package base
Full standard library replacement for OCaml
Install
Dune Dependency
Authors
Maintainers
Sources
v0.16.4.tar.gz
md5=1716b735b93c9d068dd9790bb40d6562
sha512=ab1bf389889dda97235a76782858521256ab65290831c1234781bc4b3ec8186680616f64b922b0c9dfd11b2ed46e0be9e9b8778904a97ef5f849132b925fd210
doc/src/base/list.ml.html
Source file list.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
open! Import module Array = Array0 module Either = Either0 include List1 (* This itself includes [List0]. *) let invalid_argf = Printf.invalid_argf module T = struct type 'a t = 'a list [@@deriving_inline globalize, sexp, sexp_grammar] let globalize : 'a. (('a[@ocaml.local]) -> 'a) -> ('a t[@ocaml.local]) -> 'a t = fun (type a__001_) : (((a__001_[@ocaml.local]) -> a__001_) -> (a__001_ t[@ocaml.local]) -> a__001_ t) -> globalize_list ;; let t_of_sexp : 'a. (Sexplib0.Sexp.t -> 'a) -> Sexplib0.Sexp.t -> 'a t = list_of_sexp let sexp_of_t : 'a. ('a -> Sexplib0.Sexp.t) -> 'a t -> Sexplib0.Sexp.t = sexp_of_list let t_sexp_grammar : 'a. 'a Sexplib0.Sexp_grammar.t -> 'a t Sexplib0.Sexp_grammar.t = fun _'a_sexp_grammar -> list_sexp_grammar _'a_sexp_grammar ;; [@@@end] end module Or_unequal_lengths = struct type 'a t = | Ok of 'a | Unequal_lengths [@@deriving_inline compare, sexp_of] let compare : 'a. ('a -> 'a -> int) -> 'a t -> 'a t -> int = fun _cmp__a a__010_ b__011_ -> if Stdlib.( == ) a__010_ b__011_ then 0 else ( match a__010_, b__011_ with | Ok _a__012_, Ok _b__013_ -> _cmp__a _a__012_ _b__013_ | Ok _, _ -> -1 | _, Ok _ -> 1 | Unequal_lengths, Unequal_lengths -> 0) ;; let sexp_of_t : 'a. ('a -> Sexplib0.Sexp.t) -> 'a t -> Sexplib0.Sexp.t = fun (type a__017_) : ((a__017_ -> Sexplib0.Sexp.t) -> a__017_ t -> Sexplib0.Sexp.t) -> fun _of_a__014_ -> function | Ok arg0__015_ -> let res0__016_ = _of_a__014_ arg0__015_ in Sexplib0.Sexp.List [ Sexplib0.Sexp.Atom "Ok"; res0__016_ ] | Unequal_lengths -> Sexplib0.Sexp.Atom "Unequal_lengths" ;; [@@@end] end include T let invariant f t = iter t ~f let of_list t = t let range' ~compare ~stride ?(start = `inclusive) ?(stop = `exclusive) start_i stop_i = let next_i = stride start_i in let order x y = Ordering.of_int (compare x y) in let raise_stride_cannot_return_same_value () = invalid_arg "List.range': stride function cannot return the same value" in let initial_stride_order = match order start_i next_i with | Equal -> raise_stride_cannot_return_same_value () | Less -> `Less | Greater -> `Greater in let rec loop i accum = let i_to_stop_order = order i stop_i in match i_to_stop_order, initial_stride_order with | Less, `Less | Greater, `Greater -> (* haven't yet reached [stop_i]. Continue. *) let next_i = stride i in (match order i next_i, initial_stride_order with | Equal, _ -> raise_stride_cannot_return_same_value () | Less, `Greater | Greater, `Less -> invalid_arg "List.range': stride function cannot change direction" | Less, `Less | Greater, `Greater -> loop next_i (i :: accum)) | Less, `Greater | Greater, `Less -> (* stepped past [stop_i]. Finished. *) accum | Equal, _ -> (* reached [stop_i]. Finished. *) (match stop with | `inclusive -> i :: accum | `exclusive -> accum) in let start_i = match start with | `inclusive -> start_i | `exclusive -> next_i in rev (loop start_i []) ;; let range ?(stride = 1) ?(start = `inclusive) ?(stop = `exclusive) start_i stop_i = if stride = 0 then invalid_arg "List.range: stride must be non-zero"; range' ~compare ~stride:(fun x -> x + stride) ~start ~stop start_i stop_i ;; let hd t = match t with | [] -> None | x :: _ -> Some x ;; let tl t = match t with | [] -> None | _ :: t' -> Some t' ;; let nth t n = if n < 0 then None else ( let rec nth_aux t n = match t with | [] -> None | a :: t -> if n = 0 then Some a else nth_aux t (n - 1) in nth_aux t n) ;; let nth_exn t n = match nth t n with | None -> invalid_argf "List.nth_exn %d called on list of length %d" n (length t) () | Some a -> a ;; let unordered_append l1 l2 = match l1, l2 with | [], l | l, [] -> l | _ -> rev_append l1 l2 ;; module Check_length2 = struct type ('a, 'b) t = | Same_length of int | Unequal_lengths of { shared_length : int ; tail_of_a : 'a list ; tail_of_b : 'b list } (* In the [Unequal_lengths] case, at least one of the tails will be non-empty. *) let of_lists l1 l2 = let rec loop a b = match a, b with | [], [] -> Same_length shared_length | _ :: a, _ :: b -> loop a b (shared_length + 1) | [], _ | _, [] -> Unequal_lengths { shared_length; tail_of_a = a; tail_of_b = b } in loop l1 l2 0 ;; end let check_length2_exn name l1 l2 = match Check_length2.of_lists l1 l2 with | Same_length _ -> () | Unequal_lengths { ; tail_of_a; tail_of_b } -> invalid_argf "length mismatch in %s: %d <> %d" name (shared_length + length tail_of_a) (shared_length + length tail_of_b) () ;; let check_length2 l1 l2 ~f = match Check_length2.of_lists l1 l2 with | Same_length _ -> Or_unequal_lengths.Ok (f l1 l2) | Unequal_lengths _ -> Unequal_lengths ;; module Check_length3 = struct type ('a, 'b, 'c) t = | Same_length of int | Unequal_lengths of { shared_length : int ; tail_of_a : 'a list ; tail_of_b : 'b list ; tail_of_c : 'c list } (* In the [Unequal_lengths] case, at least one of the tails will be non-empty. *) let of_lists l1 l2 l3 = let rec loop a b c = match a, b, c with | [], [], [] -> Same_length shared_length | _ :: a, _ :: b, _ :: c -> loop a b c (shared_length + 1) | [], _, _ | _, [], _ | _, _, [] -> Unequal_lengths { shared_length; tail_of_a = a; tail_of_b = b; tail_of_c = c } in loop l1 l2 l3 0 ;; end let check_length3_exn name l1 l2 l3 = match Check_length3.of_lists l1 l2 l3 with | Same_length _ -> () | Unequal_lengths { ; tail_of_a; tail_of_b; tail_of_c } -> let n1 = shared_length + length tail_of_a in let n2 = shared_length + length tail_of_b in let n3 = shared_length + length tail_of_c in invalid_argf "length mismatch in %s: %d <> %d || %d <> %d" name n1 n2 n2 n3 () ;; let check_length3 l1 l2 l3 ~f = match Check_length3.of_lists l1 l2 l3 with | Same_length _ -> Or_unequal_lengths.Ok (f l1 l2 l3) | Unequal_lengths _ -> Unequal_lengths ;; let iter2 l1 l2 ~f = check_length2 l1 l2 ~f:(iter2_ok ~f) [@nontail] let iter2_exn l1 l2 ~f = check_length2_exn "iter2_exn" l1 l2; iter2_ok l1 l2 ~f ;; let rev_map2 l1 l2 ~f = check_length2 l1 l2 ~f:(rev_map2_ok ~f) [@nontail] let rev_map2_exn l1 l2 ~f = check_length2_exn "rev_map2_exn" l1 l2; rev_map2_ok l1 l2 ~f ;; let fold2 l1 l2 ~init ~f = check_length2 l1 l2 ~f:(fold2_ok ~init ~f) [@nontail] let fold2_exn l1 l2 ~init ~f = check_length2_exn "fold2_exn" l1 l2; fold2_ok l1 l2 ~init ~f ;; let fold_right2 l1 l2 ~f ~init = check_length2 l1 l2 ~f:(fold_right2_ok ~f ~init) [@nontail] ;; let fold_right2_exn l1 l2 ~f ~init = check_length2_exn "fold_right2_exn" l1 l2; fold_right2_ok l1 l2 ~f ~init ;; let for_all2 l1 l2 ~f = check_length2 l1 l2 ~f:(for_all2_ok ~f) [@nontail] let for_all2_exn l1 l2 ~f = check_length2_exn "for_all2_exn" l1 l2; for_all2_ok l1 l2 ~f ;; let exists2 l1 l2 ~f = check_length2 l1 l2 ~f:(exists2_ok ~f) [@nontail] let exists2_exn l1 l2 ~f = check_length2_exn "exists2_exn" l1 l2; exists2_ok l1 l2 ~f ;; let mem t a ~equal = let rec loop equal a = function | [] -> false | b :: bs -> equal a b || loop equal a bs in loop equal a t ;; (* This is a copy of the code from the standard library, with an extra eta-expansion to avoid creating partial closures (showed up for [filter]) in profiling). *) let rev_filter t ~f = let rec find ~f accu = function | [] -> accu | x :: l -> if f x then find ~f (x :: accu) l else find ~f accu l in find ~f [] t ;; let filter t ~f = rev (rev_filter t ~f) let find_map t ~f = let rec loop = function | [] -> None | x :: l -> (match f x with | None -> loop l | Some _ as r -> r) in loop t [@nontail] ;; let find_map_exn = let not_found = Not_found_s (Atom "List.find_map_exn: not found") in let find_map_exn t ~f = match find_map t ~f with | None -> raise not_found | Some x -> x in (* named to preserve symbol in compiled binary *) find_map_exn ;; let find t ~f = let rec loop = function | [] -> None | x :: l -> if f x then Some x else loop l in loop t [@nontail] ;; let find_exn = let not_found = Not_found_s (Atom "List.find_exn: not found") in let rec find_exn t ~f = match t with | [] -> raise not_found | x :: t -> if f x then x else find_exn t ~f in (* named to preserve symbol in compiled binary *) find_exn ;; let findi t ~f = let rec loop i t = match t with | [] -> None | x :: l -> if f i x then Some (i, x) else loop (i + 1) l in loop 0 t [@nontail] ;; let findi_exn = let not_found = Not_found_s (Atom "List.findi_exn: not found") in let findi_exn t ~f = match findi t ~f with | None -> raise not_found | Some x -> x in findi_exn ;; let find_mapi t ~f = let rec loop i t = match t with | [] -> None | x :: l -> (match f i x with | Some _ as result -> result | None -> loop (i + 1) l) in loop 0 t [@nontail] ;; let find_mapi_exn = let not_found = Not_found_s (Atom "List.find_mapi_exn: not found") in let find_mapi_exn t ~f = match find_mapi t ~f with | None -> raise not_found | Some x -> x in (* named to preserve symbol in compiled binary *) find_mapi_exn ;; let for_alli t ~f = let rec loop i t = match t with | [] -> true | hd :: tl -> f i hd && loop (i + 1) tl in loop 0 t [@nontail] ;; let existsi t ~f = let rec loop i t = match t with | [] -> false | hd :: tl -> f i hd || loop (i + 1) tl in loop 0 t [@nontail] ;; (** For the container interface. *) let fold_left = fold let of_array = Array.to_list let to_array = Array.of_list let to_list t = t let max_non_tailcall = match Sys.backend_type with | Sys.Native | Sys.Bytecode -> 1_000 (* We don't know the size of the stack, better be safe and assume it's small. This number was taken from ocaml#stdlib/list.ml which is also equal to the default limit of recursive call in the js_of_ocaml compiler before switching to trampoline. *) | Sys.Other _ -> 50 ;; (** Tail recursive versions of standard [List] module *) let tail_append l1 l2 = rev_append (rev l1) l2 (* There are a few optimized list operations here, including append and map. There are basically two optimizations in play: loop unrolling, and dynamic switching between stack and heap allocation. The loop-unrolling is straightforward, we just unroll 5 levels of the loop. This makes each iteration faster, and also reduces the number of stack frames consumed per list element. The dynamic switching is done by counting the number of stack frames, and then switching to the "slow" implementation when we exceed a given limit. This means that short lists use the fast stack-allocation method, and long lists use a slower one that doesn't require stack space. *) let rec count_append l1 l2 count = match l2 with | [] -> l1 | _ -> (match l1 with | [] -> l2 | [ x1 ] -> x1 :: l2 | [ x1; x2 ] -> x1 :: x2 :: l2 | [ x1; x2; x3 ] -> x1 :: x2 :: x3 :: l2 | [ x1; x2; x3; x4 ] -> x1 :: x2 :: x3 :: x4 :: l2 | x1 :: x2 :: x3 :: x4 :: x5 :: tl -> x1 :: x2 :: x3 :: x4 :: x5 :: (if count > max_non_tailcall then tail_append tl l2 else count_append tl l2 (count + 1))) ;; let append l1 l2 = count_append l1 l2 0 (* An ordinary tail recursive map builds up an intermediate (reversed) representation, with one heap allocated object per element. The following implementation instead chunks 9 objects into one heap allocated object, reducing allocation and performance costs accordingly. Note that the very end of the list is done by the stdlib's map function. *) let tail_map xs ~f:(f [@local]) = let rec rise ys = function | [] -> ys | (y0, y1, y2, y3, y4, y5, y6, y7, y8) :: bs -> rise (y0 :: y1 :: y2 :: y3 :: y4 :: y5 :: y6 :: y7 :: y8 :: ys) bs in let rec dive bs = function | x0 :: x1 :: x2 :: x3 :: x4 :: x5 :: x6 :: x7 :: x8 :: xs -> let y0 = f x0 in let y1 = f x1 in let y2 = f x2 in let y3 = f x3 in let y4 = f x4 in let y5 = f x5 in let y6 = f x6 in let y7 = f x7 in let y8 = f x8 in dive ((y0, y1, y2, y3, y4, y5, y6, y7, y8) :: bs) xs | xs -> rise (nontail_map ~f xs) bs in let res = dive [] xs in res ;; let rec count_map ~f:(f [@local]) l ctr = match l with | [] -> [] | [ x1 ] -> let f1 = f x1 in [ f1 ] | [ x1; x2 ] -> let f1 = f x1 in let f2 = f x2 in [ f1; f2 ] | [ x1; x2; x3 ] -> let f1 = f x1 in let f2 = f x2 in let f3 = f x3 in [ f1; f2; f3 ] | [ x1; x2; x3; x4 ] -> let f1 = f x1 in let f2 = f x2 in let f3 = f x3 in let f4 = f x4 in [ f1; f2; f3; f4 ] | x1 :: x2 :: x3 :: x4 :: x5 :: tl -> let f1 = f x1 in let f2 = f x2 in let f3 = f x3 in let f4 = f x4 in let f5 = f x5 in f1 :: f2 :: f3 :: f4 :: f5 :: (if ctr > max_non_tailcall then tail_map ~f tl else count_map ~f tl (ctr + 1)) ;; let map l ~f = count_map ~f l 0 let folding_map t ~init ~f = let acc = ref init in map t ~f:(fun x -> let new_acc, y = f !acc x in acc := new_acc; y) [@nontail] ;; let fold_map t ~init ~f = let acc = ref init in let result = map t ~f:(fun x -> let new_acc, y = f !acc x in acc := new_acc; y) in !acc, result ;; let ( >>| ) l f = map l ~f let map2_ok l1 l2 ~f = rev (rev_map2_ok l1 l2 ~f) let map2 l1 l2 ~f = check_length2 l1 l2 ~f:(map2_ok ~f) [@nontail] let map2_exn l1 l2 ~f = check_length2_exn "map2_exn" l1 l2; map2_ok l1 l2 ~f ;; let rev_map3_ok l1 l2 l3 ~f = let rec loop l1 l2 l3 ac = match l1, l2, l3 with | [], [], [] -> ac | x1 :: l1, x2 :: l2, x3 :: l3 -> loop l1 l2 l3 (f x1 x2 x3 :: ac) | _ -> assert false in loop l1 l2 l3 [] [@nontail] ;; let rev_map3 l1 l2 l3 ~f = check_length3 l1 l2 l3 ~f:(rev_map3_ok ~f) [@nontail] let rev_map3_exn l1 l2 l3 ~f = check_length3_exn "rev_map3_exn" l1 l2 l3; rev_map3_ok l1 l2 l3 ~f ;; let map3_ok l1 l2 l3 ~f = rev (rev_map3_ok l1 l2 l3 ~f) let map3 l1 l2 l3 ~f = check_length3 l1 l2 l3 ~f:(map3_ok ~f) [@nontail] let map3_exn l1 l2 l3 ~f = check_length3_exn "map3_exn" l1 l2 l3; map3_ok l1 l2 l3 ~f ;; let rec rev_map_append l1 l2 ~f = match l1 with | [] -> l2 | h :: t -> rev_map_append ~f t (f h :: l2) ;; let unzip list = let rec loop list l1 l2 = match list with | [] -> l1, l2 | (x, y) :: tl -> loop tl (x :: l1) (y :: l2) in loop (rev list) [] [] ;; let unzip3 list = let rec loop list l1 l2 l3 = match list with | [] -> l1, l2, l3 | (x, y, z) :: tl -> loop tl (x :: l1) (y :: l2) (z :: l3) in loop (rev list) [] [] [] ;; let zip_exn l1 l2 = try map2_ok ~f:(fun a b -> a, b) l1 l2 with | _ -> invalid_argf "length mismatch in zip_exn: %d <> %d" (length l1) (length l2) () ;; let zip l1 l2 = map2 ~f:(fun a b -> a, b) l1 l2 (** Additional list operations *) let rev_mapi l ~f = let rec loop i acc = function | [] -> acc | h :: t -> loop (i + 1) (f i h :: acc) t in loop 0 [] l [@nontail] ;; let mapi l ~f = rev (rev_mapi l ~f) let folding_mapi t ~init ~f = let acc = ref init in mapi t ~f:(fun i x -> let new_acc, y = f i !acc x in acc := new_acc; y) [@nontail] ;; let fold_mapi t ~init ~f = let acc = ref init in let result = mapi t ~f:(fun i x -> let new_acc, y = f i !acc x in acc := new_acc; y) in !acc, result ;; let iteri l ~f = ignore (fold l ~init:0 ~f:(fun i x -> f i x; i + 1) : int) ;; let foldi t ~init ~f = snd (fold t ~init:(0, init) ~f:(fun (i, acc) v -> i + 1, f i acc v)) ;; let filteri l ~f = rev (foldi l ~f:(fun pos acc x -> if f pos x then x :: acc else acc) ~init:[]) ;; let reduce l ~f = match l with | [] -> None | hd :: tl -> Some (fold ~init:hd ~f tl) ;; let reduce_exn l ~f = match reduce l ~f with | None -> invalid_arg "List.reduce_exn" | Some v -> v ;; let reduce_balanced l ~f = (* Call the "size" of a value the number of list elements that have been combined into it via calls to [f]. We proceed by using [f] to combine elements in the accumulator of the same size until we can't combine any more, then getting a new element from the input list and repeating. With this strategy, in the accumulator: - we only ever have elements of sizes a power of two - we never have more than one element of each size - the sum of all the element sizes is equal to the number of elements consumed These conditions enforce that list of elements of each size is precisely the binary expansion of the number of elements consumed: if you've consumed 13 = 0b1101 elements, you have one element of size 8, one of size 4, and one of size 1. Hence when a new element comes along, the number of combinings you need to do is the number of trailing 1s in the binary expansion of [num], the number of elements that have already gone into the accumulator. The accumulator is in ascending order of size, so the next element to combine with is always the head of the list. *) let rec step_accum num acc x = if num land 1 = 0 then x :: acc else ( match acc with | [] -> assert false (* New elements from later in the input list go on the front of the accumulator, so the accumulator is in reverse order wrt the original list order, hence [f y x] instead of [f x y]. *) | y :: ys -> step_accum (num asr 1) ys (f y x)) in (* Experimentally, inlining [foldi] and unrolling this loop a few times can reduce runtime down to a third and allocation to 1/16th or so in the microbenchmarks below. However, in most use cases [f] is likely to be expensive (otherwise why do you care about the order of reduction?) so the overhead of this function itself doesn't really matter. If you come up with a use-case where it does, then that's something you might want to try: see hg log -pr 49ef065f429d. *) match foldi l ~init:[] ~f:step_accum with | [] -> None | x :: xs -> Some (fold xs ~init:x ~f:(fun x y -> f y x)) ;; let reduce_balanced_exn l ~f = match reduce_balanced l ~f with | None -> invalid_arg "List.reduce_balanced_exn" | Some v -> v ;; let groupi l ~break = let groups = foldi l ~init:[] ~f:(fun i acc x -> match acc with | [] -> [ [ x ] ] | current_group :: tl -> if break i (hd_exn current_group) x then [ x ] :: current_group :: tl (* start new group *) else (x :: current_group) :: tl) (* extend current group *) in match groups with | [] -> [] | l -> rev_map l ~f:rev ;; let group l ~break = groupi l ~break:(fun _ x y -> break x y) [@nontail] let sort_and_group l ~compare = l |> stable_sort ~compare |> group ~break:(fun x y -> compare x y <> 0) ;; let concat_map l ~f:(f [@local]) = let rec aux acc = function | [] -> rev acc | hd :: tl -> aux (rev_append (f hd) acc) tl in let res = aux [] l in res ;; let concat_mapi l ~f = let rec aux cont acc = function | [] -> rev acc | hd :: tl -> aux (cont + 1) (rev_append (f cont hd) acc) tl in aux 0 [] l [@nontail] ;; let merge l1 l2 ~compare = let rec loop acc l1 l2 = match l1, l2 with | [], l2 -> rev_append acc l2 | l1, [] -> rev_append acc l1 | h1 :: t1, h2 :: t2 -> if compare h1 h2 <= 0 then loop (h1 :: acc) t1 l2 else loop (h2 :: acc) l1 t2 in loop [] l1 l2 [@nontail] ;; module Cartesian_product = struct (* We are explicit about what we export from functors so that we don't accidentally rebind more efficient list-specific functions. *) let bind = concat_map let map = map let map2 a b ~f = concat_map a ~f:(fun x -> map b ~f:(fun y -> f x y)) let return x = [ x ] let ( >>| ) = ( >>| ) let ( >>= ) t (f [@local]) = bind t ~f open struct module Applicative = Applicative.Make_using_map2 (struct type 'a t = 'a list let return = return let map = `Custom map let map2 = map2 end) module Monad = Monad.Make (struct type 'a t = 'a list let return = return let map = `Custom map let bind = bind end) end let all = Monad.all let all_unit = Monad.all_unit let ignore_m = Monad.ignore_m let join = Monad.join module Monad_infix = struct let ( >>| ) = ( >>| ) let ( >>= ) = ( >>= ) end let apply = Applicative.apply let both = Applicative.both let map3 = Applicative.map3 let ( <*> ) = Applicative.( <*> ) let ( *> ) = Applicative.( *> ) let ( <* ) = Applicative.( <* ) module Applicative_infix = struct let ( >>| ) = ( >>| ) let ( <*> ) = Applicative.( <*> ) let ( *> ) = Applicative.( *> ) let ( <* ) = Applicative.( <* ) end module Let_syntax = struct let return = return let ( >>| ) = ( >>| ) let ( >>= ) = ( >>= ) module Let_syntax = struct let return = return let bind = bind let map = map let both = both module Open_on_rhs = struct end end end end include (Cartesian_product : Monad.S_local with type 'a t := 'a t) (** returns final element of list *) let rec last_exn list = match list with | [ x ] -> x | _ :: tl -> last_exn tl | [] -> invalid_arg "List.last" ;; (** optionally returns final element of list *) let rec last list = match list with | [ x ] -> Some x | _ :: tl -> last tl | [] -> None ;; let rec is_prefix list ~prefix ~equal = match prefix with | [] -> true | hd :: tl -> (match list with | [] -> false | hd' :: tl' -> equal hd hd' && is_prefix tl' ~prefix:tl ~equal) ;; let find_consecutive_duplicate t ~equal = match t with | [] -> None | a1 :: t -> let rec loop a1 t = match t with | [] -> None | a2 :: t -> if equal a1 a2 then Some (a1, a2) else loop a2 t in loop a1 t [@nontail] ;; (* returns list without adjacent duplicates *) let remove_consecutive_duplicates ?(which_to_keep = `Last) list ~equal = let rec loop to_keep accum = function | [] -> to_keep :: accum | hd :: tl -> if equal hd to_keep then ( let to_keep = match which_to_keep with | `First -> to_keep | `Last -> hd in loop to_keep accum tl) else loop hd (to_keep :: accum) tl in match list with | [] -> [] | hd :: tl -> rev (loop hd [] tl) ;; (** returns sorted version of list with duplicates removed *) let dedup_and_sort list ~compare = match list with | [] | [ _ ] -> list (* performance hack *) | _ -> let equal x x' = compare x x' = 0 in let sorted = sort ~compare list in remove_consecutive_duplicates ~equal sorted [@nontail] ;; let find_a_dup l ~compare = let sorted = sort l ~compare in let rec loop l = match l with | [] | [ _ ] -> None | hd1 :: (hd2 :: _ as tl) -> if compare hd1 hd2 = 0 then Some hd1 else loop tl in loop sorted [@nontail] ;; let contains_dup lst ~compare = match find_a_dup lst ~compare with | Some _ -> true | None -> false ;; let find_all_dups l ~compare = (* We add this reversal, so we can skip a [rev] at the end. We could skip [rev] anyway since we don not give any ordering guarantees, but it is nice to get results in natural order. *) let compare a b = compare b a in let sorted = sort ~compare l in (* Walk the list and record the first of each consecutive run of identical elements *) let rec loop sorted prev ~already_recorded acc = match sorted with | [] -> acc | hd :: tl -> if compare prev hd <> 0 then loop tl hd ~already_recorded:false acc else if already_recorded then loop tl hd ~already_recorded:true acc else loop tl hd ~already_recorded:true (hd :: acc) in match sorted with | [] -> [] | hd :: tl -> loop tl hd ~already_recorded:false [] [@nontail] ;; let rec all_equal_to t v ~equal = match t with | [] -> true | x :: xs -> equal x v && all_equal_to xs v ~equal ;; let all_equal t ~equal = match t with | [] -> None | x :: xs -> if all_equal_to xs x ~equal then Some x else None ;; let count t ~f = Container.count ~fold t ~f let sum m t ~f = Container.sum ~fold m t ~f let min_elt t ~compare = Container.min_elt ~fold t ~compare let max_elt t ~compare = Container.max_elt ~fold t ~compare let counti t ~f = foldi t ~init:0 ~f:(fun idx count a -> if f idx a then count + 1 else count) [@nontail] ;; let init n ~f = if n < 0 then invalid_argf "List.init %d" n (); let rec loop i accum = assert (i >= 0); if i = 0 then accum else loop (i - 1) (f (i - 1) :: accum) in loop n [] [@nontail] ;; let rev_filter_map l ~f = let rec loop l accum = match l with | [] -> accum | hd :: tl -> (match f hd with | Some x -> loop tl (x :: accum) | None -> loop tl accum) in loop l [] [@nontail] ;; let filter_map l ~f = rev (rev_filter_map l ~f) let rev_filter_mapi l ~f = let rec loop i l accum = match l with | [] -> accum | hd :: tl -> (match f i hd with | Some x -> loop (i + 1) tl (x :: accum) | None -> loop (i + 1) tl accum) in loop 0 l [] [@nontail] ;; let filter_mapi l ~f = rev (rev_filter_mapi l ~f) let filter_opt l = filter_map l ~f:Fn.id let partition3_map t ~f = let rec loop t fst snd trd = match t with | [] -> rev fst, rev snd, rev trd | x :: t -> (match f x with | `Fst y -> loop t (y :: fst) snd trd | `Snd y -> loop t fst (y :: snd) trd | `Trd y -> loop t fst snd (y :: trd)) in loop t [] [] [] [@nontail] ;; let partition_tf t ~f = let f x : _ Either.t = if f x then First x else Second x in partition_map t ~f [@nontail] ;; let partition_result t = partition_map t ~f:Result.to_either module Assoc = struct type 'a key = ('a[@tag Sexplib0.Sexp_grammar.assoc_key_tag = List []]) [@@deriving_inline sexp, sexp_grammar] let key_of_sexp : 'a. (Sexplib0.Sexp.t -> 'a) -> Sexplib0.Sexp.t -> 'a key = fun _of_a__018_ -> _of_a__018_ ;; let sexp_of_key : 'a. ('a -> Sexplib0.Sexp.t) -> 'a key -> Sexplib0.Sexp.t = fun _of_a__020_ -> _of_a__020_ ;; let key_sexp_grammar : 'a. 'a Sexplib0.Sexp_grammar.t -> 'a key Sexplib0.Sexp_grammar.t = fun _'a_sexp_grammar -> { untyped = Tagged { key = Sexplib0.Sexp_grammar.assoc_key_tag ; value = List [] ; grammar = _'a_sexp_grammar.untyped } } ;; [@@@end] type 'a value = ('a[@tag Sexplib0.Sexp_grammar.assoc_value_tag = List []]) [@@deriving_inline sexp, sexp_grammar] let value_of_sexp : 'a. (Sexplib0.Sexp.t -> 'a) -> Sexplib0.Sexp.t -> 'a value = fun _of_a__021_ -> _of_a__021_ ;; let sexp_of_value : 'a. ('a -> Sexplib0.Sexp.t) -> 'a value -> Sexplib0.Sexp.t = fun _of_a__023_ -> _of_a__023_ ;; let value_sexp_grammar : 'a. 'a Sexplib0.Sexp_grammar.t -> 'a value Sexplib0.Sexp_grammar.t = fun _'a_sexp_grammar -> { untyped = Tagged { key = Sexplib0.Sexp_grammar.assoc_value_tag ; value = List [] ; grammar = _'a_sexp_grammar.untyped } } ;; [@@@end] type ('a, 'b) t = (('a key * 'b value) list[@tag Sexplib0.Sexp_grammar.assoc_tag = List []]) [@@deriving_inline sexp, sexp_grammar] let t_of_sexp : 'a 'b. (Sexplib0.Sexp.t -> 'a) -> (Sexplib0.Sexp.t -> 'b) -> Sexplib0.Sexp.t -> ('a, 'b) t = let error_source__032_ = "list.ml.Assoc.t" in fun _of_a__024_ _of_b__025_ x__033_ -> list_of_sexp (function | Sexplib0.Sexp.List [ arg0__027_; arg1__028_ ] -> let res0__029_ = key_of_sexp _of_a__024_ arg0__027_ and res1__030_ = value_of_sexp _of_b__025_ arg1__028_ in res0__029_, res1__030_ | sexp__031_ -> Sexplib0.Sexp_conv_error.tuple_of_size_n_expected error_source__032_ 2 sexp__031_) x__033_ ;; let sexp_of_t : 'a 'b. ('a -> Sexplib0.Sexp.t) -> ('b -> Sexplib0.Sexp.t) -> ('a, 'b) t -> Sexplib0.Sexp.t = fun _of_a__034_ _of_b__035_ x__040_ -> sexp_of_list (fun (arg0__036_, arg1__037_) -> let res0__038_ = sexp_of_key _of_a__034_ arg0__036_ and res1__039_ = sexp_of_value _of_b__035_ arg1__037_ in Sexplib0.Sexp.List [ res0__038_; res1__039_ ]) x__040_ ;; let t_sexp_grammar : 'a 'b. 'a Sexplib0.Sexp_grammar.t -> 'b Sexplib0.Sexp_grammar.t -> ('a, 'b) t Sexplib0.Sexp_grammar.t = fun _'a_sexp_grammar _'b_sexp_grammar -> { untyped = Tagged { key = Sexplib0.Sexp_grammar.assoc_tag ; value = List [] ; grammar = (list_sexp_grammar { untyped = List (Cons ( (key_sexp_grammar _'a_sexp_grammar).untyped , Cons ((value_sexp_grammar _'b_sexp_grammar).untyped, Empty) )) }) .untyped } } ;; [@@@end] let pair_of_group = function | [] -> assert false | (k, _) :: _ as list -> k, map list ~f:snd ;; let group alist ~equal = group alist ~break:(fun (x, _) (y, _) -> not (equal x y)) |> map ~f:pair_of_group ;; let sort_and_group alist ~compare = sort_and_group alist ~compare:(fun (x, _) (y, _) -> compare x y) |> map ~f:pair_of_group ;; let find t ~equal key = match find t ~f:(fun (key', _) -> equal key key') with | None -> None | Some x -> Some (snd x) ;; let find_exn = let not_found = Not_found_s (Atom "List.Assoc.find_exn: not found") in let find_exn t ~equal key = match find t key ~equal with | None -> raise not_found | Some value -> value in (* named to preserve symbol in compiled binary *) find_exn ;; let mem t ~equal key = match find t ~equal key with | None -> false | Some _ -> true ;; let remove t ~equal key = filter t ~f:(fun (key', _) -> not (equal key key')) [@nontail] let add t ~equal key value = (* the remove doesn't change the map semantics, but keeps the list small *) (key, value) :: remove t ~equal key ;; let inverse t = map t ~f:(fun (x, y) -> y, x) let map t ~f = map t ~f:(fun (key, value) -> key, f value) [@nontail] end let sub l ~pos ~len = (* We use [pos > length l - len] rather than [pos + len > length l] to avoid the possibility of overflow. *) if pos < 0 || len < 0 || pos > length l - len then invalid_arg "List.sub"; rev (foldi l ~init:[] ~f:(fun i acc el -> if i >= pos && i < pos + len then el :: acc else acc)) ;; let split_n t_orig n = if n <= 0 then [], t_orig else ( let rec loop n t accum = if n = 0 then rev accum, t else ( match t with | [] -> t_orig, [] (* in this case, t_orig = rev accum *) | hd :: tl -> loop (n - 1) tl (hd :: accum)) in loop n t_orig []) ;; (* copied from [split_n] to avoid allocating a tuple *) let take t_orig n = if n <= 0 then [] else ( let rec loop n t accum = if n = 0 then rev accum else ( match t with | [] -> t_orig | hd :: tl -> loop (n - 1) tl (hd :: accum)) in loop n t_orig []) ;; let rec drop t n = match t with | _ :: tl when n > 0 -> drop tl (n - 1) | t -> t ;; let chunks_of l ~length = if length <= 0 then invalid_argf "List.chunks_of: Expected length > 0, got %d" length (); let rec aux of_length acc l = match l with | [] -> rev acc | _ :: _ -> let sublist, l = split_n l length in aux of_length (sublist :: acc) l in aux length [] l ;; let split_while xs ~f = let rec loop acc = function | hd :: tl when f hd -> loop (hd :: acc) tl | t -> rev acc, t in loop [] xs [@nontail] ;; (* copied from [split_while] to avoid allocating a tuple *) let take_while xs ~f = let rec loop acc = function | hd :: tl when f hd -> loop (hd :: acc) tl | _ -> rev acc in loop [] xs [@nontail] ;; let rec drop_while t ~f = match t with | hd :: tl when f hd -> drop_while tl ~f | t -> t ;; let drop_last t = match rev t with | [] -> None | _ :: lst -> Some (rev lst) ;; let drop_last_exn t = match drop_last t with | None -> failwith "List.drop_last_exn: empty list" | Some lst -> lst ;; let cartesian_product list1 list2 = if is_empty list2 then [] else ( let rec loop l1 l2 accum = match l1 with | [] -> accum | hd :: tl -> loop tl l2 (rev_append (map ~f:(fun x -> hd, x) l2) accum) in rev (loop list1 list2 [])) ;; let concat l = fold_right l ~init:[] ~f:append let concat_no_order l = fold l ~init:[] ~f:(fun acc l -> rev_append l acc) let cons x l = x :: l let is_sorted l ~compare = let rec loop l = match l with | [] | [ _ ] -> true | x1 :: (x2 :: _ as rest) -> compare x1 x2 <= 0 && loop rest in loop l [@nontail] ;; let is_sorted_strictly l ~compare = let rec loop l = match l with | [] | [ _ ] -> true | x1 :: (x2 :: _ as rest) -> compare x1 x2 < 0 && loop rest in loop l [@nontail] ;; module Infix = struct let ( @ ) = append end let permute ?(random_state = Random.State.default) list = match list with (* special cases to speed things up in trivial cases *) | [] | [ _ ] -> list | [ x; y ] -> if Random.State.bool random_state then [ y; x ] else list | _ -> let arr = Array.of_list list in Array_permute.permute arr ~random_state; Array.to_list arr ;; let random_element_exn ?(random_state = Random.State.default) list = if is_empty list then failwith "List.random_element_exn: empty list" else nth_exn list (Random.State.int random_state (length list)) ;; let random_element ?(random_state = Random.State.default) list = try Some (random_element_exn ~random_state list) with | _ -> None ;; let rec compare cmp a b = match a, b with | [], [] -> 0 | [], _ -> -1 | _, [] -> 1 | x :: xs, y :: ys -> let n = cmp x y in if n = 0 then compare cmp xs ys else n ;; let hash_fold_t = hash_fold_list let equal_local ((equal : _ -> _ -> _) [@local]) t1 t2 = let rec loop ~equal t1 t2 = match t1, t2 with | [], [] -> true | x1 :: t1, x2 :: t2 -> equal x1 x2 && loop ~equal t1 t2 | _ -> false in loop ~equal t1 t2 ;; let equal : 'a. ('a -> 'a -> bool) -> 'a t -> 'a t -> bool = fun f x y -> equal_local f x y ;; let transpose = let rec split_off_first_column t column_acc trimmed found_empty = match t with | [] -> column_acc, trimmed, found_empty | [] :: tl -> split_off_first_column tl column_acc trimmed true | (x :: xs) :: tl -> split_off_first_column tl (x :: column_acc) (xs :: trimmed) found_empty in let split_off_first_column rows = split_off_first_column rows [] [] false in let rec loop rows columns do_rev = match split_off_first_column rows with | [], [], _ -> Some (rev columns) | column, trimmed_rows, found_empty -> if found_empty then None else ( let column = if do_rev then rev column else column in loop trimmed_rows (column :: columns) (not do_rev)) in fun t -> loop t [] true ;; exception Transpose_got_lists_of_different_lengths of int list [@@deriving_inline sexp] let () = Sexplib0.Sexp_conv.Exn_converter.add [%extension_constructor Transpose_got_lists_of_different_lengths] (function | Transpose_got_lists_of_different_lengths arg0__041_ -> let res0__042_ = sexp_of_list sexp_of_int arg0__041_ in Sexplib0.Sexp.List [ Sexplib0.Sexp.Atom "list.ml.Transpose_got_lists_of_different_lengths" ; res0__042_ ] | _ -> assert false) ;; [@@@end] let transpose_exn l = match transpose l with | Some l -> l | None -> raise (Transpose_got_lists_of_different_lengths (map l ~f:length)) ;; let intersperse t ~sep = match t with | [] -> [] | x :: xs -> x :: fold_right xs ~init:[] ~f:(fun y acc -> sep :: y :: acc) ;; let fold_result t ~init ~f = Container.fold_result ~fold ~init ~f t let fold_until t ~init ~f ~finish = Container.fold_until ~fold ~init ~f t ~finish let is_suffix list ~suffix ~equal:((equal_elt : _ -> _ -> _) [@local]) = let list_len = length list in let suffix_len = length suffix in list_len >= suffix_len && equal_local equal_elt (drop list (list_len - suffix_len)) suffix ;;
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>