package tezos-plonk
Plonk zero-knowledge proving system
Install
Dune Dependency
Authors
Maintainers
Sources
privacy-team-v1.0.1.tar.gz
md5=03d6ca5fb1c6865b6628e0dd49575895
sha512=20494d1d00ded43f3625e06e037d3bad04f0a7320914b542b882d3d0293c9b02845b7ca9ee4ff0eb8ea495eff5633016861c39370cca92c12aacae0e84483ca4
doc/src/tezos-plonk/permutation_gate.ml.html
Source file permutation_gate.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) module L = Plompiler.LibCircuit module Permutation_gate_impl (PP : Polynomial_protocol.S with type PC.Scalar.t = Plompiler.S.t) = struct module PP = PP module Domain = PP.PC.Polynomial.Domain module Poly = PP.PC.Polynomial.Polynomial module Scalar = PP.PC.Scalar module Commitment = PP.PC.Commitment module Fr_generation = PP.PC.Fr_generation module Evaluations = PP.Evaluations let z_name = "Z" let zg_name = "Zg" (* element preprocessed and known by both prover and verifier *) type public_parameters = { g_map_perm_PP : Poly.t SMap.t; cm_g_map_perm_PP : Commitment.t SMap.t; s_poly_map : Poly.t SMap.t; cm_s_poly_map : Commitment.t SMap.t; permutation : int array; } let srs_size ~zero_knowledge ~n = if zero_knowledge then n + 9 else n let one = Scalar.one let zero = Scalar.zero let mone = Scalar.negate one let quadratic_non_residues = Fr_generation.build_quadratic_non_residues 8 let get_k k = if k < 8 then quadratic_non_residues.(k) else raise (Invalid_argument "Permutation.get_k : k must be lower than 8.") module Preprocessing = struct (* returns l1 polynomial such that l1(generator) = 1 & l1(a) = 0 for all a != generator in H *) let l1 domain = let size_domain = Domain.length domain in let scalar_list = Array.append [| zero; one |] Array.(init (size_domain - 2) (fun _ -> zero)) in Evaluations.interpolation_fft2 domain scalar_list (* returns [sid_0, …, sid_k] *) let sid_list_non_quadratic_residues size = if size > 8 then raise (Failure "sid_list_non_quadratic_residues: sid list too long") else List.init size (fun i -> Poly.of_coefficients [ (get_k i, 1) ]) let sid_map_non_quadratic_residues_prover size = if size > 8 then raise (Failure "sid_map_non_quadratic_residues: sid map too long") else SMap.of_list (List.init size (fun i -> let k = get_k i in ("Si" ^ string_of_int (i + 1), Poly.of_coefficients [ (k, 1) ]))) let evaluations_sid size domain_evals = SMap.of_list (List.init size (fun i -> let k = get_k i in let evals = Evaluations.mul_by_scalar k (Evaluations.of_domain domain_evals) in ("Si" ^ string_of_int (i + 1), evals))) let ssigma_map_non_quadratic_residues ~prefix permutation domain size = let n = Domain.length domain in let ssigma_map = SMap.of_list (List.init size (fun i -> let offset = i * n in let coeff_list = Array.init n (fun j -> let s_ij = permutation.(offset + j) in let coeff = get_k (s_ij / n) in let index = s_ij mod n in Scalar.mul coeff (Domain.get domain index)) in ( prefix ^ "Ss" ^ string_of_int (i + 1), Evaluations.interpolation_fft2 domain coeff_list ))) in ssigma_map end module Permutation_poly = struct (* compute f' & g' = (f + β×Sid + γ) & (g + β×Sσ + γ) products with Z *) (* compute_prime computes the following z_name * (w_1 + beta * s_1 + gamma) * ... * (w_n + beta * s_n + gamma) - z_name could be either "Z" or "Zg" - evaluations contains "Z" but not "Zg" - if z_name = "Zg", we compute "Zg" as composition_gx of "Z" with 1 *) let compute_prime ~prefix res_evaluation tmp_evaluation tmp2_evaluation beta gamma evaluations wire_names s_names this_z_name n = let z_evaluation = Evaluations.find_evaluation evaluations (prefix z_name) in let _i, res_evaluation = let f_fold (i, acc_evaluation) wire_name s_name = let comp = if i = 0 && this_z_name = zg_name then 1 else 0 in let res_evaluation = (* tmp_evaluation <- wire_name + beta * s_name + gamma *) let evaluation_linear_i = Evaluations.linear ~res:tmp_evaluation ~evaluations ~poly_names:[ wire_name; s_name ] ~linear_coeffs:[ one; beta ] ~add_constant:gamma () in (* tmp2_evaluation <- acc_evaluation * evaluation_linear_i *) let acc_evaluation_new = Evaluations.mul_c ~res:tmp2_evaluation ~evaluations:[ evaluation_linear_i; acc_evaluation ] ~composition_gx:([ 0; comp ], n) () in Evaluations.copy ~res:res_evaluation acc_evaluation_new in (i + 1, res_evaluation) in List.fold_left2 f_fold (0, z_evaluation) wire_names s_names in res_evaluation (* evaluations must contain z’s evaluation *) let precompute_perm_identity_poly ~prefix wire_names beta gamma n evaluations = let z_evaluation = Evaluations.find_evaluation evaluations (prefix z_name) in let z_evaluation_len = Evaluations.length z_evaluation in let tmp_evaluation = Evaluations.create z_evaluation_len in let tmp2_evaluation = Evaluations.create z_evaluation_len in let id1_evaluation = Evaluations.create z_evaluation_len in let id2_evaluation = Evaluations.create z_evaluation_len in let wire_names = List.map prefix wire_names in let identity_zfg = let nb_wires = List.length wire_names in (* changes f (resp g) array to f'(resp g') array, and multiply them together and with z (resp zg) *) let f_evaluation = let sid_names = List.init nb_wires (fun i -> "Si" ^ string_of_int (i + 1)) in compute_prime ~prefix tmp_evaluation id2_evaluation tmp2_evaluation beta gamma evaluations wire_names sid_names z_name n in let g_evaluation = let ss_names = List.init nb_wires (fun i -> prefix @@ "Ss" ^ string_of_int (i + 1)) in compute_prime ~prefix id2_evaluation id1_evaluation tmp2_evaluation beta gamma evaluations wire_names ss_names zg_name n in Evaluations.linear_c ~res:id1_evaluation ~evaluations:[ f_evaluation; g_evaluation ] ~linear_coeffs:[ one; mone ] () in let identity_l1_z = let l1_evaluation = Evaluations.find_evaluation evaluations "L1" in let z_mone_evaluation = Evaluations.linear_c ~res:tmp_evaluation ~evaluations:[ z_evaluation ] ~add_constant:mone () in Evaluations.mul_c ~res:id2_evaluation ~evaluations:[ l1_evaluation; z_mone_evaluation ] () in SMap.of_list [ (prefix "Perm.a", identity_l1_z); (prefix "Perm.b", identity_zfg) ] (* compute_Z performs the following steps in the two loops. ---------------------- | f_11 f_21 ... f_k1 | -> f_prod_1 (no need to compute as Z(g) is always one) | f_12 f_22 ... f_k2 | -> f_prod_2 = f_12 * f_22 * ... * f_k2 | ........... | -> ... | f_1n f_2n ... f_kn | -> f_prod_n = f_1n * f_2n * ... * f_kn -------------------- 1. compute f_res = [ f_prod_1; f_prod_2; ...; f_prod_n ] 2. compute g_res = [ g_prod_1; g_prod_2; ...; g_prod_n ] 3. compute f_over_g = [ f_prod_1 / g_prod_1; ...; f_prod_n / g_prod_n ] 4. apply fold_mul_array to f_over_g: [f_over_g_1; f_over_g_1 * f_over_g_2; ..; f_over_g_1 * f_over_g_2 * .. * f_over_n ] 5. as step 4 computes [Z(g); Z(g^2); ..; Z(g^n)], we need to do a rotate right by 1 (i.e., composition_gx with n - 1): [Z(g^n); Z(g); Z(g^2); ..; Z(g^{n-1})] *) let compute_Z s domain beta gamma values indices = let size_domain = Domain.length domain in let scalar_array_Z = let indices = Array.of_list (List.map snd (SMap.bindings indices)) in let size_res = Array.length indices.(0) in assert (size_res = size_domain); let g_res = Array.init size_res (fun _ -> Scalar.zero) in let f_prev = ref Scalar.one in let f_res = ref Scalar.one in let tmp = Scalar.(copy one) in (* the first element of scalar_array_Z is always one *) for i = 1 to size_res - 1 do for j = 0 to Array.length indices - 1 do let indices_list_j_i = indices.(j).(i) in let v_gamma = Scalar.add gamma @@ Evaluations.get values indices_list_j_i in let f_coeff = let gi = Domain.get domain i in Scalar.( mul_inplace tmp gi (get_k j); mul_inplace gi tmp beta; add_inplace gi gi v_gamma; gi) in let g_coeff = let sj = s.((j * size_domain) + i) in let gj = Domain.get domain (sj mod size_domain) in Scalar.( mul_inplace tmp gj (get_k (Int.div sj size_domain)); mul_inplace gj tmp beta; add_inplace gj gj v_gamma; gj) in if j = 0 then ( f_res := f_coeff; g_res.(i) <- g_coeff) else Scalar.( mul_inplace !f_res !f_res f_coeff; mul_inplace g_res.(i) g_res.(i) g_coeff) done; let f_over_g = Scalar.div_exn !f_res g_res.(i) in Scalar.( mul_inplace f_over_g f_over_g !f_prev; g_res.(i) <- !f_prev; f_prev := f_over_g) done; g_res.(0) <- !f_prev; g_res in Evaluations.interpolation_fft2 domain scalar_array_Z end (* max degree needed is the degree of Perm.b, which is sum of wire’s degree plus z degree *) let polynomials_degree ~nb_wires = nb_wires + 1 (* d = polynomials’ max degree n = generator’s order Returns SRS of decent size, preprocessed polynomials for permutation and their commitments (g_map_perm, cm_g_map_perm (="L1" -> L₁, preprocessed polynomial for verify perm’s identity), s_poly_map, cm_s_poly_map) & those for PP (g_map_PP, cm_g_map_PP) permutation for ssigma_list computation is deducted of cycles Details for SRS size : max size needed is deg(T)+1 v polynomials all have degree 1 according to identities_list_perm[0], t has max degree of Z×fL×fR×fO ; interpolation makes polynomials of degree n-1, so Z has degree of X²×Zh = X²×(X^n - 1) which is n+2, and each f has degree of X×Zh so n+1 As a consequence, deg(T)-deg(Zs) = (n+2)+3(n+1) - n = 3n+5 (for gates’ identity verification, max degree is degree of qM×fL×fR which is (n-1)+(n+1)+(n+1) < 3n+5) *) let preprocessing ?(circuit_name = "") ~domain ~permutation ~nb_wires () = let prefix = SMap.Aggregation.add_prefix circuit_name "" in Preprocessing.ssigma_map_non_quadratic_residues ~prefix permutation domain nb_wires let common_preprocessing ~compute_l1 ~domain ~nb_wires ~domain_evals = let sid_evals = Preprocessing.evaluations_sid nb_wires domain_evals in let g_map_perm_PP = if not compute_l1 then SMap.empty else SMap.singleton "L1" (Preprocessing.l1 domain) in (g_map_perm_PP, sid_evals) let prover_identities ?(circuit_name = "") ~wire_names ~generator:_ ~beta ~gamma ~n () : PP.prover_identities = let prefix = SMap.Aggregation.add_prefix circuit_name in fun evaluations -> Permutation_poly.precompute_perm_identity_poly ~prefix wire_names beta gamma n evaluations let verifier_identities ?(circuit_name = "") ~nb_proofs ~generator ~n ~wire_names ~beta ~gamma ~delta () : PP.verifier_identities = let prefix = SMap.Aggregation.add_prefix circuit_name in let prefix_j j = SMap.Aggregation.add_prefix ~n:nb_proofs ~i:j circuit_name in fun x answers -> let get_ss i = PP.(get_answer answers X (prefix @@ "Ss" ^ string_of_int (i + 1))) in (* compute the delta-aggregated wire evaluations at x for each wire name *) let batched = let wire_j w j = PP.(get_answer answers X @@ prefix_j j w) in List.map (fun w -> Fr_generation.batch delta (List.init nb_proofs (wire_j w))) wire_names in let z = PP.(get_answer answers X (prefix z_name)) in let zg = PP.(get_answer answers GX (prefix z_name)) in (* compute the first identity: (Z(x) - 1) * L1(x) *) let res1 = let n = Z.of_int n in let l1_num = Scalar.(generator * sub (pow x n) one) in let l1_den = Scalar.(of_z n * sub x generator) in Scalar.(sub z one * div_exn l1_num l1_den) in (* compute the second identity *) let res2 = let z_factors = List.mapi Scalar.(fun i w -> w + (beta * get_k i * x) + gamma) batched in let zg_factors = List.mapi Scalar.(fun i w -> w + (beta * get_ss i) + gamma) batched in let multiply l = List.fold_left Scalar.mul (List.hd l) (List.tl l) in Scalar.sub (multiply @@ (z :: z_factors)) (multiply @@ (zg :: zg_factors)) in SMap.of_list [ (prefix "Perm.a", res1); (prefix "Perm.b", res2) ] let f_map_contribution ~permutation ~values ~indices ~beta ~gamma ~domain = let z_poly = Permutation_poly.compute_Z permutation domain beta gamma values indices in SMap.of_list [ (z_name, z_poly) ] let cs ~sum_alpha_i ~l1 ~ss1 ~ss2 ~ss3 ~beta ~gamma ~delta ~x ~z ~zg ~wires = let open L in let a_list, b_list, c_list = let rec aux (acc_a, acc_b, acc_c) = function | [] -> List.(rev acc_a, rev acc_b, rev acc_c) | [ a; b; c ] :: tl -> aux (a :: acc_a, b :: acc_b, c :: acc_c) tl | _ -> failwith "Unexpected wires format" in aux ([], [], []) wires in let* cs_perm_a = Num.custom ~qr:Scalar.(negate one) ~qm:Scalar.(one) z l1 in let* a = sum_alpha_i a_list delta in let* b = sum_alpha_i b_list delta in let* c = sum_alpha_i c_list delta in let* betaid1 = Num.mul ~qm:(get_k 0) beta x in let* betaid2 = Num.mul ~qm:(get_k 1) beta x in let* betaid3 = Num.mul ~qm:(get_k 2) beta x in let* betasigma1 = Num.mul beta ss1 in let* betasigma2 = Num.mul beta ss2 in let* betasigma3 = Num.mul beta ss3 in let* aid = Num.add_list (to_list [ a; betaid1; gamma ]) in let* bid = Num.add_list (to_list [ b; betaid2; gamma ]) in let* cid = Num.add_list (to_list [ c; betaid3; gamma ]) in let* asigma = Num.add_list (to_list [ a; betasigma1; gamma ]) in let* bsigma = Num.add_list (to_list [ b; betasigma2; gamma ]) in let* csigma = Num.add_list (to_list [ c; betasigma3; gamma ]) in let* left_term = Num.mul_list (to_list [ aid; bid; cid; z ]) in let* right_term = Num.mul_list (to_list [ asigma; bsigma; csigma; zg ]) in let* cs_perm_b = Num.add ~qr:Scalar.(negate one) left_term right_term in ret (cs_perm_a, cs_perm_b) end module type S = sig module PP : Polynomial_protocol.S val z_name : string val zg_name : string val srs_size : zero_knowledge:bool -> n:int -> int val polynomials_degree : nb_wires:int -> int val preprocessing : ?circuit_name:string -> domain:PP.PC.Polynomial.Domain.t -> permutation:int array -> nb_wires:int -> unit -> PP.PC.Polynomial.Polynomial.t SMap.t val common_preprocessing : compute_l1:bool -> domain:PP.PC.Polynomial.Domain.t -> nb_wires:int -> domain_evals:PP.Evaluations.domain -> PP.PC.Polynomial.Polynomial.t SMap.t * PP.Evaluations.t SMap.t val prover_identities : ?circuit_name:string -> wire_names:string list -> generator:PP.PC.Scalar.t -> beta:PP.PC.Scalar.t -> gamma:PP.PC.Scalar.t -> n:int -> unit -> PP.prover_identities val verifier_identities : ?circuit_name:string -> nb_proofs:int -> generator:PP.PC.Scalar.t -> n:int -> wire_names:string list -> beta:PP.PC.Scalar.t -> gamma:PP.PC.Scalar.t -> delta:PP.PC.Scalar.t -> unit -> PP.verifier_identities val f_map_contribution : permutation:int array -> values:PP.Evaluations.t -> indices:int array SMap.t -> beta:PP.PC.Scalar.t -> gamma:PP.PC.Scalar.t -> domain:PP.PC.Polynomial.Domain.t -> PP.PC.Polynomial.Polynomial.t SMap.t val cs : sum_alpha_i:(L.scalar L.repr list -> L.scalar L.repr -> L.scalar L.repr L.t) -> l1:L.scalar L.repr -> ss1:L.scalar L.repr -> ss2:L.scalar L.repr -> ss3:L.scalar L.repr -> beta:L.scalar L.repr -> gamma:L.scalar L.repr -> delta:L.scalar L.repr -> x:L.scalar L.repr -> z:L.scalar L.repr -> zg:L.scalar L.repr -> wires:L.scalar L.repr list list -> (L.scalar L.repr * L.scalar L.repr) L.t end module Permutation_gate (PP : Polynomial_protocol.S with type PC.Scalar.t = Plompiler.S.t) : S with module PP = PP = Permutation_gate_impl (PP)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>