package tezos-crypto-dal
DAL cryptographic primitives
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-16.0.tar.gz
sha256=ad9e08819871c75ba6f4530b125f7d157799398e4d77a1e6bfea9d91ff37ff55
sha512=c5dc4d40cc09bc6980fbbdb5c2e105bf4252cf9cfcb2b49660b0ebe4dc789f6709ec3b3bf2f87d81580d3eed9521eeb1c960f24d9b14eb0285aaba1f84d10a9b
doc/src/tezos-crypto-dal/cryptobox.ml.html
Source file cryptobox.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Error_monad include Cryptobox_intf module Base58 = Tezos_crypto.Base58 module Srs_g1 = Bls12_381_polynomial.Srs.Srs_g1 module Srs_g2 = Bls12_381_polynomial.Srs.Srs_g2 type error += Failed_to_load_trusted_setup of string let () = register_error_kind `Permanent ~id:"dal.node.trusted_setup_loading_failed" ~title:"Trusted setup loading failed" ~description:"Trusted setup failed to load" ~pp:(fun ppf msg -> Format.fprintf ppf "Trusted setup failed to load: %s" msg) Data_encoding.(obj1 (req "msg" string)) (function | Failed_to_load_trusted_setup parameter -> Some parameter | _ -> None) (fun parameter -> Failed_to_load_trusted_setup parameter) type initialisation_parameters = {srs_g1 : Srs_g1.t; srs_g2 : Srs_g2.t} (* Initialisation parameters are supposed to be instantiated once. *) let initialisation_parameters = ref None type error += Dal_initialisation_twice (* This function is expected to be called once. *) let load_parameters parameters = let open Result_syntax in match !initialisation_parameters with | None -> initialisation_parameters := Some parameters ; return_unit | Some _ -> fail [Dal_initialisation_twice] (* FIXME https://gitlab.com/tezos/tezos/-/issues/3400 An integrity check is run to ensure the validity of the files. *) let initialisation_parameters_from_files ~g1_path ~g2_path = let open Lwt_result_syntax in (* FIXME https://gitlab.com/tezos/tezos/-/issues/3409 The `21` constant is the logarithmic size of the file. Can this constant be recomputed? Even though it should be determined by the integrity check. *) let logarithmic_size = 21 in let to_bigstring path = let open Lwt_syntax in let* fd = Lwt_unix.openfile path [Unix.O_RDONLY] 0o440 in Lwt.finalize (fun () -> return (Lwt_bytes.map_file ~fd:(Lwt_unix.unix_file_descr fd) ~shared:false ~size:(1 lsl logarithmic_size) ())) (fun () -> Lwt_unix.close fd) in let*! srs_g1_bigstring = to_bigstring g1_path in let*! srs_g2_bigstring = to_bigstring g2_path in match let open Result_syntax in let* srs_g1 = Srs_g1.of_bigstring srs_g1_bigstring in let* srs_g2 = Srs_g2.of_bigstring srs_g2_bigstring in return (srs_g1, srs_g2) with | Error (`End_of_file s) -> tzfail (Failed_to_load_trusted_setup s) | Error (`Invalid_point p) -> tzfail (Failed_to_load_trusted_setup (Printf.sprintf "Invalid point %i" p)) | Ok (srs_g1, srs_g2) -> return {srs_g1; srs_g2} (* The srs is made of the initialisation_parameters and two well-choosen points. Building the srs from the initialisation parameters is almost cost-free. *) type srs = { raw : initialisation_parameters; kate_amortized_srs_g2_shards : Bls12_381.G2.t; kate_amortized_srs_g2_pages : Bls12_381.G2.t; } module Inner = struct (* Scalars are elements of the prime field Fr from BLS. *) module Scalar = Bls12_381.Fr module Polynomials = Bls12_381_polynomial.Polynomial (* Operations on vector of scalars *) module Evaluations = Bls12_381_polynomial.Evaluations (* Domains for the Fast Fourier Transform (FTT). *) module Domains = Bls12_381_polynomial.Domain type slot = bytes type scalar = Scalar.t type polynomial = Polynomials.t type commitment = Bls12_381.G1.t type shard_proof = Bls12_381.G1.t type commitment_proof = Bls12_381.G1.t type _proof_single = Bls12_381.G1.t type page_proof = Bls12_381.G1.t type page = bytes type shard = {index : int; share : share} type shards_proofs_precomputation = Scalar.t array * page_proof array array module Encoding = struct open Data_encoding let fr_encoding = conv Bls12_381.Fr.to_bytes Bls12_381.Fr.of_bytes_exn (Fixed.bytes Bls12_381.Fr.size_in_bytes) (* FIXME https://gitlab.com/tezos/tezos/-/issues/3391 The commitment is not bounded. *) let g1_encoding = conv Bls12_381.G1.to_compressed_bytes Bls12_381.G1.of_compressed_bytes_exn bytes let _proof_shards_encoding = g1_encoding let _proof_single_encoding = g1_encoding let page_proof_encoding = g1_encoding let = array fr_encoding let shard_encoding = conv (fun {index; } -> (index, share)) (fun (index, ) -> {index; share}) (tup2 int31 share_encoding) let shards_proofs_precomputation_encoding = tup2 (array fr_encoding) (array (array g1_encoding)) end include Encoding module Commitment = struct type t = commitment type Base58.data += Data of t let zero = Bls12_381.G1.zero let equal = Bls12_381.G1.eq let commitment_to_bytes = Bls12_381.G1.to_compressed_bytes let commitment_of_bytes_opt = Bls12_381.G1.of_compressed_bytes_opt let commitment_of_bytes_exn bytes = match Bls12_381.G1.of_compressed_bytes_opt bytes with | None -> Format.kasprintf Stdlib.failwith "Unexpected data (DAL commitment)" | Some commitment -> commitment (* We divide by two because we use the compressed representation. *) let commitment_size = Bls12_381.G1.size_in_bytes / 2 let to_string commitment = commitment_to_bytes commitment |> Bytes.to_string let of_string_opt str = commitment_of_bytes_opt (String.to_bytes str) let b58check_encoding = Base58.register_encoding ~prefix:Base58.Prefix.slot_header ~length:commitment_size ~to_raw:to_string ~of_raw:of_string_opt ~wrap:(fun x -> Data x) let raw_encoding = let open Data_encoding in conv commitment_to_bytes commitment_of_bytes_exn (Fixed.bytes commitment_size) include Tezos_crypto.Helpers.Make (struct type t = commitment let name = "DAL_commitment" let title = "Commitment representation for the DAL" let b58check_encoding = b58check_encoding let raw_encoding = raw_encoding let compare = compare let equal = ( = ) let hash _ = (* The commitment is not hashed. This is ensured by the function exposed. We only need the Base58 encoding and the rpc_arg. *) assert false let seeded_hash _ _ = (* Same argument. *) assert false end) end module Commitment_proof = struct let zero = Bls12_381.G1.zero let to_bytes = Bls12_381.G1.to_compressed_bytes let of_bytes_exn bytes = match Bls12_381.G1.of_compressed_bytes_opt bytes with | None -> Format.kasprintf Stdlib.failwith "Unexpected data (DAL commitment proof)" | Some proof -> proof (* We divide by two because we use the compressed representation. *) let size = Bls12_381.G1.size_in_bytes / 2 let raw_encoding = let open Data_encoding in conv to_bytes of_bytes_exn (Fixed.bytes size) let encoding = raw_encoding end (* Number of bytes fitting in a Scalar.t. Since scalars are integer modulo r~2^255, we restrict ourselves to 248-bit integers (31 bytes). *) let scalar_bytes_amount = Scalar.size_in_bytes - 1 (* Builds group of nth roots of unity, a valid domain for the FFT. *) let make_domain n = Domains.build_power_of_two Z.(log2up (of_int n)) type t = { redundancy_factor : int; slot_size : int; page_size : int; number_of_shards : int; k : int; n : int; (* k and n are the parameters of the erasure code. *) domain_k : Domains.t; (* Domain for the FFT on slots as polynomials to be erasure encoded. *) domain_2k : Domains.t; domain_n : Domains.t; (* Domain for the FFT on erasure encoded slots (as polynomials). *) shard_size : int; (* Length of a shard in terms of scalar elements. *) pages_per_slot : int; (* Number of slot pages. *) page_length : int; remaining_bytes : int; evaluations_log : int; (* Log of the number of evaluations that constitute an erasure encoded polynomial. *) evaluations_per_proof_log : int; (* Log of the number of evaluations contained in a shard. *) proofs_log : int; (* Log of th number of shards proofs. *) srs : srs; } let ensure_validity t = let open Result_syntax in let srs_size = Srs_g1.size t.srs.raw.srs_g1 in let srs_size_g2 = Srs_g2.size t.srs.raw.srs_g2 in let is_pow_of_two x = let logx = Z.(log2 (of_int x)) in 1 lsl logx = x in if not (is_pow_of_two t.slot_size && is_pow_of_two t.page_size && is_pow_of_two t.n) then (* According to the specification the lengths of a slot page are in MiB *) fail (`Fail "Wrong slot size: expected MiB") else if not (t.page_size >= 32 && t.page_size <= t.slot_size) then (* The size of a page must be greater than 31 bytes (32 > 31 is the next power of two), the size in bytes of a scalar element, and less than [t.slot_size]. *) fail (`Fail "Wrong page size") else if not (Z.(log2 (of_int t.n)) <= 32 && is_pow_of_two t.k && t.n > t.k) then (* n must be at most 2^32, the biggest subgroup of 2^i roots of unity in the multiplicative group of Fr, because the FFTs operate on such groups. *) fail (`Fail "Wrong computed size for n") else if t.k > srs_size then (* the committed polynomials have degree t.k - 1 at most, so t.k coefficients. *) fail (`Fail (Format.asprintf "SRS on G1 size is too small. Expected more than %d. Got %d" t.k srs_size)) else if t.k > Srs_g2.size t.srs.raw.srs_g2 then fail (`Fail (Format.asprintf "SRS on G2 size is too small. Expected more than %d. Got %d" t.k srs_size_g2)) else return t let slot_as_polynomial_length ~slot_size = 1 lsl Z.(log2up (succ (of_int slot_size / of_int scalar_bytes_amount))) type parameters = { redundancy_factor : int; page_size : int; slot_size : int; number_of_shards : int; } let parameters_encoding = let open Data_encoding in conv (fun {redundancy_factor; page_size; slot_size; number_of_shards} -> (redundancy_factor, page_size, slot_size, number_of_shards)) (fun (redundancy_factor, page_size, slot_size, number_of_shards) -> {redundancy_factor; page_size; slot_size; number_of_shards}) (obj4 (req "redundancy_factor" uint8) (req "page_size" uint16) (req "slot_size" int31) (req "number_of_shards" uint16)) let pages_per_slot {slot_size; page_size; _} = slot_size / page_size (* Error cases of this functions are not encapsulated into `tzresult` for modularity reasons. *) let make ({redundancy_factor; slot_size; page_size; number_of_shards} as parameters) = let open Result_syntax in let k = slot_as_polynomial_length ~slot_size in let n = redundancy_factor * k in let shard_size = n / number_of_shards in let evaluations_log = Z.(log2 (of_int n)) in let evaluations_per_proof_log = Z.(log2 (of_int shard_size)) in let page_length = Int.div page_size scalar_bytes_amount + 1 in let* srs = match !initialisation_parameters with | None -> fail (`Fail "Dal_cryptobox.make: DAL was not initialisated.") | Some raw -> return { raw; kate_amortized_srs_g2_shards = Srs_g2.get raw.srs_g2 (1 lsl evaluations_per_proof_log); kate_amortized_srs_g2_pages = Srs_g2.get raw.srs_g2 (1 lsl Z.(log2up (of_int page_length))); } in let t = { redundancy_factor; slot_size; page_size; number_of_shards; k; n; domain_k = make_domain k; domain_2k = make_domain (2 * k); domain_n = make_domain n; shard_size; pages_per_slot = pages_per_slot parameters; page_length; remaining_bytes = page_size mod scalar_bytes_amount; evaluations_log; evaluations_per_proof_log; proofs_log = evaluations_log - evaluations_per_proof_log; srs; } in ensure_validity t let parameters ({redundancy_factor; slot_size; page_size; number_of_shards; _} : t) = {redundancy_factor; slot_size; page_size; number_of_shards} let polynomial_degree = Polynomials.degree let polynomial_evaluate = Polynomials.evaluate let fft_mul d ps = let open Evaluations in let evaluations = List.map (evaluation_fft d) ps in interpolation_fft d (mul_c ~evaluations ()) (* We encode by pages of [page_size] bytes each. The pages are arranged in cosets to evaluate in batch with Kate amortized. *) let polynomial_from_bytes' (t : t) slot = if Bytes.length slot <> t.slot_size then Error (`Slot_wrong_size (Printf.sprintf "message must be %d bytes long" t.slot_size)) else let offset = ref 0 in let res = Array.init t.k (fun _ -> Scalar.(copy zero)) in for page = 0 to t.pages_per_slot - 1 do for elt = 0 to t.page_length - 1 do (* [!offset >= t.slot_size] because we don't want to read past the buffer [slot] bounds. *) if !offset >= t.slot_size then () else if elt = t.page_length - 1 then ( let dst = Bytes.create t.remaining_bytes in Bytes.blit slot !offset dst 0 t.remaining_bytes ; offset := !offset + t.remaining_bytes ; res.((elt * t.pages_per_slot) + page) <- Scalar.of_bytes_exn dst) else let dst = Bytes.create scalar_bytes_amount in Bytes.blit slot !offset dst 0 scalar_bytes_amount ; offset := !offset + scalar_bytes_amount ; res.((elt * t.pages_per_slot) + page) <- Scalar.of_bytes_exn dst done done ; Ok res let polynomial_from_slot t slot = let open Result_syntax in let* data = polynomial_from_bytes' t slot in Ok (Evaluations.interpolation_fft2 t.domain_k data) let eval_coset t eval slot offset page = for elt = 0 to t.page_length - 1 do let idx = (elt * t.pages_per_slot) + page in let coeff = Scalar.to_bytes (Array.get eval idx) in if elt = t.page_length - 1 then ( Bytes.blit coeff 0 slot !offset t.remaining_bytes ; offset := !offset + t.remaining_bytes) else ( Bytes.blit coeff 0 slot !offset scalar_bytes_amount ; offset := !offset + scalar_bytes_amount) done (* The pages are arranged in cosets to evaluate in batch with Kate amortized. *) let polynomial_to_bytes t p = let eval = Evaluations.evaluation_fft t.domain_k p |> Evaluations.to_array in let slot = Bytes.init t.slot_size (fun _ -> '0') in let offset = ref 0 in for page = 0 to t.pages_per_slot - 1 do eval_coset t eval slot offset page done ; slot let encode t p = Evaluations.evaluation_fft t.domain_n p |> Evaluations.to_array (* The shards are arranged in cosets to evaluate in batch with Kate amortized. *) let shards_from_polynomial t p = let codeword = encode t p in let len_shard = t.n / t.number_of_shards in let rec loop index seq = if index = t.number_of_shards then seq else let = Array.init len_shard (fun _ -> Scalar.(copy zero)) in for j = 0 to len_shard - 1 do share.(j) <- codeword.((t.number_of_shards * j) + index) done ; loop (index + 1) (Seq.cons {index; share} seq) in loop 0 Seq.empty (* Computes the polynomial N(X) := \sum_{i=0}^{k-1} n_i x_i^{-1} X^{z_i}. *) let compute_n t eval_a' shards = let w = Domains.get t.domain_n 1 in let n_poly = Array.init t.n (fun _ -> Scalar.(copy zero)) in Seq.iter (fun {index; } -> for j = 0 to Array.length share - 1 do let c_i = share.(j) in let z_i = (t.number_of_shards * j) + index in let x_i = Scalar.pow w (Z.of_int z_i) in let tmp = Evaluations.get eval_a' z_i in Scalar.mul_inplace tmp tmp x_i ; (* The call below never fails by construction, so we don't catch exceptions *) Scalar.inverse_exn_inplace tmp tmp ; Scalar.mul_inplace tmp tmp c_i ; n_poly.(z_i) <- tmp done) shards ; n_poly let t = (* FIXME: https://gitlab.com/tezos/tezos/-/issues/4289 Improve shard size computation *) let = t.n / t.number_of_shards in (share_scalar_len * Scalar.size_in_bytes) + 4 let polynomial_from_shards t shards = if t.k > Seq.length shards * t.shard_size then Error (`Not_enough_shards (Printf.sprintf "there must be at least %d shards to decode" (t.k / t.shard_size))) else (* 1. Computing A(x) = prod_{i=0}^{k-1} (x - w^{z_i}). Let w be a primitive nth root of unity and Ω_0 = {w^{number_of_shards j}}_{j=0 to (n/number_of_shards)-1} be the (n/number_of_shards)-th roots of unity and Ω_i = w^i Ω_0. Together, the Ω_i's form a partition of the subgroup of the n-th roots of unity: 𝕌_n = disjoint union_{i ∈ {0, ..., number_of_shards-1}} Ω_i. Let Z_j := Prod_{w ∈ Ω_j} (x − w). For a random set of shards S⊆{0, ..., number_of_shards-1} of length k/shard_size, we reorganize the product A(x) = Prod_{i=0}^{k-1} (x − w^{z_i}) into A(x) = Prod_{j ∈ S} Z_j. Moreover, Z_0 = x^|Ω_0| - 1 since x^|Ω_0| - 1 contains all roots of Z_0 and conversely. Multiplying each term of the polynomial by the root w^j entails Z_j = x^|Ω_0| − w^{j*|Ω_0|}. The intermediate products Z_j have a lower Hamming weight (=2) than when using other ways of grouping the z_i's into shards. This also reduces the depth of the recursion tree of the poly_mul function from log(k) to log(number_of_shards), so that the decoding time reduces from O(k*log^2(k) + n*log(n)) to O(n*log(n)). *) let mul acc i = Polynomials.mul_xn acc t.shard_size (Scalar.negate (Domains.get t.domain_n (i * t.shard_size))) in let partition_products seq = Seq.fold_left (fun (l, r) {index; _} -> (mul r index, l)) (Polynomials.one, Polynomials.one) seq in let shards = (* We always consider the first k codeword vector components. *) Seq.take (t.k / t.shard_size) shards in let p1, p2 = partition_products shards in let a_poly = fft_mul t.domain_2k [p1; p2] in (* 2. Computing formal derivative of A(x). *) let a' = Polynomials.derivative a_poly in (* 3. Computing A'(w^i) = A_i(w^i). *) let eval_a' = Evaluations.evaluation_fft t.domain_n a' in (* 4. Computing N(x). *) let n_poly = compute_n t eval_a' shards in (* 5. Computing B(x). *) let b = Evaluations.interpolation_fft2 t.domain_n n_poly in let b = Polynomials.copy ~len:t.k b in Polynomials.mul_by_scalar_inplace b (Scalar.of_int t.n) b ; (* 6. Computing Lagrange interpolation polynomial P(x). *) let p = fft_mul t.domain_2k [a_poly; b] in let p = Polynomials.copy ~len:t.k p in Polynomials.opposite_inplace p ; Ok p let commit t p = Srs_g1.pippenger t.srs.raw.srs_g1 p (* p(X) of degree n. Max degree that can be committed: d, which is also the SRS's length - 1. We take d = t.k - 1 since we don't want to commit polynomials with degree greater than polynomials to be erasure-encoded. We consider the bilinear groups (G_1, G_2, G_T) with G_1=<g> and G_2=<h>. - Commit (p X^{d-n}) such that deg (p X^{d-n}) = d the max degree that can be committed - Verify: checks if e(commit(p), commit(X^{d-n})) = e(commit(p X^{d-n}), h) using the commitments for p and p X^{d-n}, and computing the commitment for X^{d-n} on G_2. *) (* Proves that degree(p) < t.k *) (* FIXME https://gitlab.com/tezos/tezos/-/issues/4192 Generalize this function to pass the slot_size in parameter. *) let prove_commitment (t : t) p = let max_allowed_committed_poly_degree = t.k - 1 in let max_committable_degree = Srs_g1.size t.srs.raw.srs_g1 - 1 in let offset_monomial_degree = max_committable_degree - max_allowed_committed_poly_degree in (* Note: this reallocates a buffer of size (Srs_g1.size t.srs.raw.srs_g1) (2^21 elements in practice), so roughly 100MB. We can get rid of the allocation by giving an offset for the SRS in Pippenger. *) let p_with_offset = Polynomials.mul_xn p offset_monomial_degree Scalar.(copy zero) in (* proof = commit(p X^offset_monomial_degree), with deg p < t.k *) commit t p_with_offset (* Verifies that the degree of the committed polynomial is < t.k *) let verify_commitment (t : t) cm proof = let max_allowed_committed_poly_degree = t.k - 1 in let max_committable_degree = Srs_g1.size t.srs.raw.srs_g1 - 1 in let offset_monomial_degree = max_committable_degree - max_allowed_committed_poly_degree in let committed_offset_monomial = (* This [get] cannot raise since [offset_monomial_degree <= t.k <= Srs_g2.size t.srs.raw.srs_g2]. *) Srs_g2.get t.srs.raw.srs_g2 offset_monomial_degree in let open Bls12_381 in (* checking that cm * committed_offset_monomial = proof *) Pairing.pairing_check [(cm, committed_offset_monomial); (proof, G2.(negate (copy one)))] let inverse domain = let n = Array.length domain in Array.init n (fun i -> if i = 0 then Bls12_381.Fr.(copy one) else Array.get domain (n - i)) let diff_next_power_of_two x = let logx = Z.log2 (Z.of_int x) in if 1 lsl logx = x then 0 else (1 lsl (logx + 1)) - x let is_pow_of_two x = let logx = Z.log2 (Z.of_int x) in 1 lsl logx = x (* Implementation of fast amortized Kate proofs https://github.com/khovratovich/Kate/blob/master/Kate_amortized.pdf). *) (* Precompute first part of Toeplitz trick, which doesn't depends on the polynomial’s coefficients. *) let preprocess_multi_reveals ~chunk_len ~degree srs = let open Bls12_381 in let l = 1 lsl chunk_len in let k = let ratio = degree / l in let log_inf = Z.log2 (Z.of_int ratio) in if 1 lsl log_inf < ratio then log_inf else log_inf + 1 in let domain = Domains.build_power_of_two k |> Domains.inverse |> inverse in let precompute_srsj j = let quotient = (degree - j) / l in let padding = diff_next_power_of_two (2 * quotient) in let points = Array.init ((2 * quotient) + padding) (fun i -> if i < quotient then G1.copy (Srs_g1.get srs (degree - j - ((i + 1) * l))) else G1.(copy zero)) in G1.fft_inplace ~domain ~points ; points in (domain, Array.init l precompute_srsj) (** Generate proofs of part 3.2. n, r are powers of two, m = 2^(log2(n)-1) coefs are f polynomial’s coefficients [f₀, f₁, f₂, …, fm-1] domain2m is the set of 2m-th roots of unity, used for Toeplitz computation (domain2m, precomputed_srs_part) = preprocess_multi_reveals r n m srs1 *) let multiple_multi_reveals ~chunk_len ~chunk_count ~degree ~preprocess:(domain2m, precomputed_srs_part) coefs = let open Bls12_381 in let n = chunk_len + chunk_count in assert (2 <= chunk_len) ; assert (chunk_len < n) ; assert (is_pow_of_two degree) ; assert (1 lsl chunk_len < degree) ; assert (degree <= 1 lsl n) ; let l = 1 lsl chunk_len in (* We don’t need the first coefficient f₀. *) let compute_h_j j = let rest = (degree - j) mod l in let quotient = (degree - j) / l in (* Padding in case quotient is not a power of 2 to get proper fft in Toeplitz matrix part. *) let padding = diff_next_power_of_two (2 * quotient) in (* fm, 0, …, 0, f₁, f₂, …, fm-1 *) let points = Array.init ((2 * quotient) + padding) (fun i -> if i <= quotient + (padding / 2) then Scalar.(copy zero) else Scalar.copy coefs.(rest + ((i - (quotient + padding)) * l))) in if j <> 0 then points.(0) <- Scalar.copy coefs.(degree - j) ; Scalar.fft_inplace ~domain:domain2m ~points ; Array.map2 G1.mul precomputed_srs_part.(j) points in let sum = compute_h_j 0 in let rec sum_hj j = if j = l then () else let hj = compute_h_j j in (* sum.(i) <- sum.(i) + hj.(i) *) Array.iteri (fun i hij -> sum.(i) <- G1.add sum.(i) hij) hj ; sum_hj (j + 1) in sum_hj 1 ; (* Toeplitz matrix-vector multiplication *) G1.ifft_inplace ~domain:(inverse domain2m) ~points:sum ; let hl = Array.sub sum 0 (Array.length domain2m / 2) in let phidomain = Domains.build_power_of_two chunk_count in let phidomain = inverse (Domains.inverse phidomain) in (* Kate amortized FFT *) G1.fft ~domain:phidomain ~points:hl (* h = polynomial such that h(y×domain[i]) = zi. *) let interpolation_h_poly y domain z_list = Scalar.ifft_inplace ~domain:(Domains.inverse domain) ~points:z_list ; let inv_y = Scalar.inverse_exn y in Array.fold_left_map (fun inv_yi h -> Scalar.(mul inv_yi inv_y, mul h inv_yi)) Scalar.(copy one) z_list |> snd |> Polynomials.of_dense (* Part 3.2 verifier : verifies that f(w×domain.(i)) = evaluations.(i). *) let verify t cm_f srs_point domain (w, evaluations) proof = let open Bls12_381 in let h = interpolation_h_poly w domain evaluations in let cm_h = commit t h in let l = Domains.length domain in let sl_min_yl = G2.(add srs_point (negate (mul (copy one) (Scalar.pow w (Z.of_int l))))) in let diff_commits = G1.(add cm_h (negate cm_f)) in Pairing.pairing_check [(diff_commits, G2.(copy one)); (proof, sl_min_yl)] let precompute_shards_proofs t = preprocess_multi_reveals ~chunk_len:t.evaluations_per_proof_log ~degree:t.k t.srs.raw.srs_g1 let _save_precompute_shards_proofs (preprocess : shards_proofs_precomputation) filename = let chan = open_out_bin filename in output_bytes chan (Data_encoding.Binary.to_bytes_exn Encoding.shards_proofs_precomputation_encoding preprocess) ; close_out_noerr chan let _load_precompute_shards_proofs filename = let chan = open_in_bin filename in let len = Int64.to_int (LargeFile.in_channel_length chan) in let data = Bytes.create len in let () = try really_input chan data 0 len with End_of_file -> () in let precomp = Data_encoding.Binary.of_bytes_exn Encoding.shards_proofs_precomputation_encoding data in close_in_noerr chan ; precomp let prove_shards t p = let preprocess = precompute_shards_proofs t in multiple_multi_reveals ~chunk_len:t.evaluations_per_proof_log ~chunk_count:t.proofs_log ~degree:t.k ~preprocess (Polynomials.to_dense_coefficients p) let verify_shard t cm {index = shard_index; share = shard_evaluations} proof = let d_n = Domains.build_power_of_two t.evaluations_log in let domain = Domains.build_power_of_two t.evaluations_per_proof_log in verify t cm t.srs.kate_amortized_srs_g2_shards domain (Domains.get d_n shard_index, shard_evaluations) proof let _prove_single t p z = let q, _ = Polynomials.( division_xn (p - constant (evaluate p z)) 1 (Scalar.negate z)) in commit t q let _verify_single t cm ~point ~evaluation proof = let h_secret = Srs_g2.get t.srs.raw.srs_g2 1 in Bls12_381.( Pairing.pairing_check [ ( G1.(add cm (negate (mul (copy one) evaluation))), G2.(negate (copy one)) ); (proof, G2.(add h_secret (negate (mul (copy one) point)))); ]) let prove_page t p page_index = if page_index < 0 || page_index >= t.pages_per_slot then Error `Segment_index_out_of_range else let l = 1 lsl Z.(log2up (of_int t.page_length)) in let wi = Domains.get t.domain_k page_index in let quotient, _ = Polynomials.(division_xn p l Scalar.(negate (pow wi (Z.of_int l)))) in Ok (commit t quotient) (* Parses the [slot_page] to get the evaluations that it contains. The evaluation points are given by the [slot_page_index]. *) let verify_page t cm ~page_index page proof = if page_index < 0 || page_index >= t.pages_per_slot then Error `Segment_index_out_of_range else let expected_page_length = t.page_size in let got_page_length = Bytes.length page in if expected_page_length <> got_page_length then Error `Page_length_mismatch else let domain = Domains.build_power_of_two Z.(log2up (of_int t.page_length)) in let slot_page_evaluations = Array.init (1 lsl Z.(log2up (of_int t.page_length))) (function | i when i < t.page_length - 1 -> let dst = Bytes.create scalar_bytes_amount in Bytes.blit page (i * scalar_bytes_amount) dst 0 scalar_bytes_amount ; Scalar.of_bytes_exn dst | i when i = t.page_length - 1 -> let dst = Bytes.create t.remaining_bytes in Bytes.blit page (i * scalar_bytes_amount) dst 0 t.remaining_bytes ; Scalar.of_bytes_exn dst | _ -> Scalar.(copy zero)) in Ok (verify t cm t.srs.kate_amortized_srs_g2_pages domain (Domains.get t.domain_k page_index, slot_page_evaluations) proof) end include Inner module Verifier = Inner module Internal_for_tests = struct let initialisation_parameters_from_slot_size ~slot_size = let size = slot_as_polynomial_length ~slot_size in let secret = Bls12_381.Fr.of_string "20812168509434597367146703229805575690060615791308155437936410982393987532344" in let srs_g1 = Srs_g1.generate_insecure (size + 1) secret in let srs_g2 = Srs_g2.generate_insecure (size + 1) secret in {srs_g1; srs_g2} let load_parameters parameters = initialisation_parameters := Some parameters end module Config = struct type t = {activated : bool; srs_size : int option} let encoding : t Data_encoding.t = let open Data_encoding in conv (fun {activated; srs_size} -> (activated, srs_size)) (fun (activated, srs_size) -> {activated; srs_size}) (obj2 (req "activated" bool) (req "srs_size" (option int31))) let default = {activated = false; srs_size = None} let init_dal ~find_srs_files dal_config = let open Lwt_result_syntax in if dal_config.activated then let* initialisation_parameters = match dal_config.srs_size with | None -> let*? g1_path, g2_path = find_srs_files () in initialisation_parameters_from_files ~g1_path ~g2_path | Some slot_size -> return (Internal_for_tests.initialisation_parameters_from_slot_size ~slot_size) in Lwt.return (load_parameters initialisation_parameters) else return_unit end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>