package unionFind
Implementations of the union-find data structure
Install
Dune Dependency
Authors
Maintainers
Sources
archive.tar.gz
md5=d7cc5d5e1b2418b0e00053bc233b9454
sha512=8f99e5db73038faf5f0efb49079a653574e7291838eabbdfcb2887e6757bafce890cd3047e9d076bb1e2165463ad00ce38126c4570e158061ccfe3e1e54c0445
doc/src/unionFind/UnionFindOverStore.ml.html
Source file UnionFindOverStore.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
(***************************************************************************) (* *) (* UnionFind *) (* *) (* François Pottier, Inria Paris *) (* *) (* Copyright Inria. All rights reserved. This file is distributed under *) (* the terms of the GNU Library General Public License version 2, with a *) (* special exception on linking, as described in the file LICENSE. *) (***************************************************************************) (* This module offers a union-find data structure based on disjoint set forests, with path compression and linking by rank. *) open Store module Make (S : STORE) = struct (* -------------------------------------------------------------------------- *) (* The rank of a vertex is the maximum length, in edges, of an uncompressed path that leads to this vertex. In other words, the rank of [x] is the height of the tree rooted at [x] that would exist if we did not perform path compression. *) type rank = int (* The content of a vertex is a pointer to a parent vertex (if the vertex has a parent) or a pair of a rank and a user value (if the vertex has no parent, and is thus the representative vertex for this equivalence class). *) type 'a content = | Link of 'a rref | Root of rank * 'a (* The type ['a rref] represents a vertex in the union-find data structure. *) and 'a rref = 'a content S.rref (* -------------------------------------------------------------------------- *) (* The type of stores, and the function for creating a new store, are those of the underlying implementation [S]. *) type 'a store = 'a content S.store let new_store : unit -> 'a store = S.new_store (* -------------------------------------------------------------------------- *) (* [make s v] creates a new root of rank zero. *) let make (s : 'a store) (v : 'a) : 'a store * 'a rref = S.make s (Root (0, v)) (* -------------------------------------------------------------------------- *) (* [find s x] finds the representative vertex of the equivalence class of [x]. It does by following the path from [x] to the root. Path compression is performed (on the way back) by making every vertex along the path a direct child of the representative vertex. No rank is altered. *) (* The function [find] is currently not exposed to the user, because [get] should be what the user needs in most situations. *) let rec find (s : 'a store) (x : 'a rref) : 'a store * 'a rref = let s, cx = S.get s x in match cx with | Root (_, _) -> s, x | Link y -> let s, z = find s y in let s, b = S.eq s y z in if b then s, z else let s, link_to_z = S.get s y in let s = S.set s x link_to_z in s, z (* -------------------------------------------------------------------------- *) (* [eq s x y] determines whether the vertices [x] and [y] belong in the same equivalence class. It does so via two calls to [find] and a physical equality test. As a fast path, we first test whether [x] and [y] are physically equal. *) let eq (s : 'a store) (x : 'a rref) (y : 'a rref) : 'a store * bool = let s, b = S.eq s x y in if b then s, b else let s, x = find s x in let s, y = find s y in S.eq s x y (* -------------------------------------------------------------------------- *) (* [get_ s x] returns the value stored at [x]'s representative vertex. *) let get_ (s : 'a store) (x : 'a rref) : 'a store * 'a = let s, x = find s x in let s, cx = S.get s x in match cx with | Root (_, v) -> s, v | Link _ -> assert false (* [get s x] returns the value stored at [x]'s representative vertex. *) (* By not calling [find] immediately, we optimize the common cases where the path out of [x] has length 0 or 1, at the expense of the general case. Thus, we call [find] only if path compression must be performed. *) let get (s : 'a store) (x : 'a rref) : 'a store * 'a = let s, cx = S.get s x in match cx with | Root (_, v) -> s, v | Link y -> let s, cy = S.get s y in match cy with | Root (_, v) -> s, v | Link _ -> get_ s x (* -------------------------------------------------------------------------- *) (* [set_ s x] updates the value stored at [x]'s representative vertex. *) let set_ (s : 'a store) (x : 'a rref) (v : 'a) : 'a store = let s, x = find s x in let s, cx = S.get s x in match cx with | Root (r, _) -> S.set s x (Root (r, v)) | Link _ -> assert false (* [set s x] updates the value stored at [x]'s representative vertex. *) (* By not calling [find] immediately, we optimize the common cases where the path out of [x] has length 0 or 1, at the expense of the general case. Thus, we call [find] only if path compression must be performed. *) let set (s : 'a store) (x : 'a rref) (v : 'a) : 'a store = let s, cx = S.get s x in match cx with | Root (r, _) -> S.set s x (Root (r, v)) | Link y -> let s, cy = S.get s y in match cy with | Root (r, _) -> S.set s y (Root (r, v)) | Link _ -> set_ s x v (* -------------------------------------------------------------------------- *) (* [link f s x y] requires the vertices [x] and [y] to be roots. If they are the same vertex, it does nothing. Otherwise, it merges their equivalence classes by installing a link from one vertex to the other. *) (* Linking is by rank: the smaller-ranked vertex is made to point to the larger. If the two vertices have the same rank, then an arbitrary choice is made, and the rank of the new root is incremented by one. *) let link (f : 'a -> 'a -> 'a) (s : 'a store) (x : 'a rref) (y : 'a rref) : 'a store = let s, b = S.eq s x y in if b then s else let s, cx = S.get s x in let s, cy = S.get s y in match cx, cy with | Root (rx, vx), Root (ry, vy) -> let v = f vx vy in if rx < ry then let s = S.set s x (Link y) in let s = S.set s y (Root (ry, v)) in s else let s = S.set s y (Link x) in let r = if ry < rx then rx else rx + 1 in let s = S.set s x (Root (r, v)) in s | Root _, Link _ | Link _, Root _ | Link _, Link _ -> assert false (* -------------------------------------------------------------------------- *) (* [union f s x y] is identical to [link f s x y], except it does not require [x] and [y] to be roots. *) let union (f : 'a -> 'a -> 'a) (s : 'a store) (x : 'a rref) (y : 'a rref) : 'a store = let s, x = find s x in let s, y = find s y in link f s x y end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>