package visitors
An OCaml syntax extension for generating visitor classes
Install
Dune Dependency
Authors
Maintainers
Sources
archive.tar.gz
md5=80fc467552d944dcae0c5d7895cfba64
sha512=42522af2845fab409cdf0766cce83ac1345e0169248252ad74da2d72eefdb5d846dff2ece566667b9d80a8db57dabdbf333c32c50fef9c39f7837e78b3476b5b
doc/src/ppx_deriving_visitors/VisitorsGeneration.ml.html
Source file VisitorsGeneration.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
open Ppxlib let mknoloc = Ocaml_common.Location.mknoloc open Asttypes open Parsetree open Ast_helper open Ppx_deriving.Ast_convenience open VisitorsList open VisitorsAnalysis open VisitorsCompatibility (* This module offers helper functions for code generation. *) (* -------------------------------------------------------------------------- *) (* Type abbreviations. *) type variable = string type datacon = string type label = string type classe = string type methode = string type tyvar = string type variables = variable list type tyvars = tyvar list type core_types = core_type list type patterns = pattern list type expressions = expression list (* -------------------------------------------------------------------------- *) (* We should in principle ensure that our code makes sense even if the standard names that we rely upon are shadowed by the user. *) (* This is made slightly difficult by the fact that the name [Pervasives] has been deprecated in favor of [Stdlib] in OCaml 4.07. *) (* One viable approach would be to define the names that we need in the library [VisitorsRuntime], then refer to this library in the generated code. *) (* One problem is that defining an alias for the standard operator (&&) causes it to become strict instead of lazy! So we cannot define an alias for it. *) (* Let's just cross our fingers and assume that the user won't shadow the standard names that we need. *) let pervasive (x : string) : Longident.t = Lident x (* We normally place an improbable prefix in front of our private (local) variables, so as to make sure that we do not shadow user variables that are used in [@build] code fragments. *) (* When producing code for inclusion in the documentation, we remove this prefix, just so that things look pretty. We rely on an undocumented environment variable to toggle this behavior. *) let improbable (x : string) : string = try let _ = Sys.getenv "VISITORS_BUILDING_DOCUMENTATION" in x with Not_found -> "_visitors_" ^ x (* -------------------------------------------------------------------------- *) (* Types. *) let ty_var (alpha : tyvar) : core_type = Typ.var alpha let ty_vars (alphas : tyvars) : core_types = List.map ty_var alphas let ty_any = Typ.any() let ty_unit = tconstr "unit" [] (* For [ty_arrow], see [VisitorsCompatibility]. *) let ty_arrows : core_types -> core_type -> core_type = List.fold_right ty_arrow (* [decl_type decl] turns a declaration of the type ['a foo] into a the type ['a foo]. *) let decl_type (decl : type_declaration) : core_type = tconstr decl.ptype_name.txt (ty_vars (decl_params decl)) (* -------------------------------------------------------------------------- *) (* [unit] produces a unit constant. [tuple] produces a tuple. [record] produces a record. These functions already exist; we redefine them without any optional arguments so as avoid OCaml's warning 48 (implicit elimination of optional arguments). *) let unit() = unit() let tuple es = tuple es let record les = record les (* -------------------------------------------------------------------------- *) (* [number i thing] constructs an English description of "[i] thing(s)". *) let number i s = match i with | 0 -> Printf.sprintf "zero %s" s | 1 -> Printf.sprintf "one %s" s | _ -> Printf.sprintf "%d %ss" i s (* -------------------------------------------------------------------------- *) (* [eident] converts a (possibly-qualified) identifier to an expression. *) let eident (id : Longident.t) : expression = Exp.ident (mknoloc id) (* -------------------------------------------------------------------------- *) (* [pvars] converts a list of variables to a list of patterns. *) let pvars (xs : variables) : patterns = List.map (fun x -> pvar x) xs (* [evars] converts a list of variables to a list of expressions. *) let evars (xs : variables) : expressions = List.map (fun x -> evar x) xs (* [pvarss] converts a matrix of variables to a matrix of patterns. *) let pvarss (xss : variables list) : patterns list = List.map pvars xss (* [evarss] converts a matrix of variables to a matrix of expressions. *) let evarss (xss : variables list) : expressions list = List.map evars xss (* -------------------------------------------------------------------------- *) (* [wildcards] converts a list of anything to a list of wildcard patterns. *) let wildcards xs = List.map (fun _ -> Pat.any()) xs (* -------------------------------------------------------------------------- *) (* [plambda p e] constructs a function [fun p -> e]. *) (* For [plambda], see [VisitorsCompatibility]. *) (* [lambda x e] constructs a function [fun x -> e]. *) let lambda (x : variable) (e : expression) : expression = plambda (pvar x) e (* [plambdas ps e] constructs a multi-argument function [fun ps -> e]. *) let plambdas (ps : patterns) (e : expression) : expression = List.fold_right plambda ps e (* [lambdas xs e] constructs a multi-argument function [fun xs -> e]. *) let lambdas (xs : variables) (e : expression) : expression = List.fold_right lambda xs e (* -------------------------------------------------------------------------- *) (* [app] works like [Ast_convenience.app] (which it shadows), except it avoids constructing nested applications of the form [(f x) y], transforming them instead into a single application [f x y]. The difference is probably just cosmetic. *) let app (e : expression) (es2 : expressions) : expression = match e.pexp_desc with | Pexp_apply (e1, les1) -> let les2 = List.map (fun e -> Label.nolabel, e) es2 in { e with pexp_desc = Pexp_apply (e1, les1 @ les2) } | _ -> app e es2 (* -------------------------------------------------------------------------- *) (* [sequence es] constructs a sequence of the expressions [es]. *) let sequence (es : expressions) : expression = (* Using [fold_right1] instead of [List.fold_right] allows us to get rid of a final [()] constant at the end of the sequence. Cosmetic. *) fold_right1 (fun e accu -> Exp.sequence e accu) es (unit()) (* -------------------------------------------------------------------------- *) (* [vblet1 vb e] constructs a single [let] binding. *) let vblet1 (vb : value_binding) (e : expression) : expression = Exp.let_ Nonrecursive [vb] e (* [let1 x e1 e2] constructs a single [let] binding. *) let let1 (x : variable) (e1 : expression) (e2 : expression) : expression = vblet1 (Vb.mk (pvar x) e1) e2 (* [let1p x y e1 e2] constructs a single [let] binding of a pair. *) let let1p (x, y : variable * variable) (e1 : expression) (e2 : expression) : expression = vblet1 (Vb.mk (ptuple [pvar x; pvar y]) e1) e2 (* [vbletn vbs e] constructs a series of nested [let] bindings. *) let vbletn (vbs : value_binding list) (e : expression) : expression = List.fold_right vblet1 vbs e (* [letn xs es e] constructs a series of nested [let] bindings. *) let letn (xs : variables) (es : expressions) (e : expression) = List.fold_right2 let1 xs es e (* [letnp xs ys es e] constructs a series of nested [let] bindings of pairs. *) let letnp (xs : variables) (ys : variables) (es : expressions) (e : expression) = List.fold_right2 let1p (List.combine xs ys) es e (* -------------------------------------------------------------------------- *) (* [access x label] constructs a record access expression [x.label]. *) let access (x : variable) (label : label) : expression = Exp.field (evar x) (mknoloc (Lident label)) (* [accesses labels xs] constructs a matrix of record access expressions of the form [x.label]. There is a row for every [label] and a column for every [x]. *) let accesses (xs : variables) (labels : label list) : expressions list = List.map (fun label -> List.map (fun x -> access x label) xs) labels (* -------------------------------------------------------------------------- *) (* [ptuple] is [Ast_convenience.ptuple], deprived of its optional arguments. *) let ptuple (ps : patterns) : pattern = ptuple ps (* [ptuples] is [map ptuple]. *) let ptuples (pss : patterns list) : patterns = List.map ptuple pss (* -------------------------------------------------------------------------- *) (* The Boolean expressions [false] and [true]. *) let efalse : expression = Exp.construct (mknoloc (Lident "false")) None let etrue : expression = Exp.construct (mknoloc (Lident "true")) None (* -------------------------------------------------------------------------- *) (* [conjunction es] constructs a Boolean conjunction of the expressions [es]. *) let conjunction : expression = eident (pervasive "&&") let conjunction e1 e2 = app conjunction [e1; e2] let conjunction (es : expressions) : expression = fold_right1 conjunction es etrue (* -------------------------------------------------------------------------- *) (* [eassertfalse] is the expression [assert false]. *) let eassertfalse : expression = Exp.assert_ efalse (* -------------------------------------------------------------------------- *) (* [eforce e] is the expression [Lazy.force e]. *) let eforce : expression = eident (parse "Lazy.force") (* danger: the module name [Lazy] must not be shadowed. *) let eforce (e : expression) : expression = app eforce [e] (* -------------------------------------------------------------------------- *) (* [eqphy e1 e2] is the expression [e1 == e2]. *) let eqphy : expression = eident (pervasive "==") let eqphy (e1 : expression) (e2 : expression) : expression = app eqphy [e1; e2] (* [eqphys es1 es2] is the conjunction of the expressions [e1 == e2]. *) let eqphys (es1 : expressions) (es2 : expressions) : expression = assert (List.length es1 = List.length es2); conjunction (List.map2 eqphy es1 es2) (* -------------------------------------------------------------------------- *) (* [efail s] generates a call to [VisitorsRuntime.fail]. The parameter [s] is a string, which could represent the place where a failure occurred, or the reason why a failure occurred. As of now, it is unused. *) let efail : expression = eident (Ldot (Lident "VisitorsRuntime", "fail")) (* danger: the module name [VisitorsRuntime] must not be shadowed. *) let efail (_ : string) : expression = app efail [ unit() ] (* -------------------------------------------------------------------------- *) (* [include_ e] constructs an [include] declaration. *) let include_ (e : module_expr) : structure_item = Str.include_ { pincl_mod = e; pincl_loc = Location.none; pincl_attributes = []; } (* -------------------------------------------------------------------------- *) (* [with_warnings w items] wraps the structure items [items] in such a way that the warning directive [w] is applied to these items. Technically, this is done by emitting [include struct [@@@ocaml.warning <w>] <items> end]. *) let with_warnings (w : string) (items : structure_item list) : structure_item = include_ (Mod.structure ( floating "ocaml.warning" [ Str.eval (Exp.constant (Const.string w)) ] :: items )) (* -------------------------------------------------------------------------- *) (* [class1 concrete ancestors params name self fields] builds a class declaration and packages it as a structure item. (This implies that it cannot be recursive with other class declarations). *) let class1 (concrete : bool) (params : (core_type * (variance * injectivity)) list) (name : classe) (self : pattern) (fields : class_field list) : structure_item = Str.class_ [{ pci_virt = if concrete then Concrete else Virtual; pci_params = params; pci_name = mknoloc name; pci_expr = Cl.structure (Cstr.mk self fields); pci_loc = !default_loc; pci_attributes = []; }] (* -------------------------------------------------------------------------- *) (* [inherit_ c tys] builds an [inherit] clause, where the superclass is [c] and its actual type parameters are [tys]. No [super] identifier is bound. *) let inherit_ (c : Longident.t) (tys : core_types) : class_field = Cf.inherit_ Fresh (Cl.constr (mknoloc c) tys) None (* -------------------------------------------------------------------------- *) (* An algebraic data type of the methods that we generate. These include concrete methods (with code) and virtual methods (without code). They may be public or private. The method type is optional. If omitted, then it is inferred by OCaml. If present, it can be a polymorphic type. *) type meth = Meth of private_flag * methode * expression option * core_type option let concrete_method p m e oty = Meth (p, m, Some e, oty) let virtual_method p m oty = Meth (p, m, None, oty) (* -------------------------------------------------------------------------- *) (* Converting a method description to OCaml abstract syntax. *) let oe2cfk (oe : expression option) (oty : core_type option) : class_field_kind = match oe, oty with | Some e, Some _ -> Cf.concrete Fresh (Exp.poly e oty) | Some e, None -> Cf.concrete Fresh e | None, Some ty -> Cf.virtual_ ty | None, None -> Cf.virtual_ ty_any let meth2cf (Meth (p, m, oe, oty)) : class_field = Cf.method_ (mknoloc m) p (oe2cfk oe oty) (* -------------------------------------------------------------------------- *) (* [method_name] extracts a method name out of a method description. *) let method_name (Meth (_, m, _, _)) : string = m (* -------------------------------------------------------------------------- *) (* [is_virtual] tests whether a method description represents a virtual method. *) let is_virtual (Meth (_, _, oe, _)) : bool = oe = None (* -------------------------------------------------------------------------- *) (* [send o m es] produces a call to the method [o#m] with arguments [es]. *) let send (o : variable) (m : methode) (es : expressions) : expression = app (exp_send (evar o) m) es (* -------------------------------------------------------------------------- *) (* An algebraic data type of the ``hoisted expressions'' that we generate. *) (* A ``hoisted expression'' is evaluated at most once after the object is allocated. Its value is stored in an instance field. We allow such an expression to reference [self], as long as it does not actually invoke any methods. *) type hoisted = Hoisted of string (* the name of the instance field *) * expression (* the hoisted expression *) (* -------------------------------------------------------------------------- *) (* Converting a hoisted field description to OCaml abstract syntax. *) (* We generate a mutable field declaration, followed with an initialization: val mutable x = lazy (assert false) initializer x <- lazy e We must do this in two steps because the expression [e] might contain references to [self], which are invalid in a field declaration, whereas they are allowed in an initializer. The potential danger in this idiom lies in forcing [x] before the initializer has finished running, leading to an assertion failure. This should not happen if [e] does not perform any method calls or read any fields. *) let hoisted2cf (Hoisted (x, e)) : class_field list = [ Cf.val_ (mknoloc x) (Mutable) (Cf.concrete Fresh (Exp.lazy_ eassertfalse)); Cf.initializer_ (Exp.setinstvar (mknoloc x) (Exp.lazy_ e)) ] (* -------------------------------------------------------------------------- *) (* A facility for generating a class. *) module ClassFieldStore () : sig (* [generate meth] adds [meth] to the list of methods. *) val generate: meth -> unit (* [hoist e] causes the expression [e] to be hoisted, that is, computed once after the object is allocated. The result of evaluating [e] is stored in a field. The call [hoist e] returns an expression which reads this field. *) val hoist: expression -> expression (* [dump concrete ancestors params self c] returns a class definition. *) val dump: bool -> Longident.t list -> (core_type * (variance * injectivity)) list -> pattern -> classe -> structure_item end = struct let meths : meth list ref = ref [] let generate meth = meths := meth :: !meths let dump () : class_field list = let methods = List.rev !meths in (* Move all of the virtual methods up front. If two virtual methods have the same name, keep only one of them. This is useful because we allow a virtual method declaration to be generated several times. In fact, OCaml supports this, but it looks tidier if we remove duplicates. *) let virtual_methods, concrete_methods = List.partition is_virtual methods in let cmp meth1 meth2 = Stdlib.compare (method_name meth1) (method_name meth2) in let virtual_methods = VisitorsList.weed cmp virtual_methods in let methods = virtual_methods @ concrete_methods in List.map meth2cf methods let hoisted : hoisted list ref = ref [] let fresh : unit -> int = let c = ref 0 in fun () -> let x = !c in c := x + 1; x let hoist (e : expression) : expression = let x = Printf.sprintf "h%d" (fresh()) in hoisted := Hoisted (x, e) :: !hoisted; eforce (evar x) let dump concrete ancestors params self c : structure_item = class1 concrete params c self ( (* [inherit] clauses. *) (* We ARBITRARILY assume that every ancestor class is parameterized with ONE type parameter. *) List.map (fun c -> inherit_ c [ ty_any ]) ancestors @ (* Hoisted expressions. *) List.flatten (List.map hoisted2cf (List.rev !hoisted)) @ (* Methods. *) dump() ) end (* -------------------------------------------------------------------------- *) (* A facility for emitting preprocessor warnings. *) (* Warnings must be emitted under the form of [ppwarning] attributes, placed in the generated code. This is not very convenient; we must store these warnings, waiting for a convenient time to emit them. *) module WarningStore () : sig (* [warning loc format ...] emits a warning. *) val warning: loc -> ('a, unit, string, unit) format4 -> 'a (* [warnings()] returns a list of all warnings emitted so far. *) val warnings: unit -> structure end = struct let warnings : attribute list ref = ref [] let warning loc msg = warnings := attribute_of_warning loc msg :: !warnings let warning loc format = Printf.ksprintf (warning loc) format let warnings () = let ws = !warnings in warnings := []; List.map (fun a -> Str.attribute a) (List.rev ws) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>