package um-abt
An OCaml library implementing unifiable abstract binding trees (UABTs)
Install
Dune Dependency
Authors
Maintainers
Sources
um-abt-v0.1.7.tbz
sha256=9472873b4f485ff1c169d950488133c79efb4b00b757526bfb14a2f043a0480f
sha512=e3ea3990177778ae109082bea0b952b760b4fc9a243f0321367d2927061e3766c0d99679c5e4b13f89532b22ad4993c34f91b625ec40e07f113b9812521f91f4
doc/src/um-abt/abt.ml.html
Source file abt.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
(* Copyright (c) 2021 Shon Feder Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *) module Log = Logs module type Operator = sig (** An operator *) type 'a t [@@deriving sexp] val map : ('a -> 'b) -> 'a t -> 'b t val equal : ('a -> 'a -> bool) -> 'a t -> 'a t -> bool val fold : ('a -> 'b -> 'a) -> 'a -> 'b t -> 'a val to_string : string t -> string end module Var = struct module Binding = struct (* A private table of the number of times a name has been bound *) let bnd_names : (string, int) Hashtbl.t = Hashtbl.create 100 let name_count n = Hashtbl.find_opt bnd_names n |> Option.value ~default:0 let add_name n = let count = name_count n + 1 in Hashtbl.add bnd_names n count; count open Sexplib.Std type t = (string * int) ref [@@deriving sexp] let v s = ref (s, add_name s) (** Just the string component of the name *) let name bnd = !bnd |> fst (** Representation of name that includes the unique id *) let name_debug bnd = let n, c = !bnd in n ^ Int.to_string c let compare a b = (* Physical equality of references *) if a == b then 0 else let a_name, a_count = !a in let b_name, b_count = !b in let name_cmp = String.compare a_name b_name in if name_cmp = 0 then Int.compare a_count b_count else name_cmp let equal a b = Int.equal (compare a b) 0 end module T = struct open Sexplib.Std type t = | Free of string | Bound of Binding.t [@@deriving sexp] let compare a b = match (a, b) with | Bound a, Bound b -> Binding.compare a b | Free a, Free b -> String.compare a b | Free _, Bound _ -> 1 (* Free vars are greater than bound vars *) | Bound _, Free _ -> -1 end module Set = Set.Make (T) module Map = Map.Make (T) include T let equal a b = Int.equal (compare a b) 0 let is_free = function | Free _ -> true | _ -> false let is_bound t = not (is_free t) let name = function | Free s -> s | Bound b -> Binding.name b let to_string = name let to_string_debug = function | Free s -> s | Bound b -> Binding.name_debug b let v s = Free s let bind v b = match v with | Bound _ -> None | Free name -> if String.equal name (Binding.name b) then Some (Bound b) else None let of_binding b = Bound b let to_binding = function | Bound b -> Some b | Free _ -> None let is_bound_to v bnd = match v with | Free _ -> false | Bound b -> b == bnd end module Operator_aux (O : Operator) = struct (* Adds auxiliary functions over an operator module*) (** [same o o'] is [true] if the operators are operators are the same without respect to their arguments *) let same : 'a O.t -> 'a O.t -> bool = fun o o' -> let to_unit = O.map (Fun.const ()) in O.equal Unit.equal (to_unit o) (to_unit o') (* TODO: Construct a lazy/incremental seq instead *) let to_list : 'a O.t -> 'a List.t = fun o -> O.fold (Fun.flip List.cons) [] o |> List.rev (** Derives a fold2 implementation from the required fold *) let fold2 : ('a -> 'b -> 'c -> 'a) -> 'a -> 'b O.t -> 'c O.t -> 'a = fun f init o o' -> let app (list_o', acc) o = match list_o' with | [] -> raise (Invalid_argument "Operator_aux.fold2 on operators of unequal size") | o' :: res -> (res, f acc o o') in O.fold app (to_list o', init) o |> snd include O end module Bndmap : sig type t val empty : t val add : left:Var.Binding.t -> right:Var.Binding.t -> t -> t type lookup = Var.Binding.t -> t -> Var.Binding.t option (* [find bnd m] is the binding corresponding to [bnd], regardless of which side it was entered from *) (* val find : lookup *) (* [find_left bnd m] is [bnd] if [bnd] was entered from the left, otherwise it is the left-side binding corresponding to the one entered on the right *) val find_left : lookup (* [find_left bnd m] is [bnd] if [bnd] was entered from the right, otherwise it is the left-side binding corresponding to the one entered on the left *) val find_right : lookup end = struct module M = Map.Make (Var.Binding) type t = { left : Var.Binding.t M.t ; right : Var.Binding.t M.t } let empty = { left = M.empty; right = M.empty } let add ~left ~right m = { left = M.add left right m.left; right = M.add right left m.right } type lookup = Var.Binding.t -> t -> Var.Binding.t option (* Var.Binding.t are unique (because identified by pointer location reference) so we don't need safety constraints on lookup etc. *) (* let find k m = * match M.find_opt k m.left with * | None -> M.find_opt k m.right * | Some v -> Some v *) let find_left k m = if M.mem k m.left then Some k else M.find_opt k m.right let find_right k m = if M.mem k m.right then Some k else M.find_opt k m.left end module type Syntax = sig module Op : Operator (** The type of ABT's constructed from the operators defind in [O] *) type t = private | Var of Var.t (** Variables *) | Bnd of Var.Binding.t * t (** Scoped variable binding *) | Opr of t Op.t (** Operators specified in {!Op} *) [@@deriving sexp] val bind : Var.Binding.t -> t -> t (** [bind bnd t] is a branch of the ABT, in which any free variables in [t] matching the name of [bnd] are bound to [bnd]. *) val of_var : Var.t -> t (** [of_var v] is a leaf in the ABT consisting of the variable [v] *) val v : string -> t (** [v x] is a leaf in the ABT consisting of a variable named [x] *) val op : t Op.t -> t (** [op o] is a branch in the ABT consisting of the operator [o] *) val ( #. ) : string -> t -> t (** [x #. t] is a new abt obtained by binding all {i free} variables named [x] in [t] Note that this does {b not} substitute variables for a {i value}, (for which, see {!subst}). This only binds the free variables within the scope of an abstraction that ranges over the given (sub) abt [t]. *) val subst : Var.Binding.t -> value:t -> t -> t (** [subst bnd ~value t] is a new ABT obtained by substituting [value] for all variables bound to [bnd]. *) val subst_var : string -> value:t -> t -> t (** [subst_var name ~value t] is a new abt obtained by substituting [value] for the outermost scope of variables bound to [name] in [t] *) val to_sexp : t -> Sexplib.Sexp.t (** [to_sexp t] is the representation of [t] as an s-expression *) val of_sexp : Sexplib.Sexp.t -> t (** [of_sexp s] is Abt represented by the s-expression [s] *) val to_string : t -> string (** [to_string t] is the representation of [t] as a string *) val equal : t -> t -> bool (** [equal t t'] is [true] when [t] and [t'] are alpha equivalent and [false] otherwise *) val case : var:(Var.t -> 'a) -> bnd:(Var.Binding.t * t -> 'a) -> opr:(t Op.t -> 'a) -> t -> 'a (** Case analysis for eleminating ABTs This is an alternative to using pattern-based elimination. @param var function to apply to variables @param bnd function to apply to bindings @param opr function to apply to operators *) val subterms : t -> t list (** [subterms t] is a list of all the subterms in [t], including [t] itself *) val free_vars : t -> Var.Set.t (** [free_vars t] is the set of variables that are free in in [t] *) val is_closed : t -> bool (** [is_closed t] if [true] if there are no free variables in [t], otherwise false *) module Unification : sig module Subst : sig type term = t (** An alias for the type of the ABT for reference in the context of the substitution *) type t (** Substitutions mapping free variables to terms *) val find : Var.t -> t -> term option (** [find v s] is [Some term] if [v] is bound to [term] in the substitution [s], otherwise it is [None]*) val bindings : t -> (Var.t * term) list (** [bindings s] is a list of all the bindings in [s] *) val to_string : t -> string end type error = [ `Unification of Var.t option * t * t | `Occurs of Var.t * t | `Cycle of Subst.t ] (** Errors returned when unification fails *) val unify : t -> t -> (t * Subst.t, error) Result.t (** [unify a b] is [Ok (union, substitution)] when [a] and [b] can be unified into the term [union] and [substitution] is the most general unifier. Otherwise it is [Error err)], for which, see {!type:error} *) val ( =.= ) : t -> t -> (t, error) Result.t (** [a =.= b] is [unify a b |> Result.map fst] *) val ( =?= ) : t -> t -> bool (** [a =?= b] is [true] iff [a =.= b] is an [Ok _] value *) end end module Make (Op : Operator) = struct module Op = Op type t = | Var of Var.t | Bnd of Var.Binding.t * t | Opr of t Op.t [@@deriving sexp] let to_sexp = sexp_of_t let of_sexp = t_of_sexp let rec to_string t = t |> function | Var v -> Var.to_string v | Bnd (b, abt) -> Var.(name @@ of_binding b) ^ "." ^ to_string abt | Opr op -> Op.map to_string op |> Op.to_string (* Alpha-equivalence is derived by checking that the ABTs are identical modulo the pointer structure of any bound variables. - For operators, this just amounts to checking the equality supplied by the given {!modtype:Operator}, [O]. - For variable, we check that the pointer {i structure} is equivalent, and do take no account of names, since alpha equivalence is fundamentally concerned with the (anonymous) binding structure of ABTs. *) let equal : t -> t -> bool = let bndmap bnd bnd' = match Bndmap.find_right bnd bndmap with | Some bnd'' -> Var.Binding.equal bnd' bnd'' | None -> false in let rec equal : Bndmap.t -> t -> t -> bool = fun bndmap t t' -> [%log debug "check ɑ-equality of %s %s" (to_string t) (to_string t')]; match (t, t') with | Opr o, Opr o' -> Op.equal (equal bndmap) o o' | Bnd (left, t), Bnd (right, t') -> (* Associate corresponding bindings in the bindmap *) equal (Bndmap.add ~left ~right bndmap) t t' | Var (Bound bnd), Var (Bound bnd') -> bindings_correlated bndmap bnd bnd' | Var v, Var v' -> Var.equal v v' | _ -> false in fun a b -> equal Bndmap.empty a b let of_var : Var.t -> t = fun v -> Var v let bind : Var.Binding.t -> t -> t = fun bnd t -> let rec scope = function | Opr op -> Opr (Op.map scope op) | Bnd (b, t) -> Bnd (b, scope t) | Var v -> match Var.bind v bnd with | None -> Var v | Some v' -> Var v' in Bnd (bnd, scope t) let ( #. ) : string -> t -> t = fun name abt -> let binding : Var.Binding.t = Var.Binding.v name in bind binding abt let rec subst : Var.Binding.t -> value:t -> t -> t = fun bnd ~value -> function | Opr op -> Opr (Op.map (subst bnd ~value) op) | Bnd (b, t) -> (* As an optimization, we don't go any deeper if the variable is shadowed. * We could, safely, but there's no point. *) if String.equal (Var.Binding.name b) (Var.Binding.name bnd) then Bnd (b, t) else Bnd (b, subst bnd ~value t) | Var v -> if Var.is_bound_to v bnd then value else Var v let rec subst_var : string -> value:t -> t -> t = fun name ~value -> function | Var v -> Var v | Opr op -> Opr (Op.map (subst_var name ~value) op) | Bnd (b, t) -> if Var.Binding.name b = name then subst b ~value t else Bnd (b, subst_var name ~value t) let op a = Opr a let v : string -> t = fun s -> Var (Var.v s) let rec subterms : t -> t list = fun t -> match t with | Var _ -> [ t ] | Bnd (_, t') -> t :: subterms t' | Opr o -> t :: Op.fold (fun ts t' -> subterms t' @ ts) [] o let case ~var ~bnd ~opr = function | Var v -> var v | Bnd (b, t) -> bnd (b, t) | Opr o -> opr o let is_free_var : t -> bool = fun t -> match t with | Var (Free _) -> true | _ -> false let free_vars : t -> Var.Set.t = fun t -> let rec free fv = function | Var (Free _ as v) -> Var.Set.add v fv | Var (Bound _) -> fv | Bnd (_, t') -> free fv t' | Opr o -> Op.fold free fv o in free Var.Set.empty t let is_closed : t -> bool = fun t -> Var.Set.is_empty (free_vars t) module Unification = struct (* Initial, naive approach: * 1. get all free vars of a and b * 1. build mgu and substitute for all vars * 3. then check for alpha-equiv * * Will take 3n complexity * * TODO To optimize: need to unify on a single pass, which will require way of identifying if two * operators have the same head. Perhaps via an operator function `sort : O.t -> (string * int)`? *) let fail ?v t t' = [%log debug "unification failure: %s <> %s " (to_string t) (to_string t')]; `Unification (v, t, t') let occurs_err v t = [%log debug "fail: %s ocurrs in %s" (Var.to_string v) (to_string t)]; `Occurs (v, t) (* Error when a substitution is added for a variable already assigned to an incompatible value *) module Subst = struct type term = t type t = { bnds : Bndmap.t (* Correspondences between bindings *) ; vars : term ref Var.Map.t (* Substitution mappings from free vars to terms *) } (* Substitution maps free variables to mutable refs. When two free variables are assigned to be aliases, they simply share the same ref. Therefore, assigning one variable, sufficies to assign all of its aliases. *) let empty : t = { bnds = Bndmap.empty; vars = Var.Map.empty } (* TODO Work out coherent scheme for dealing with binder transitions! *) let ( let* ) = Option.bind (* Find is left-biased ito alpha equivalent variables *) let find v ({ bnds; vars } : t) = let* { contents = term } = Var.Map.find_opt v vars in match term with | Var (Bound bnd) -> Bndmap.find_left bnd bnds |> Option.map (fun b -> Var.of_binding b |> of_var) | _ -> Some term let bindings { vars; _ } = Var.Map.bindings vars |> List.map (fun (v, t) -> (v, !t)) let term_to_string = to_string let to_string s = s |> bindings |> List.map (fun (v, term) -> Printf.sprintf "%s -> %s" (Var.to_string v) (to_string term)) |> String.concat ", " |> Printf.sprintf "[ %s ]" let cycle_err s = [%log debug "fail: cycle between variables %s" (to_string s)]; `Cycle s let add s v term = [%log debug "add substitution: %s -> %s" (Var.to_string v) (term_to_string term)]; if not (Var.is_free v) then failwith "Invalid argument: Subst.add with non free var "; (* TODO Remove exponential occurs check *) if (not (is_free_var term)) && Var.Set.mem v (free_vars term) then Error (occurs_err v term) else let vars = s.vars in match term with | Bnd (_, _) | Opr _ -> ( Var.Map.find_opt v vars |> function | None -> Ok { s with vars = Var.Map.add v (ref term) vars } | Some ref_term when equal !ref_term term -> Ok s | Some ref_var when is_free_var !ref_var -> ref_var := term; Ok s | Some clash_term -> Error (fail ~v term !clash_term)) | Var v' -> match (Var.Map.find_opt v vars, Var.Map.find_opt v' vars) with | Some term_ref, None -> Ok { s with vars = Var.Map.add v' term_ref vars } | None, Some term_ref' -> Ok { s with vars = Var.Map.add v term_ref' vars } | Some term_ref, Some term_ref' -> (* TODO Should this be a structural equality check? *) if term_ref == term_ref' then Ok s else Error (fail ~v !term_ref !term_ref') | None, None -> let ref_var = ref (of_var v) in Ok { s with vars = Var.Map.add v ref_var vars |> Var.Map.add v' ref_var } let log_substitution s term = [%log debug "applying substitution: %s %s" (term_to_string term) (to_string s)] (* Find the corresponding binding for substitution of a *) let lookup_binding lookup bnd s = let ( let* ) = Option.bind in let default = bnd |> Var.of_binding |> of_var in Option.value ~default @@ let* f = lookup in let* bnd' = f bnd s.bnds in Some (Var.of_binding bnd' |> of_var) exception Cycle_in_apply of t (* Effect the substitution of free variables in a term, according to the subtitution s - unassigned free var -> free var - assigned free var -> assigned value - compound term -> substitute into each of it's compounds - bound var -> bound var When [lookup] is provided, it tells us how to find binding correlates for the apprpriate side of a unification *) let apply : ?lookup:Bndmap.lookup -> t -> term -> term = fun ?lookup s term -> [%log debug "apply invoked for %s" (term_to_string term)]; let lookup = lookup_binding lookup in (* cyc_vars are the vars we're already tring to substitute for lets us detect cycles *) let rec aux cyc_vars s term = log_substitution s term; match term with | Bnd (b, t') -> Bnd (b, aux cyc_vars s t') | Opr o -> Op.map (aux cyc_vars s) o |> op | Var (Bound bnd) -> lookup bnd s | Var (Free _ as v) -> match Var.Map.find_opt v s.vars with | None -> term | Some { contents = substitute } -> ( if Var.Set.mem v cyc_vars then raise (Cycle_in_apply s); let cyc_vars = Var.Set.add v cyc_vars in match substitute with | Var (Bound bnd) -> lookup bnd s | Var (Free _) -> substitute | _ -> (* TODO Shouldn't need to recurse down except to replace bindings for a side *) aux cyc_vars s substitute) in aux Var.Set.empty s term let ( let* ) = Result.bind module Op = Operator_aux (Op) (* Caution: Here be mutability! Never allow a mutable substitution to escape the abstract type! *) let build a b = [%log debug "building substitution for %s %s" (term_to_string a) (term_to_string b)]; let rec aux s_res a b = let* s = s_res in match (a, b) with | Opr ao, Opr bo when Op.same ao bo -> Op.fold2 aux (Ok s) ao bo | Bnd (left, a'), Bnd (right, b') -> (* Correlate the bindings *) let s = { s with bnds = Bndmap.add ~left ~right s.bnds } in aux (Ok s) a' b' | Var (Free _ as v), _ -> add s v b | _, Var (Free _ as v) -> add s v a | Var (Bound _), Var (Bound _) -> (* We can't decide anything about bound variables at this point, assume they are ok *) Ok s | _ -> Error (fail a b) in let* subst = aux (Ok empty) a b in try Var.Map.iter (fun _ cell -> cell := apply subst !cell) subst.vars; [%log debug "substution for %s %s built: %s" (term_to_string a) (term_to_string b) (to_string subst)]; Ok subst with | Cycle_in_apply s -> Error (cycle_err s) end let ( let* ) = Result.bind type error = [ `Unification of Var.t option * t * t | `Occurs of Var.t * t | `Cycle of Subst.t ] let unify a b = let result = [%log debug "unification start: %s =.= %s" (to_string a) (to_string b)]; let* subst = Subst.build a b in let a' = Subst.apply ~lookup:Bndmap.find_left subst a in let b' = Subst.apply ~lookup:Bndmap.find_right subst b in [%log debug "checking for alpha equivalence: %s = %s" (to_string a') (to_string b')]; if equal a' b' then Ok (a', subst) else Error (fail a' b') in match result with | Ok (u, _) -> [%log debug "unification success: %s =.= %s => %s" (to_string a) (to_string b) (to_string u)]; result | Error _ -> [%log debug "unification failure: %s =/= %s" (to_string a) (to_string b)]; result let ( =.= ) a b = unify a b |> Result.map fst let ( =?= ) a b = unify a b |> Result.is_ok end end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>