package acgtk
Abstract Categorial Grammar development toolkit
Install
Dune Dependency
Authors
Maintainers
Sources
acgtk-1.5.3.tar.gz
sha256=2743321ae4cc97400856eb503a876cbcbd08435ebc750276399a97481d001d41
md5=04c1e14f98e2c8fd966ef7ef30b38323
doc/src/acgtkLib.datalogLib/datalog_AbstractSyntax.ml.html
Source file datalog_AbstractSyntax.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
open UtilsLib.IdGenerator open UtilsLib.Utils module Var= struct type t=Var of int let compare (Var i) (Var j)=i-j let succ (Var i)=Var (i+1) let start=Var 0 let to_string (Var i) = let dec = decompose ~input:i ~base:26 in List.fold_left (fun acc i -> Printf.sprintf "%s%c" acc (char_of_int (97+i))) "" dec (* let c = Printf.sprintf "%c" (char_of_int (97+i)) in c *) end module VarGen = IdGen(Var) module Const= struct type t=Const of int let compare (Const i) (Const j)=i-j let start=Const 0 let succ (Const i)=Const (i+1) let to_string (Const i) = string_of_int i end module ConstGen=IdGen(Const) module AbstractSyntax = struct module Log = (val Logs.src_log (Logs.Src.create "ACGtkLib.datalog_AbstractSyntax" ~doc:"logs ACGtkLib datalog_AbstractSyntax events") : Logs.LOG) (** These modules are the abstract syntactic representations of the predicates, of the rules, and of the programs *) module Predicate = struct type term = | Var of VarGen.id | Const of ConstGen.id module VarMap = Map.Make (Var) let map_content_compare (k1,map1) (k2,map2) = try let val1 = VarMap.find k1 map1 in (try val1-(VarMap.find k2 map2) with | Not_found -> 1) with | Not_found -> (try let _ = VarMap.find k2 map2 in -1 with | Not_found -> 0) let term_compare l1 l2 = let rec term_compare_aux l1 l2 (l1_vars,l2_vars) pos = match l1,l2 with | [],[] -> 0 | [],_ -> -1 | _,[] -> 1 | (Const _)::_,(Var _)::_ -> 1 | (Var _)::_,(Const _)::_ -> -1 | (Const a1)::tl1,(Const a2)::tl2 -> let res = ConstGen.compare a1 a2 in if ConstGen.compare a1 a2 <> 0 then res else term_compare_aux tl1 tl2 (l1_vars,l2_vars) (pos+1) | (Var a1)::tl1,(Var a2)::tl2 -> let res = map_content_compare (a1,l1_vars) (a2,l2_vars) in if VarGen.compare a1 a2 <> 0 then res else term_compare_aux tl1 tl2 (VarMap.add a1 pos l1_vars,VarMap.add a2 pos l2_vars) (pos+1) in term_compare_aux l1 l2 (VarMap.empty,VarMap.empty) 0 let term_to_string t cst_id_table = match t with | Var v -> Var.to_string v | Const c -> (* Const.to_string c *) ConstGen.Table.find_sym_from_id c cst_id_table type pred_id=int module PredIdMap = IntIdGen.IdMap module PredIdTable = IntIdGen.Table type predicate={p_id:pred_id; arity:int; arguments: term list (** It is assumed that the size of the list is the arity *) } let to_string predicate ?position pred_id_table cst_id_table= let position_info = match position with | None -> "" | Some i -> Printf.sprintf " (* position: %d*)" i in Printf.sprintf "%s(%s)%s" (PredIdTable.find_sym_from_id predicate.p_id pred_id_table) (string_of_list "," (fun p -> term_to_string p cst_id_table) predicate.arguments) position_info let compare ({p_id=id1;arity=a1;arguments=l1}:predicate) ({p_id=id2;arity=a2;arguments=l2}:predicate) = let res = compare id1 id2 in if res<>0 then res else let res = a1-a2 in if res<>0 then res else term_compare l1 l2 let fake_pred_id = -1 module PredIds=IntSet end module Proto_Rule = struct type t = {proto_id:int; proto_lhs:Predicate.predicate; proto_rhs:Predicate.predicate list; (** represents the predicates of the rule *) } let to_string r pred_id_table cst_id_table= let head=Predicate.to_string r.proto_lhs pred_id_table cst_id_table in let tail= match r.proto_rhs with | [] -> "." | _ -> Printf.sprintf ":- %s." (string_of_list "," (fun p -> Predicate.to_string p pred_id_table cst_id_table) r.proto_rhs) in Printf.sprintf "%s%s\n" head tail let to_buffer rules pred_id_table cst_id_table = let buff=Buffer.create 4 in let () = List.iter (fun r -> Buffer.add_string buff (Printf.sprintf "%s\n" (to_string r pred_id_table cst_id_table))) rules in buff [@@warning "-32"] let to_log rules pred_id_table cst_id_table src level = List.iter (fun r -> Logs.msg ~src level (fun m -> m "@;<4>%s" (to_string r pred_id_table cst_id_table))) rules [@@warning "-32"] end module Rule = struct type rule={id:int; lhs:Predicate.predicate; e_rhs:(Predicate.predicate*int) list; i_rhs:(Predicate.predicate*int) list; i_rhs_num:int; } let to_string r ?(with_position=false) pred_id_table cst_id_table = let head=Predicate.to_string r.lhs pred_id_table cst_id_table in (* let string_of_predicate_list lst = string_of_list "," (fun p -> Predicate.to_string p pred_id_table cst_id_table) lst in *) let vdash,e_i_sep = match r.e_rhs,r.i_rhs with | [],[] -> "","" | [],_ -> ":- "," " | _,[] -> ":- "," " | _,_ -> ":- "," , " in (* Printf.sprintf "%s%s%s%s%s." head vdash ((string_of_predicate_list >> fst >> List.split) r.e_rhs) e_i_sep ((string_of_predicate_list >> fst >> List.split) r.i_rhs) *) let string_of_pred (pred,pos) = match with_position with | false -> Predicate.to_string pred pred_id_table cst_id_table | true -> Predicate.to_string pred ~position:pos pred_id_table cst_id_table in Printf.sprintf "%s%s%s%s%s." head vdash (string_of_list "," string_of_pred r.e_rhs) e_i_sep (string_of_list "," string_of_pred r.i_rhs) module Rules=Set.Make(struct type t=rule let compare {id=i;_} {id=j;_} = i-j end) module RuleMap=Map.Make(struct type t=rule let compare {id=i;_} {id=j;_} = i-j end) let ids_to_rules ids id_to_rule_map = IntSet.fold (fun e acc -> Rules.add (IntMap.find e id_to_rule_map) acc) ids Rules.empty let to_buffer rules pred_id_table cst_id_table = let buff=Buffer.create 4 in let () = Rules.iter (fun r -> let () = Buffer.add_string buff (to_string r pred_id_table cst_id_table) in Buffer.add_string buff "\n") rules in buff let to_log rules pred_id_table cst_id_table src level = Rules.iter (fun r -> Logs.msg ~src level (fun m -> m "@;<4>%s" (to_string r pred_id_table cst_id_table))) rules let init_split_rhs proto_preds intensional_pred = let i_num,i_p,e_p,_= List.fold_left (fun (i_num,i_preds,e_preds,i) ({Predicate.p_id=p_id;_} as pred) -> if Predicate.PredIds.mem p_id intensional_pred then (i_num+1,(pred,i)::i_preds,e_preds,i+1) else (i_num,i_preds,(pred,i)::e_preds,i+1)) (0,[],[],1) proto_preds in i_num,i_p,e_p let update_split_rhs init proto_preds intensional_pred = List.fold_left (fun (i_preds,e_preds) (({Predicate.p_id=p_id;_},_) as pred) -> if Predicate.PredIds.mem p_id intensional_pred then (pred::i_preds,e_preds) else (i_preds,pred::e_preds)) init proto_preds let extend_map_to_set k v map_to_set = let current_set = try Predicate.PredIdMap.find k map_to_set with | Not_found -> IntSet.empty in Predicate.PredIdMap.add k (IntSet.add v current_set) map_to_set let proto_rule_to_rule proto_rule intensional_pred = let i_num,i_preds,e_preds = init_split_rhs proto_rule.Proto_Rule.proto_rhs intensional_pred in {id=proto_rule.Proto_Rule.proto_id; lhs=proto_rule.Proto_Rule.proto_lhs; e_rhs=List.rev e_preds; i_rhs=List.rev i_preds; i_rhs_num=i_num} let update rule intensional_pred = let i_preds,e_preds = update_split_rhs (rule.i_rhs,[]) rule.e_rhs intensional_pred in {rule with e_rhs=e_preds;i_rhs=i_preds} end module Proto_Program = struct type t = {rules:Proto_Rule.t list; pred_table: Predicate.PredIdTable.table; const_table: ConstGen.Table.table; i_preds:Predicate.PredIds.t; rule_id_gen:IntIdGen.t; pred_to_rules:IntSet.t Predicate.PredIdMap.t} type tables = Predicate.PredIdTable.table*(VarGen.Table.table*ConstGen.Table.table) let empty = {rules=[]; pred_table=Predicate.PredIdTable.empty; const_table=ConstGen.Table.empty; i_preds=Predicate.PredIds.empty; rule_id_gen=IntIdGen.init (); pred_to_rules=Predicate.PredIdMap.empty} let extension pred_table const_table rule_id_gen= {rules=[]; pred_table; const_table; i_preds=Predicate.PredIds.empty; rule_id_gen; pred_to_rules=Predicate.PredIdMap.empty} let add_proto_rule (f_lhs,f_rhs) prog = let rule_id,new_rule_id_gen=IntIdGen.get_fresh_id prog.rule_id_gen in let lhs,(new_pred_id_table,new_tables)=f_lhs (prog.pred_table,(VarGen.Table.empty,prog.const_table)) in let rhs,(new_pred_id_table',(_,new_const_table))=f_rhs (new_pred_id_table,new_tables) in let new_i_preds= match rhs with | [] -> prog.i_preds | _ -> Predicate.PredIds.add lhs.Predicate.p_id prog.i_preds in let new_rule = {Proto_Rule.proto_id=rule_id; Proto_Rule.proto_lhs=lhs; Proto_Rule.proto_rhs=rhs} in {rules=new_rule::prog.rules; pred_table=new_pred_id_table'; const_table=new_const_table; i_preds=new_i_preds; rule_id_gen=new_rule_id_gen; pred_to_rules= List.fold_left (fun acc p -> Rule.extend_map_to_set p.Predicate.p_id rule_id acc) prog.pred_to_rules rhs } end module Program = struct type program = {rules:Rule.Rules.t; pred_table: Predicate.PredIdTable.table; const_table: ConstGen.Table.table; i_preds:Predicate.PredIds.t; rule_id_gen:IntIdGen.t; e_pred_to_rules: Rule.Rules.t Predicate.PredIdMap.t} type modifier = {modified_rules:Rule.Rules.t; new_pred_table: Predicate.PredIdTable.table; new_const_table: ConstGen.Table.table; new_i_preds:Predicate.PredIds.t; new_e_preds:Predicate.PredIds.t; new_rule_id_gen:IntIdGen.t;} let make_program {Proto_Program.rules;Proto_Program.pred_table;Proto_Program.const_table;Proto_Program.i_preds;Proto_Program.rule_id_gen;Proto_Program.pred_to_rules}= let actual_rules,ids_to_rule_map = List.fold_left (fun (acc,ids_to_rule_map) p_rule -> let rule = Rule.proto_rule_to_rule p_rule i_preds in Rule.Rules.add rule acc, IntMap.add p_rule.Proto_Rule.proto_id rule ids_to_rule_map) (Rule.Rules.empty,IntMap.empty) rules in {rules=actual_rules; pred_table=pred_table; const_table=const_table; i_preds=i_preds; rule_id_gen=rule_id_gen; e_pred_to_rules= Predicate.PredIdMap.fold (fun p rule_ids acc -> if Predicate.PredIds.mem p i_preds then Predicate.PredIdMap.remove p acc else Predicate.PredIdMap.add p (Rule.ids_to_rules rule_ids ids_to_rule_map) acc) pred_to_rules Predicate.PredIdMap.empty} let extend prog {Proto_Program.rules;Proto_Program.pred_table;Proto_Program.const_table;Proto_Program.i_preds;Proto_Program.rule_id_gen;Proto_Program.pred_to_rules}= let new_i_preds = Predicate.PredIds.union prog.i_preds i_preds in let updated_e_pred_map_to_r,updated_rules = (* all the rules that were pointed to by an extensional predicate that has be turned into an intensional predicate because of the program extension have to be updated *) (* We check if some the new intensional predicates also are keys of the e_pred_to_rules map of the previous program *) Predicate.PredIds.fold (fun p_id ((e_p_to_r,rules_acc) as acc) -> try (* First we check wether this predicate was considered as an extensional one *) let to_be_modified_rules = Predicate.PredIdMap.find p_id prog.e_pred_to_rules in (* If yes, we nee to remove it from the map *) Predicate.PredIdMap.remove p_id e_p_to_r, (* And to modify the rules it pointed to *) Rule.Rules.fold (fun r acc -> Rule.Rules.add (Rule.update r new_i_preds) (Rule.Rules.remove r acc)) to_be_modified_rules rules_acc with (* If no, don't do anything *) | Not_found -> acc) i_preds (prog.e_pred_to_rules,prog.rules) in let new_rules,id_to_rule_map = List.fold_left (fun (acc,id_to_rule_map) p_rule -> let rule=Rule.proto_rule_to_rule p_rule new_i_preds in Rule.Rules.add rule acc, IntMap.add p_rule.Proto_Rule.proto_id rule id_to_rule_map) (updated_rules,IntMap.empty) rules in {rules=new_rules; pred_table=pred_table; const_table=const_table; i_preds=new_i_preds; rule_id_gen=rule_id_gen; e_pred_to_rules= Predicate.PredIdMap.merge (fun _ opt_rule_ids opt_rules -> match opt_rule_ids, opt_rules with | None,None -> None | None,_ -> opt_rules | Some ids,None -> Some (Rule.ids_to_rules ids id_to_rule_map) | Some ids,Some rules -> Some (Rule.Rules.union rules (Rule.ids_to_rules ids id_to_rule_map))) pred_to_rules updated_e_pred_map_to_r } let to_buffer prog = let buff = Rule.to_buffer prog.rules prog.pred_table prog.const_table in let () = Buffer.add_string buff "Intensional predicates are:\n" in let () = Predicate.PredIds.iter (fun elt -> Buffer.add_string buff (Printf.sprintf "\t%s\n%!" (Predicate.PredIdTable.find_sym_from_id elt prog.pred_table))) prog.i_preds in buff let log_content ?(src=Logs.default) level prog = let () = Rule.to_log prog.rules prog.pred_table prog.const_table src level in let () = Logs.msg ~src level (fun m -> m "Intensional predicates are:") in let () = Predicate.PredIds.iter (fun elt -> Logs.msg ~src level (fun m -> m "@;<4>%s" (Predicate.PredIdTable.find_sym_from_id elt prog.pred_table))) prog.i_preds in Logs.msg ~src level (fun m -> m "Done.") end end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>