:env prog ~abs_sig ~obj_sig = let rule_id,prog=Datalog.Program.get_fresh_rule_id prog in let type_lst = map_types abs_t_type principle_type abs_sig in match type_lst with | [] -> failwith "Bug: there should be a type correspondance" | (_,name,image)::tl -> let lhs,(prog,var_gen,type_to_var_map) = build_predicate_w_var_args (name,image) (prog,VarGen.init (),IntMap.empty) in let i_rhs,length,(prog,var_gen,type_to_var_map) = List.fold_left (fun (rhs,l_length,l_tables) (_,l_name,l_image) -> let new_pred,new_tables=build_predicate_w_var_args (l_name,l_image) l_tables in let l_length=l_length+1 in (new_pred,l_length)::rhs,l_length,new_tables) ([],0,(prog,var_gen,type_to_var_map)) tl in let e_rhs,_,(prog,_,_) = IntMap.fold (fun _ (cst,cst_type) (rhs,l_length,l_tables) -> let const_name=Sg.term_to_string cst obj_sig in let () = assert (fst (Sg.is_constant const_name obj_sig)) in let new_pred,new_tables = build_predicate_w_var_args (const_name,cst_type) l_tables in let l_length=l_length+1 in (new_pred,l_length)::rhs,l_length,new_tables) env ([],length,(prog,var_gen,type_to_var_map) ) in Log.debug (fun m -> m "Correctly set the number of intensional predi in rhs: %d" (let () = assert (length=List.length i_rhs) in length)); let new_rule = AbstractSyntax.Rule.({id=rule_id;lhs;e_rhs;i_rhs;i_rhs_num=length}) in Log.debug (fun m -> m "The following rule was generated: %s" (AbstractSyntax.Rule.to_string new_rule ~with_position:true (prog.Datalog.Program.pred_table) prog.Datalog.Program.const_table)); new_rule,Datalog.Program.add_rule ~intensional:true new_rule prog (** [edb_and_query ~obj_term ~obj_type ~obj_typing_env ~dist_type prog ~abs_sig ~obj_sig] returns a pair [(q,prog')] where: - [q] is the predicate corresponding to the query generated by the object term [obj_term] to parse - [prog'] is [prog] where the extensional database resulting from the reduction of the object term [obj_term] - [obj_type] is the principal type of [obj_term] - [obj_typing_env] is its typing environment. The latter maps the position of the object constants in the realisation of [abs_cst] to a pair [(t,ty)] where [t] is the object constant itself, and [ty] the type associated by the principal typing environment. - [dist_type] is the distinguished type of the ACG - [prog] is the current datalog program - [abs_sig] and [obj_sig] are the abstract signature and the object signature of some ACG. *) let edb_and_query ~obj_term ~obj_type ~obj_typing_env ~dist_type prog ~abs_sig ~obj_sig = (* It makes the assumption that no constant has been previously defined or used in the program *) let type_lst = map_types dist_type obj_type abs_sig in match type_lst with | [] -> failwith "Bug: there should be a type correspondance" | [_,name,image] -> let e_facts,prog= IntMap.fold (fun _ (cst,cst_type) (l_facts,l_prog) -> let const_name=Sg.term_to_string cst obj_sig in let () = assert (fst (Sg.is_constant const_name obj_sig)) in let new_pred,l_prog = build_predicate_w_cst_args (const_name,cst_type) l_prog in let rule_id,l_prog=Datalog.Program.get_fresh_rule_id l_prog in let new_fact = AbstractSyntax.Rule.({id=rule_id;lhs=new_pred;e_rhs=[];i_rhs=[];i_rhs_num=0}) in (new_fact::l_facts),l_prog) obj_typing_env ([],prog) in let prog=Datalog.Program.add_e_facts prog (e_facts,prog.Datalog.Program.const_table,prog.Datalog.Program.rule_id_gen) in build_predicate_w_cst_args (name,image) prog | (_,_,_)::tl -> failwith "Bug: querying non atomic types is not yet implemented" [@@warning "-27"] end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>