package async_kernel
Monadic concurrency library
Install
Dune Dependency
Authors
Maintainers
Sources
async_kernel-v0.16.0.tar.gz
sha256=0eda59386235e967698834d71cb8924d7b466bc4fcbf26ae72797ad05ca6f8a9
doc/src/async_kernel/throttle.ml.html
Source file throttle.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
open! Core open! Import open! Deferred_std module Deferred = Deferred1 type 'a outcome = [ `Ok of 'a | `Aborted | `Raised of exn ] [@@deriving sexp_of] module Internal_job : sig type 'a t [@@deriving sexp_of] val create : ('a -> 'b Deferred.t) -> 'a t * 'b outcome Deferred.t (* Every internal job will eventually be either [run] or [abort]ed, but not both. *) val run : 'a t -> 'a -> [ `Ok | `Raised ] Deferred.t val abort : _ t -> unit end = struct type 'a t = { start : [ `Abort | `Start of 'a ] Ivar.t ; outcome : [ `Ok | `Aborted | `Raised ] Deferred.t } [@@deriving sexp_of] let create work = let start = Ivar.create () in let result = match%bind Ivar.read start with | `Abort -> return `Aborted | `Start a -> (match%map Monitor.try_with ~run:`Schedule ~rest:`Log (fun () -> work a) with | Ok a -> `Ok a | Error exn -> `Raised exn) in let outcome = match%map result with | `Ok _ -> `Ok | `Aborted -> `Aborted | `Raised _ -> `Raised in let t = { start; outcome } in t, result ;; let run t a = Ivar.fill t.start (`Start a); match%map t.outcome with | `Aborted -> assert false | (`Ok | `Raised) as x -> x ;; let abort t = Ivar.fill t.start `Abort end type 'a t = { continue_on_error : bool ; max_concurrent_jobs : int ; (* [job_resources_not_in_use] holds resources that are not currently in use by a running job. *) job_resources_not_in_use : 'a Stack_or_counter.t ; (* [jobs_waiting_to_start] is the queue of jobs that haven't yet started. *) jobs_waiting_to_start : 'a Internal_job.t Queue.t ; (* [0 <= num_jobs_running <= max_concurrent_jobs]. *) mutable num_jobs_running : int ; (* [capacity_available] is [Some ivar] if user code has called [capacity_available t] and is waiting to be notified when capacity is available in the throttle. [maybe_start_job] will fill [ivar] when capacity becomes available, i.e. when [jobs_waiting_to_start] is empty and [num_jobs_running < max_concurrent_jobs]. *) mutable capacity_available : unit Ivar.t option ; (* [is_dead] is true if [t] was killed due to a job raising an exception or [kill t] being called. *) mutable is_dead : bool ; (* [cleans] holds functions that will be called to clean each resource when [t] is killed. *) mutable cleans : ('a -> unit Deferred.t) list ; (* [num_resources_not_cleaned] is the number of resources whose clean functions have not yet completed. While [t] is alive, [num_resources_not_cleaned = max_concurrent_jobs]. Once [t] is killed, [num_resources_not_cleaned] decreases to zero over time as the clean functions complete. *) mutable num_resources_not_cleaned : int ; (* [cleaned] becomes determined when [num_resources_not_cleaned] reaches zero, i.e. after [t] is killed and all its clean functions complete. *) cleaned : unit Ivar.t } [@@deriving fields, sexp_of] let invariant invariant_a t : unit = try let check f field = f (Field.get field t) in Fields.iter ~continue_on_error:ignore ~max_concurrent_jobs: (check (fun max_concurrent_jobs -> assert (max_concurrent_jobs > 0))) ~job_resources_not_in_use: (check (fun job_resources_not_in_use -> Stack_or_counter.iter job_resources_not_in_use ~f:invariant_a; assert ( Stack_or_counter.length job_resources_not_in_use = if t.is_dead then 0 else t.max_concurrent_jobs - t.num_jobs_running))) ~jobs_waiting_to_start: (check (function jobs_waiting_to_start -> if t.is_dead then assert (Queue.is_empty jobs_waiting_to_start))) ~num_jobs_running: (check (fun num_jobs_running -> assert (num_jobs_running >= 0); assert (num_jobs_running <= t.max_concurrent_jobs); if num_jobs_running < t.max_concurrent_jobs then assert (Queue.is_empty t.jobs_waiting_to_start))) ~capacity_available: (check (function | None -> () | Some ivar -> assert (Ivar.is_empty ivar))) ~is_dead:ignore ~cleans:ignore ~num_resources_not_cleaned: (check (fun num_resources_not_cleaned -> assert (num_resources_not_cleaned >= 0); assert (num_resources_not_cleaned <= t.max_concurrent_jobs); if num_resources_not_cleaned < t.max_concurrent_jobs then assert t.is_dead)) ~cleaned: (check (fun cleaned -> if Ivar.is_full cleaned then assert (t.num_resources_not_cleaned = 0))) with | exn -> raise_s [%message "Throttle.invariant failed" (exn : exn) (t : _ t)] ;; module T2 = struct type nonrec ('a, 'kind) t = 'a t [@@deriving sexp_of] let invariant invariant_a _ t = invariant invariant_a t end let num_jobs_waiting_to_start t = Queue.length t.jobs_waiting_to_start let clean_resource t a = Deferred.all_unit (List.map t.cleans ~f:(fun f -> f a)) >>> fun () -> t.num_resources_not_cleaned <- t.num_resources_not_cleaned - 1; if t.num_resources_not_cleaned = 0 then Ivar.fill t.cleaned () ;; let kill t = if not t.is_dead then ( t.is_dead <- true; Queue.iter t.jobs_waiting_to_start ~f:Internal_job.abort; Queue.clear t.jobs_waiting_to_start; Stack_or_counter.iter t.job_resources_not_in_use ~f:(fun a -> clean_resource t a); Stack_or_counter.clear t.job_resources_not_in_use) ;; let at_kill t f = (* We preserve the execution context so that exceptions raised by [f] go to the monitor in effect when [at_kill] was called. *) let f = unstage (Monitor.Exported_for_scheduler.preserve_execution_context' f) in t.cleans <- f :: t.cleans ;; let cleaned t = Ivar.read t.cleaned let rec start_job t = assert (not t.is_dead); assert (t.num_jobs_running < t.max_concurrent_jobs); assert (not (Queue.is_empty t.jobs_waiting_to_start)); let job = Queue.dequeue_exn t.jobs_waiting_to_start in t.num_jobs_running <- t.num_jobs_running + 1; let job_resource = Stack_or_counter.pop_exn t.job_resources_not_in_use in Internal_job.run job job_resource >>> fun res -> t.num_jobs_running <- t.num_jobs_running - 1; (match res with | `Ok -> () | `Raised -> if not t.continue_on_error then kill t); if t.is_dead then clean_resource t job_resource else ( Stack_or_counter.push t.job_resources_not_in_use job_resource; if not (Queue.is_empty t.jobs_waiting_to_start) then start_job t else ( match t.capacity_available with | None -> () | Some ivar -> Ivar.fill ivar (); t.capacity_available <- None)) ;; let create_internal ~continue_on_error job_resources = let max_concurrent_jobs = Stack_or_counter.length job_resources in { continue_on_error ; max_concurrent_jobs ; job_resources_not_in_use = job_resources ; jobs_waiting_to_start = Queue.create () ; num_jobs_running = 0 ; capacity_available = None ; is_dead = false ; cleans = [] ; num_resources_not_cleaned = max_concurrent_jobs ; cleaned = Ivar.create () } ;; let create_with ~continue_on_error job_resources = create_internal ~continue_on_error (Stack_or_counter.of_list job_resources) ;; module Sequencer = struct type nonrec 'a t = 'a t [@@deriving sexp_of] let create ?(continue_on_error = false) a = create_with ~continue_on_error [ a ] end let create ~continue_on_error ~max_concurrent_jobs = if max_concurrent_jobs <= 0 then raise_s [%message "Throttle.create requires positive max_concurrent_jobs, but got" (max_concurrent_jobs : int)]; create_internal ~continue_on_error (Stack_or_counter.create_counter ~length:max_concurrent_jobs) ;; module Job = struct type ('a, 'b) t = { internal_job : 'a Internal_job.t ; result : [ `Ok of 'b | `Aborted | `Raised of exn ] Deferred.t } let result t = t.result let abort t = Internal_job.abort t.internal_job let create f = let internal_job, result = Internal_job.create f in { internal_job; result } ;; end let enqueue' t f = let job = Job.create f in if t.is_dead then Job.abort job else ( Queue.enqueue t.jobs_waiting_to_start job.internal_job; if t.num_jobs_running < t.max_concurrent_jobs then start_job t); Job.result job ;; let handle_enqueue_result result = match result with | `Ok a -> a | `Aborted -> raise_s [%message "throttle aborted job"] | `Raised exn -> raise exn ;; let enqueue t f = enqueue' t f >>| handle_enqueue_result let enqueue_exclusive t f = let n = t.max_concurrent_jobs in if Int.( >= ) n 1_000_000 then raise_s [%sexp "[enqueue_exclusive] was called with a very large value of \ [max_concurrent_jobs]. This doesn't work."]; let done_ = Ivar.create () in assert (n > 0); let f_placeholder _slot = Ivar.read done_ in for _ = 1 to n - 1 do don't_wait_for (enqueue t f_placeholder) done; let%map result = enqueue' t (fun _slot -> f ()) in Ivar.fill done_ (); handle_enqueue_result result ;; let monad_sequence_how ~how ~f = stage (match how with | `Parallel -> f | (`Sequential | `Max_concurrent_jobs _) as how -> let max_concurrent_jobs = match how with | `Sequential -> 1 | `Max_concurrent_jobs max_concurrent_jobs -> max_concurrent_jobs in let t = create ~continue_on_error:false ~max_concurrent_jobs in fun a -> enqueue t (fun () -> f a)) ;; let monad_sequence_how2 ~how ~f = stage (match how with | `Parallel -> f | (`Sequential | `Max_concurrent_jobs _) as how -> let max_concurrent_jobs = match how with | `Sequential -> 1 | `Max_concurrent_jobs max_concurrent_jobs -> max_concurrent_jobs in let t = create ~continue_on_error:false ~max_concurrent_jobs in fun a1 a2 -> enqueue t (fun () -> f a1 a2)) ;; let prior_jobs_done t = (* We queue [t.max_concurrent_jobs] dummy jobs and when they are all started we know that all prior jobs finished. We make sure that all dummy jobs wait for the last one to get started before finishing. *) Deferred.create (fun all_dummy_jobs_running -> let dummy_jobs_running = ref 0 in for _ = 1 to t.max_concurrent_jobs do don't_wait_for (enqueue t (fun _ -> incr dummy_jobs_running; if !dummy_jobs_running = t.max_concurrent_jobs then Ivar.fill all_dummy_jobs_running (); Ivar.read all_dummy_jobs_running)) done) ;; let capacity_available t = if num_jobs_running t < max_concurrent_jobs t then return () else ( match t.capacity_available with | Some ivar -> Ivar.read ivar | None -> Deferred.create (fun ivar -> t.capacity_available <- Some ivar)) ;;
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>