package unionFind

  1. Overview
  2. Docs
Implementations of the union-find data structure

Install

Dune Dependency

Authors

Maintainers

Sources

archive.tar.gz
md5=d7cc5d5e1b2418b0e00053bc233b9454
sha512=8f99e5db73038faf5f0efb49079a653574e7291838eabbdfcb2887e6757bafce890cd3047e9d076bb1e2165463ad00ce38126c4570e158061ccfe3e1e54c0445

doc/src/unionFind/UnionFindOverStore.ml.html

Source file UnionFindOverStore.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
(***************************************************************************)
(*                                                                         *)
(*                                 UnionFind                               *)
(*                                                                         *)
(*                       François Pottier, Inria Paris                     *)
(*                                                                         *)
(*  Copyright Inria. All rights reserved. This file is distributed under   *)
(*  the terms of the GNU Library General Public License version 2, with a  *)
(*  special exception on linking, as described in the file LICENSE.        *)
(***************************************************************************)

(* This module offers a union-find data structure based on disjoint set
   forests, with path compression and linking by rank. *)

open Store

module Make (S : STORE) = struct

(* -------------------------------------------------------------------------- *)

(* The rank of a vertex is the maximum length, in edges, of an uncompressed path
   that leads to this vertex. In other words, the rank of [x] is the height of
   the tree rooted at [x] that would exist if we did not perform path
   compression. *)

type rank =
  int

(* The content of a vertex is a pointer to a parent vertex (if the vertex
   has a parent) or a pair of a rank and a user value (if the vertex has no
   parent, and is thus the representative vertex for this equivalence
   class). *)

type 'a content =
| Link of 'a rref
| Root of rank * 'a

(* The type ['a rref] represents a vertex in the union-find data structure. *)

and 'a rref =
  'a content S.rref

(* -------------------------------------------------------------------------- *)

(* The type of stores, and the function for creating a new store, are those
   of the underlying implementation [S]. *)

type 'a store =
  'a content S.store

let new_store : unit -> 'a store =
  S.new_store

(* -------------------------------------------------------------------------- *)

(* [make s v] creates a new root of rank zero. *)

let make (s : 'a store) (v : 'a) : 'a store * 'a rref =
  S.make s (Root (0, v))

(* -------------------------------------------------------------------------- *)

(* [find s x] finds the representative vertex of the equivalence class of [x].
   It does by following the path from [x] to the root. Path compression is
   performed (on the way back) by making every vertex along the path a
   direct child of the representative vertex. No rank is altered. *)

(* The function [find] is currently not exposed to the user, because [get]
   should be what the user needs in most situations. *)

let rec find (s : 'a store) (x : 'a rref) : 'a store * 'a rref =
  let s, cx = S.get s x in
  match cx with
  | Root (_, _) ->
      s, x
  | Link y ->
      let s, z = find s y in
      let s, b = S.eq s y z in
      if b then
        s, z
      else
        let s, link_to_z = S.get s y in
        let s = S.set s x link_to_z in
        s, z

(* -------------------------------------------------------------------------- *)

(* [eq s x y] determines whether the vertices [x] and [y] belong in the same
   equivalence class. It does so via two calls to [find] and a physical
   equality test. As a fast path, we first test whether [x] and [y] are
   physically equal. *)

let eq (s : 'a store) (x : 'a rref) (y : 'a rref) : 'a store * bool =
  let s, b = S.eq s x y in
  if b then
    s, b
  else
    let s, x = find s x in
    let s, y = find s y in
    S.eq s x y

(* -------------------------------------------------------------------------- *)

(* [get_ s x] returns the value stored at [x]'s representative vertex. *)

let get_ (s : 'a store) (x : 'a rref) : 'a store * 'a =
  let s, x = find s x in
  let s, cx = S.get s x in
  match cx with
  | Root (_, v) ->
      s, v
  | Link _ ->
      assert false

(* [get s x] returns the value stored at [x]'s representative vertex. *)

(* By not calling [find] immediately, we optimize the common cases where the
   path out of [x] has length 0 or 1, at the expense of the general case.
   Thus, we call [find] only if path compression must be performed. *)

let get (s : 'a store) (x : 'a rref) : 'a store * 'a =
  let s, cx = S.get s x in
  match cx with
  | Root (_, v) ->
      s, v
  | Link y ->
      let s, cy = S.get s y in
      match cy with
      | Root (_, v) ->
          s, v
      | Link _ ->
          get_ s x

(* -------------------------------------------------------------------------- *)

(* [set_ s x] updates the value stored at [x]'s representative vertex. *)

let set_ (s : 'a store) (x : 'a rref) (v : 'a) : 'a store =
  let s, x = find s x in
  let s, cx = S.get s x in
  match cx with
  | Root (r, _) ->
      S.set s x (Root (r, v))
  | Link _ ->
      assert false

(* [set s x] updates the value stored at [x]'s representative vertex. *)

(* By not calling [find] immediately, we optimize the common cases where the
   path out of [x] has length 0 or 1, at the expense of the general case.
   Thus, we call [find] only if path compression must be performed. *)

let set (s : 'a store) (x : 'a rref) (v : 'a) : 'a store =
  let s, cx = S.get s x in
  match cx with
  | Root (r, _) ->
      S.set s x (Root (r, v))
  | Link y ->
      let s, cy = S.get s y in
      match cy with
      | Root (r, _) ->
          S.set s y (Root (r, v))
      | Link _ ->
          set_ s x v

(* -------------------------------------------------------------------------- *)

(* [link f s x y] requires the vertices [x] and [y] to be roots. If they are
   the same vertex, it does nothing. Otherwise, it merges their equivalence
   classes by installing a link from one vertex to the other. *)

(* Linking is by rank: the smaller-ranked vertex is made to point to the
   larger. If the two vertices have the same rank, then an arbitrary choice
   is made, and the rank of the new root is incremented by one. *)

let link (f : 'a -> 'a -> 'a) (s : 'a store) (x : 'a rref) (y : 'a rref) : 'a store =
  let s, b = S.eq s x y in
  if b then
    s
  else
    let s, cx = S.get s x in
    let s, cy = S.get s y in
    match cx, cy with
    | Root (rx, vx), Root (ry, vy) ->
        let v = f vx vy in
        if rx < ry then
          let s = S.set s x (Link y) in
          let s = S.set s y (Root (ry, v)) in
          s
        else
          let s = S.set s y (Link x) in
          let r = if ry < rx then rx else rx + 1 in
          let s = S.set s x (Root (r, v)) in
          s
    | Root _, Link _
    | Link _, Root _
    | Link _, Link _ ->
        assert false

(* -------------------------------------------------------------------------- *)

(* [union f s x y] is identical to [link f s x y], except it does not require
   [x] and [y] to be roots. *)

let union (f : 'a -> 'a -> 'a) (s : 'a store) (x : 'a rref) (y : 'a rref) : 'a store =
  let s, x = find s x in
  let s, y = find s y in
  link f s x y

end
OCaml

Innovation. Community. Security.