package OCADml

  1. Overview
  2. Docs

Source file plane.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
open V

type t =
  { x : float
  ; y : float
  ; z : float
  ; w : float
  }

let to_tup { x; y; z; w } = x, y, z, w
let to_v4 t = Gg.V4.v t.x t.y t.z t.w

let make p1 p2 p3 =
  let crx = V3.(cross (sub p3 p1) (sub p2 p1)) in
  let n = V3.norm crx in
  if Math.approx 0. n then invalid_arg "Plane points must not be collinear";
  { x = V3.x crx /. n; y = V3.y crx /. n; z = V3.z crx /. n; w = V3.dot crx p1 /. n }

let of_normal ?(point = V3.zero) normal =
  let n = V3.norm normal
  and x = V3.x normal
  and y = V3.y normal
  and z = V3.z normal in
  if Math.approx 0. n then invalid_arg "Normal cannot be zero.";
  { x = x /. n; y = y /. n; z = z /. n; w = V3.dot normal point /. n }

let xy = { x = 0.; y = 0.; z = 1.; w = 0. }
let xz = { x = 0.; y = 1.; z = 0.; w = 0. }
let yz = { x = 1.; y = 0.; z = 0.; w = 0. }

let to_affine ~op { x; y; z; w } =
  let n = v3 x y z in
  let cp = V3.(sdiv (smul n w) (dot n n)) in
  match op with
  | `Project ->
    let rot = Quaternion.(to_affine @@ align n (v3 0. 0. 1.)) in
    Affine3.(mul rot (translate (V3.neg cp)))
  | `Lift ->
    let rot = Quaternion.(to_affine @@ align (v3 0. 0. 1.) n) in
    Affine3.(mul (translate cp) rot)

let project t =
  let m = to_affine ~op:`Project t in
  fun p -> V3.to_v2 @@ Affine3.transform m p

let lift t =
  let m = to_affine ~op:`Lift t in
  fun p -> Affine3.transform m (V3.of_v2 p)

let normal { x; y; z; w = _ } = V3.normalize (v3 x y z)
let offset { x; y; z; w } = w /. V3.norm (v3 x y z)

let normalize { x; y; z; w } =
  let n = V3.norm (v3 x y z) in
  { x = x /. n; y = y /. n; z = z /. n; w = w /. n }

let neg { x; y; z; w } = { x = -.x; y = -.y; z = -.z; w = -.w }
let distance_to_point { x; y; z; w } p = V3.dot (v3 x y z) p -. w

(** TODO: do some testing, and open an issue / PR with BOSL2 about greatest
   distance having different results depending on winding direction (which
   result in opposite polarity planes). For distance to point, the polarity
   gives information, but I still think there is an issue, since a point on
   the plane is still able to give a non-zero distance depending on winding.  *)
let greatest_distance t ps =
  let { x; y; z; w } = normalize t in
  let normal = v3 x y z in
  let f (min, max) p =
    let n = V3.dot p normal in
    Float.min min n, Float.max max n
  in
  let min_norm, max_norm = List.fold_left f (Float.max_float, Float.min_float) ps in
  (* Negate offset and norm products to check distance from negative plane [t].
      Without this, non-zero distances can be returned for points that should be
      on the plane. *)
  Float.min
    (Float.max (max_norm -. w) (w -. min_norm))
    (Float.max (-.max_norm -. -.w) (-.min_norm -. -.w))

let are_points_on ?(eps = Util.epsilon) t ps = greatest_distance t ps < eps
let is_point_above ?(eps = Util.epsilon) t p = distance_to_point t p > eps

let line_angle t V3.{ a; b } =
  let dir = V3.(normalize @@ sub b a)
  and n = normal t in
  let sin_angle = V3.dot dir n
  and cos_angle = V3.(norm @@ cross dir n) in
  Float.atan2 sin_angle cos_angle

let line_intersection ?(eps = Util.epsilon) ?(bounds = false, false) (t : t) l =
  let d = V3.sub l.V3.b l.a in
  let a = V3.((t.x *. x l.a) +. (t.y *. y l.a) +. (t.z *. z l.a) +. (t.w *. -1.))
  and b = V3.((t.x *. x d) +. (t.y *. y d) +. (t.z *. z d) +. (t.w *. 0.)) in
  match Math.approx ~eps b 0., Math.approx ~eps a 0. with
  | true, true -> `OnPlane l
  | true, false -> `Parallel
  | _ ->
    let frac = -.a /. b in
    let good =
      let bn_a, bn_b = bounds in
      ((not bn_a) || frac >= 0. -. eps) && ((not bn_b) || frac <= 1. +. eps)
    in
    if good then `Point V3.(l.a +@ (d *$ frac), frac) else `OutOfBounds

let to_string { x; y; z; w } = Printf.sprintf "[%f, %f, %f, %f]" x y z w
OCaml

Innovation. Community. Security.