package swipl
Bindings to SWI-Prolog for OCaml
Install
Dune Dependency
Authors
Maintainers
Sources
swipl-ocaml-v0.5.tar.gz
md5=a4ea377afe5c52496bf445621ad2e02b
sha512=bcb55c99ae6a2308028d813c78e512901e4ab4f1bb6f054a95de044abee9e420ff9100e4bb6e00520977b800039e8e5338739a4b2ace28cbf8961ba415e33230
doc/src/swipl.swipl/raw.ml.html
Source file raw.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
(* SWIPL-OCaml Copyright (C) 2021 Kiran Gopinathan This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. *) module Bindings = Bindings.Stubs(Bindings_stubs) open Ctypes type atom = unit ptr type functor_ = unit ptr type term = Unsigned.ulong type module_ = unit ptr type predicate = unit ptr module CVT = struct type t = int let[@warning "-32"] t = int external ( + ) : t -> t -> t = "%orint" external equal : t -> t -> bool = "%equal" include Bindings.CVT end module Q = struct type t = int let t = int external ( + ) : t -> t -> t = "%orint" external equal : t -> t -> bool = "%equal" include Bindings.Q end module DB = struct type t = int let t = int external equal : t -> t -> bool = "%equal" include Bindings.Database end module File = struct type t = int let t = int external ( + ) : t -> t -> t = "%orint" external equal : t -> t -> bool = "%equal" include Bindings.File end module Action = struct type[@warning "-34"] t = int let t = int (* external ( + ) : t -> t -> t = "%orint" * external equal : t -> t -> bool = "%equal" *) include Bindings.Action end module[@warning "-32"] VersionInfo = struct type t = int let t = int external equal : t -> t -> bool = "%equal" include Bindings.VersionInfo end module Atom = struct type t = atom let compare l r = ptr_compare l r let equal l r = compare l r = 0 let t : t typ = ptr void let atom = Foreign.foreign "PL_new_atom" (string @-> returning t) let chars = Foreign.foreign "PL_atom_chars" (t @-> returning string) let register = Foreign.foreign "PL_register_atom" (t @-> returning void) let unregister = Foreign.foreign "PL_unregister_atom" (t @-> returning void) end module Functor = struct type t = functor_ let compare l r = ptr_compare l r let equal l r = compare l r = 0 let t : t typ = ptr void let functor_ = Foreign.foreign "PL_new_functor" (Atom.t @-> int @-> returning t) let name = Foreign.foreign "PL_functor_name" (t @-> returning Atom.t) let arity = Foreign.foreign "PL_functor_name" (t @-> returning int) end module Term = struct type t = term let t : t typ = ulong type repr = | Variable of t | Atom of Atom.t | Bool of bool | Nil | Blob of t | String of string | Integer of int | Rational of t | Float of float | Compound of Atom.t * repr list | List of repr * repr | Dict of t * (atom -> t option) module Array = struct type nonrec t = term * int let t = t let empty : t = (Unsigned.ULong.zero, 0) let singleton t = (t, 1) let to_array (start, n) = let refs = Array.make n start in for i = 0 to n - 1 do refs.(i) <- Unsigned.ULong.(Infix.(refs.(i) + of_int i)) done; refs let get_unsafe (start,_) i = Unsigned.ULong.(Infix.(start + of_int i)) let get (start,n) i = assert (0 <= i && i < n); Unsigned.ULong.(Infix.(start + of_int i)) end let compare = Foreign.foreign "PL_compare" (t @-> t @-> returning int) let equal l r = compare l r = 0 let (==) = Foreign.foreign "PL_same_compound" (t @-> t @-> returning bool) let new_ref = Foreign.foreign "PL_new_term_ref" (void @-> returning t) let new_refs = Foreign.foreign "PL_new_term_refs" (int @-> returning t) let new_refs n : Array.t = new_refs n, n let copy = Foreign.foreign "PL_copy_term_ref" (t @-> returning t) let reset = Foreign.foreign "PL_reset_term_refs" (t @-> returning void) let get_atom = Foreign.foreign "PL_get_atom" (t @-> ptr Atom.t @-> returning bool) let deref_if_safe fn vl = if fn then Some (!@ vl) else None let deref_if_safe2 fn vl1 vl2 = if fn then Some (!@ vl1, !@ vl2) else None let get_chars = Foreign.foreign "PL_get_chars" (t @-> ptr string @-> int @-> returning bool) let get_chars ?(flags=CVT.all) t = let str = allocate string "" in deref_if_safe (get_chars t str flags) str let get_atom t = let atom = allocate Atom.t null in deref_if_safe (get_atom t atom) atom let get_atom_chars = Foreign.foreign "PL_get_atom_chars" (t @-> ptr string @-> returning bool) let get_atom_chars t = let chars = allocate string "" in deref_if_safe (get_atom_chars t chars) chars let get_string_chars = Foreign.foreign "PL_get_string" (t @-> ptr string @-> ptr int @-> returning bool) let get_string_chars t = let chars = allocate string "" in let len = allocate int 0 in deref_if_safe (get_string_chars t chars len) chars let get_integer = Foreign.foreign "PL_get_integer" (t @-> ptr int @-> returning bool) let get_integer t = let vl = allocate int 0 in deref_if_safe (get_integer t vl) vl let get_long = Foreign.foreign "PL_get_long" (t @-> ptr long @-> returning bool) let get_long t = let vl = allocate long Signed.Long.zero in deref_if_safe (get_long t vl) vl let get_int64 = Foreign.foreign "PL_get_int64" (t @-> ptr int64_t @-> returning bool) let get_int64 t = let vl = allocate int64_t 0L in deref_if_safe (get_int64 t vl) vl let get_bool = Foreign.foreign "PL_get_bool" (t @-> ptr bool @-> returning bool) let get_bool t = let vl = allocate bool false in deref_if_safe (get_bool t vl) vl let get_float = Foreign.foreign "PL_get_float" (t @-> ptr float @-> returning bool) let get_float t = let vl = allocate float 0. in deref_if_safe (get_float t vl) vl let get_functor = Foreign.foreign "PL_get_functor" (t @-> ptr Functor.t @-> returning bool) let get_functor t = let vl = allocate Functor.t null in deref_if_safe (get_functor t vl) vl let get_name_arity = Foreign.foreign "PL_get_name_arity" (t @-> ptr Atom.t @-> ptr int @-> returning bool) let get_name_arity t = let name = allocate Atom.t null in let arity = allocate int 0 in deref_if_safe2 (get_name_arity t name arity) name arity let get_compound_name_arity = Foreign.foreign "PL_get_compound_name_arity" (t @-> ptr Atom.t @-> ptr int @-> returning bool) let get_compound_name_arity t = let name = allocate Atom.t null in let arity = allocate int 0 in deref_if_safe2 (get_compound_name_arity t name arity) name arity let get_arg = Foreign.foreign "PL_get_arg" (int @-> t @-> t @-> returning bool) let get_dict_key = Foreign.foreign "PL_get_dict_key" (Atom.t @-> t @-> t @-> returning bool) let get_list = Foreign.foreign "PL_get_list" (t @-> t @-> t @-> returning bool) let get_head = Foreign.foreign "PL_get_head" (t @-> t @-> returning bool) let get_tail = Foreign.foreign "PL_get_tail" (t @-> t @-> returning bool) let get_nil = Foreign.foreign "PL_get_nil" (t @-> returning bool) let term_type = Foreign.foreign "PL_term_type" (t @-> returning int) let term_type t = match term_type t with | v when v = Bindings.Term.pl_variable -> `Variable | v when v = Bindings.Term.pl_atom -> `Atom | v when v = Bindings.Term.pl_bool -> `Bool | v when v = Bindings.Term.pl_nil -> `Nil | v when v = Bindings.Term.pl_blob -> `Blob | v when v = Bindings.Term.pl_string -> `String | v when v = Bindings.Term.pl_integer -> `Integer | v when v = Bindings.Term.pl_rational -> `Rational | v when v = Bindings.Term.pl_float -> `Float | v when v = Bindings.Term.pl_term -> `Term | v when v = Bindings.Term.pl_list_pair -> `ListPair | v when v = Bindings.Term.pl_dict -> `Dict | d -> failwith ("Unknown term type: " ^ string_of_int d) let rec get t = match term_type t with | `Variable -> Variable t | `Atom -> Atom (get_atom t |> Option.get) | `Bool -> Bool (get_bool t |> Option.get) | `Nil -> Nil | `Blob -> Blob t | `String -> String (get_string_chars t |> Option.get) | `Integer -> Integer (get_integer t |> Option.get) | `Rational -> Rational t | `Float -> Float (get_float t |> Option.get) | `Term -> let name, arity = get_name_arity t |> Option.get in let arr = new_refs arity in let args = List.init arity (fun ind -> let arg = Array.get_unsafe arr ind in assert (get_arg ind t arg); get arg ) in Compound (name, args) | `ListPair -> let ts = new_refs 2 in let hd = Array.get_unsafe ts 0 in let tl = Array.get_unsafe ts 1 in assert (get_list t hd tl); List (get hd, get tl) | `Dict -> let lookup key = let out = new_ref () in if get_dict_key key t out then Some out else (reset out; None) in Dict (t, lookup) (** Returns non-zero if term is a variable. *) let is_variable = Foreign.foreign "PL_is_variable" (t @-> returning bool) (** Returns non-zero if term is a ground term. See also ground/1. This function is cycle-safe. *) let is_ground = Foreign.foreign "PL_is_ground" (t @-> returning bool) (** Returns non-zero if term is an atom. *) let is_atom = Foreign.foreign "PL_is_atom" (t @-> returning bool) (** Returns non-zero if term is a string. *) let is_string = Foreign.foreign "PL_is_string" (t @-> returning bool) (** Returns non-zero if term is an integer. *) let is_integer = Foreign.foreign "PL_is_integer" (t @-> returning bool) (** Returns non-zero if term is a rational number (P/Q). Note that all integers are considered rational and this test thus succeeds for any term for which PL_is_integer() succeeds. See also PL_get_mpq() and PL_unify_mpq(). *) let is_rational = Foreign.foreign "PL_is_rational" (t @-> returning bool) (** Returns non-zero if term is a float. Note that the corresponding PL_get_float() converts rationals (and thus integers). *) let is_float = Foreign.foreign "PL_is_float" (t @-> returning bool) (** Returns non-zero if term is a callable term. See callable/1 for details. *) let is_callable = Foreign.foreign "PL_is_callable" (t @-> returning bool) (** Returns non-zero if term is a compound term. *) let is_compound = Foreign.foreign "PL_is_compound" (t @-> returning bool) (** Returns non-zero if term is compound and its functor is functor. This test is equivalent to PL_get_functor(), followed by testing the functor, but easier to write and faster. *) let is_functor = Foreign.foreign "PL_is_functor" (t @-> returning bool) (** Returns non-zero if term is a compound term using the list constructor or the list terminator. See also PL_is_pair() and PL_skip_list(). *) let is_list = Foreign.foreign "PL_is_list" (t @-> returning bool) (** Returns non-zero if term is a compound term using the list constructor. See also PL_is_list() and PL_skip_list(). *) let is_pair = Foreign.foreign "PL_is_pair" (t @-> returning bool) (** Returns non-zero if term is atomic (not a variable or compound). *) let is_atomic = Foreign.foreign "PL_is_atomic" (t @-> returning bool) (** Returns non-zero if term is an rational (including integers) or float. *) let is_number = Foreign.foreign "PL_is_number" (t @-> returning bool) (** Returns non-zero if term is acyclic (i.e. a finite tree). *) let is_acyclic = Foreign.foreign "PL_is_acyclic" (t @-> returning bool) let put_variable = Foreign.foreign "PL_put_variable" (t @-> returning void) let put_atom = Foreign.foreign "PL_put_atom" (t @-> Atom.t @-> returning void) let put_bool = Foreign.foreign "PL_put_bool" (t @-> bool @-> returning void) let put_atom_chars = Foreign.foreign "PL_put_atom_chars" (t @-> string @-> returning bool) let put_string_chars = Foreign.foreign "PL_put_string_chars" (t @-> string @-> returning bool) let put_integer = Foreign.foreign "PL_put_integer" (t @-> int @-> returning bool) let put_int64 = Foreign.foreign "PL_put_int64" (t @-> int64_t @-> returning bool) let put_uint64 = Foreign.foreign "PL_put_uint64" (t @-> uint64_t @-> returning bool) let put_float = Foreign.foreign "PL_put_float" (t @-> float @-> returning bool) let put_list = Foreign.foreign "PL_put_list" (t @-> returning bool) let put_nil = Foreign.foreign "PL_put_nil" (t @-> returning bool) let put_term = Foreign.foreign "PL_put_term" (t @-> t @-> returning bool) let cons_functor = Foreign.foreign "PL_cons_functor_v" (t @-> Functor.t @-> Array.t @-> returning bool) let cons_functor result fn (args, _) = cons_functor result fn args let cons_functor1 = Foreign.foreign "PL_cons_functor" (t @-> Functor.t @-> t @-> returning bool) let cons_functor2 = Foreign.foreign "PL_cons_functor" (t @-> Functor.t @-> t @-> t @-> returning bool) let cons_functor3 = Foreign.foreign "PL_cons_functor" (t @-> Functor.t @-> t @-> t @-> t @-> returning bool) let cons_functor4 = Foreign.foreign "PL_cons_functor" (t @-> Functor.t @-> t @-> t @-> t @-> t @-> returning bool) let cons_functor5 = Foreign.foreign "PL_cons_functor" (t @-> Functor.t @-> t @-> t @-> t @-> t @-> t @-> returning bool) let cons_functor6 = Foreign.foreign "PL_cons_functor" (t @-> Functor.t @-> t @-> t @-> t @-> t @-> t @-> t @-> returning bool) let cons_functor7 = Foreign.foreign "PL_cons_functor" (t @-> Functor.t @-> t @-> t @-> t @-> t @-> t @-> t @-> t @-> returning bool) let cons_functor8 = Foreign.foreign "PL_cons_functor" (t @-> Functor.t @-> t @-> t @-> t @-> t @-> t @-> t @-> t @-> t @-> returning bool) let cons_functor9 = Foreign.foreign "PL_cons_functor" (t @-> Functor.t @-> t @-> t @-> t @-> t @-> t @-> t @-> t @-> t @-> t @-> returning bool) let cons_functor10 = Foreign.foreign "PL_cons_functor" (t @-> Functor.t @-> t @-> t @-> t @-> t @-> t @-> t @-> t @-> t @-> t @-> t @-> returning bool) let cons_list = Foreign.foreign "PL_cons_list" (t @-> t @-> t @-> returning bool) let put_dict = Foreign.foreign "PL_put_dict" (t @-> Atom.t @-> int @-> ptr Atom.t @-> t @-> returning bool) let put_dict ?(tag=null) t keys (values, len) = let keys = CArray.of_list Atom.t keys in assert (CArray.length keys <= len); put_dict t tag (CArray.length keys) (CArray.start keys) values let unify = Foreign.foreign "PL_unify" (t @-> t @-> returning bool) let unify_atom = Foreign.foreign "PL_unify_atom" (t @-> Atom.t @-> returning bool) let unify_bool = Foreign.foreign "PL_unify_bool" (t @-> bool @-> returning bool) let unify_atom_chars = Foreign.foreign "PL_unify_atom_chars" (t @-> string @-> returning bool) let unify_string_chars = Foreign.foreign "PL_unify_string_chars" (t @-> string @-> returning bool) let unify_integer = Foreign.foreign "PL_unify_integer" (t @-> int @-> returning bool) let unify_int64 = Foreign.foreign "PL_unify_int64" (t @-> int64_t @-> returning bool) let unify_uint64 = Foreign.foreign "PL_unify_uint64" (t @-> uint64_t @-> returning bool) let unify_float = Foreign.foreign "PL_unify_float" (t @-> float @-> returning bool) let unify_functor = Foreign.foreign "PL_unify_functor" (t @-> Functor.t @-> returning bool) let unify_compound = Foreign.foreign "PL_unify_compound" (t @-> Functor.t @-> returning bool) let unify_list = Foreign.foreign "PL_unify_list" (t @-> t @-> t @-> returning bool) let unify_nil = Foreign.foreign "PL_unify_nil" (t @-> returning bool) let unify_arg = Foreign.foreign "PL_unify_arg" (int @-> t @-> t @-> returning bool) let chars_to_term = Foreign.foreign "PL_chars_to_term" (string @-> t @-> returning bool) end module Module = struct type t = module_ let compare l r = ptr_compare l r let equal l r = compare l r = 0 let t : t typ = ptr void let context = Foreign.foreign "PL_context" (void @-> returning t) let strip_module = Foreign.foreign "PL_strip_module" (Term.t @-> ptr t @-> Term.t @-> returning bool) let strip_module ?(module_: t option) raw plain = let module_ = match module_ with None -> null | Some ptr -> ptr in let module_ = allocate t module_ in let result = strip_module raw module_ plain in let data = if result then Some (!@ module_) else None in result, data let module_name = Foreign.foreign "PL_module_name" (t @-> returning Atom.t) let new_module = Foreign.foreign "PL_new_module" (Atom.t @-> returning t) end module Predicate = struct type t = predicate let t : t typ = ptr void let pred = Foreign.foreign "PL_pred" (Functor.t @-> Module.t @-> returning t) let pred ?(module_=null) fn = pred fn module_ let predicate = Foreign.foreign "PL_predicate" (string @-> int @-> string_opt @-> returning t) let predicate ?module_ name arity = predicate name arity module_ let predicate_info = Foreign.foreign "PL_predicate_info" (t @-> ptr Atom.t @-> ptr int @-> ptr Module.t @-> returning void) let predicate_info pred = let name = allocate Atom.t null in let arity = allocate int 0 in let modl = allocate Module.t null in predicate_info pred name arity modl; !@ name, !@ arity, !@ modl end module Query = struct module Result = struct type t = | Bool of bool | Last | Exception let to_bool = function Bool b -> b | Last -> true | Exception -> false let t = view ~read:(function[@warning "-8"] | v when v = Bindings.Result.s_exception -> Exception | v when v = Bindings.Result.s_last -> Last | v when v = Bindings.Result.s_true -> Bool true | v when v = Bindings.Result.s_false -> Bool false | 0 -> Bool false | 1 -> Bool true ) ~write:(function | Bool true -> Bindings.Result.s_true | Bool false -> Bindings.Result.s_true | Last -> Bindings.Result.s_last | Exception -> Bindings.Result.s_exception ) int end type qid = unit ptr let qid = ptr void let open_query = Foreign.foreign "PL_open_query" (Module.t @-> Q.t @-> Predicate.t @-> Term.Array.t @-> returning qid) let open_query ?(module_=null) ?(flags=Q.normal) pred (arg, _) = open_query module_ flags pred arg let next_solution = Foreign.foreign "PL_next_solution" (qid @-> returning Result.t) let cut_query = Foreign.foreign "PL_cut_query" (qid @-> returning bool) let close_query = Foreign.foreign "PL_close_query" (qid @-> returning bool) let current_query = Foreign.foreign "PL_current_query" (void @-> returning qid) let call_predicate = Foreign.foreign "PL_call_predicate" (Module.t @-> Q.t @-> Predicate.t @-> Term.t @-> returning bool) let call_predicate ?(module_=null) ?(flags=Q.normal) pred ((arg, _): Term.Array.t) = call_predicate module_ flags pred arg let call = Foreign.foreign "PL_call" (Term.t @-> Module.t @-> returning bool) let call ?(module_=null) term = call term module_ let yielded = Foreign.foreign "PL_yielded" (qid @-> returning Term.t) let yielded qid = let result = yielded qid in if Unsigned.ULong.(equal zero result) then None else Some result end module ForeignFrame = struct type t = unit ptr let t : t typ = ptr void let open_frame = Foreign.foreign "PL_open_foreign_frame" (void @-> returning t) let close_frame = Foreign.foreign "PL_close_foreign_frame" (t @-> returning void) let discard_frame = Foreign.foreign "PL_discard_foreign_frame" (t @-> returning void) let rewind_frame = Foreign.foreign "PL_rewind_foreign_frame" (t @-> returning void) end module Exception = struct let raise = Foreign.foreign "PL_raise_exception" (Term.t @-> returning bool) let exn = Foreign.foreign "PL_exception" (Query.qid @-> returning Term.t) let exn qid = let result = exn qid in if Unsigned.ULong.(equal zero result) then None else Some result let clear_exn = Foreign.foreign "PL_clear_exception" (void @-> returning void) end module Database = struct let assert_ = Foreign.foreign "PL_assert" (Term.t @-> Module.t @-> DB.t @-> returning bool) let assert_ ?(flags=DB.assertz) ?(module_=null) t = assert_ t module_ flags end module Filename = struct let get_file_name = Foreign.foreign "PL_get_file_name" (Term.t @-> ptr string @-> File.t @-> returning bool) let get_file_name ?(flags=0) t = let res = allocate string "" in if get_file_name t res flags then Some (!@ res) else None end module Env = struct module Flags = struct let get_flag = Foreign.foreign "PL_current_prolog_flag" (Atom.t @-> int @-> ptr void @-> returning bool) let set_flagb = Foreign.foreign "PL_set_prolog_flag" (string @-> int @-> bool @-> returning bool) let set_flagb flag vl = set_flagb flag Bindings.Term.pl_bool vl let get_flagb flag = let vl = allocate bool false in if get_flag flag Bindings.Term.pl_bool (vl |> to_voidp) then Some (!@ vl) else None let set_flaga = Foreign.foreign "PL_set_prolog_flag" (string @-> int @-> Atom.t @-> returning bool) let set_flaga flag vl = set_flaga flag Bindings.Term.pl_atom vl let get_flaga flag = let vl = allocate Atom.t null in if get_flag flag Bindings.Term.pl_atom (vl |> to_voidp) then Some (!@ vl) else None let set_flagi = Foreign.foreign "PL_set_prolog_flag" (string @-> int @-> int @-> returning bool) let set_flagi flag vl = set_flagi flag Bindings.Term.pl_integer vl let get_flagi flag = let vl = allocate int 0 in if get_flag flag Bindings.Term.pl_integer (vl |> to_voidp) then Some (!@ vl) else None let get_flagf flag = let vl = allocate float 0. in if get_flag flag Bindings.Term.pl_float (vl |> to_voidp) then Some (!@ vl) else None let get_flagt flag = let vl = allocate ulong Unsigned.ULong.zero in if get_flag flag Bindings.Term.pl_term (vl |> to_voidp) then Some (!@ vl) else None end module Action = struct let action0 = Foreign.foreign "PL_action" (Action.t @-> returning void) let actioni = Foreign.foreign "PL_action" (Action.t @-> int @-> returning void) let actionb = Foreign.foreign "PL_action" (Action.t @-> bool @-> returning void) let actions = Foreign.foreign "PL_action" (Action.t @-> string @-> returning void) let trace () = action0 Action.action_trace let debug () = action0 Action.action_debug let backtrace n = actioni Action.action_debug n let halt ext = actioni Action.action_halt ext let abort () = action0 Action.action_abort let break () = action0 Action.action_break let guiapp b = actionb Action.action_guiapp b let traditional () = action0 Action.action_traditional let write s = actions Action.action_write s let flush () = action0 Action.action_flush let attach_console () = action0 Action.action_attach_console end (* let info = Foreign.foreign "PL_version_info" (VersionInfo.t @-> returning uint) *) end let license = Foreign.foreign "PL_license" (string @-> Module.t @-> returning void) let initialise = Foreign.foreign "PL_initialise" (int @-> ptr string @-> returning int) let initialise ?args () = let args = match args with | None -> [Sys.argv.(0); "-q"] | Some args -> Sys.argv.(0) :: args in let length = List.length args in let args = CArray.of_list string args in assert (initialise length (CArray.start args) <> 0) let cleanup = Foreign.foreign "PL_cleanup" (int @-> returning void) let cleanup () = cleanup 0
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>