Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Stream.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
open Types open Utils type 'a t = 'a stream = { stream : 'b . ('a, 'b) sink -> 'b } [@@unboxed] (* Adaptors *) let run ~from:(Source src) ~via:{flow} ~into:snk = let (Sink snk) = flow snk in let rec loop r s = if snk.full r then (* Sink is full. We capture the current source state into [init]. This means that the consumers will have to dispose the source if the source leftover is not needed. *) let r' = snk.stop r in let leftover = Source { src with init = (fun () -> s) } in (r', Some leftover) else match src.pull s with | Some (x, s') -> loop (snk.push r x) s' | None -> (* The source was exhausted, stop src and snk. *) src.stop s; let r' = snk.stop r in (r', None) in (* Create the sink state. If this fails, there's nothing we can do. *) let r0 = snk.init () in (* Check if k is full, if so, return (the full src is leftover). *) if snk.full r0 then (snk.stop r0, Some (Source src)) else (* Create the src state. If this fail, we close the snk state. *) let s0 = try src.init () with exn -> let _ = snk.stop r0 in raise exn in try loop r0 s0 with exn -> (* Computation failed, close both (initial) states. *) src.stop s0; let _r' = snk.stop r0 in raise exn let from (Source src) = let stream (Sink k) = (* Loop will terminate both src and k when src is exhausted. *) let rec loop r s = if k.full r then k.stop r else match src.pull s with | None -> src.stop s; k.stop r | Some (x, s') -> loop (k.push r x) s' in (* Create the sink state. If this fails, there's nothing we can do. *) let r0 = k.init () in (* Check if k is full, if so, return (src is not initialized). *) if k.full r0 then k.stop r0 else (* Create the src state. If this fail, we close the snk state. *) let s0 = try src.init () with exn -> let _ = k.stop r0 in raise exn in try loop r0 s0 with exn -> src.stop s0; let _ = k.stop r0 in raise exn in { stream } let into sink this = this.stream sink (* Conv *) let to_list stream = into Sink.list stream let of_list xs = let stream (Sink k) = let rec loop s r = if k.full r then r else match s with | [] -> r | x :: s' -> loop s' (k.push r x) in bracket (loop xs) ~init:k.init ~stop:k.stop in { stream } let to_array stream = into Sink.array stream let of_array xs = from (Source.array xs) let to_string stream = into Sink.(premap (String.make 1) string) stream let of_string xs = from (Source.string xs) (* Sinks *) let each f = into (Sink.each f) let fold f z = into (Sink.fold f z) let is_empty stream = into Sink.is_empty stream let len stream = into Sink.len stream let first stream = into Sink.first stream let last stream = into Sink.last stream let drain stream = into Sink.drain stream (* Creating a stream *) let empty = let stream (Sink k) = k.stop (k.init ()) in { stream } let single x = let stream (Sink r) = r.stop (r.push (r.init ()) x) in { stream } let double x1 x2 = let stream (Sink k) = k.stop (k.push (k.push (k.init ()) x1) x2) in { stream } let triple x1 x2 x3 = let stream (Sink k) = k.stop (k.push (k.push (k.push (k.init ()) x1) x2) x3) in { stream } let unfold s0 pull = from (Source.unfold s0 pull) let generate ~len f = from (Source.generate ~len f) let count n = let stream (Sink k) = let rec loop s r = if k.full r then r else loop (s + 1) (k.push r s) in bracket (loop n) ~init:k.init ~stop:k.stop in { stream } let iterate x f = from (Source.iterate x f) let range ?by:(step=1) n m = if n > m then invalid_arg "Streaming.Stream.range: invalid range" else unfold n (fun i -> if i >= m then None else Some (i, i + step)) let iota n = range 0 n let (-<) n m = range n m let (--) n m = range n (m - 1) let repeat ?times:n x = let stream (Sink k) = match n with | None -> let rec loop r = if k.full r then r else loop (k.push r x) in bracket loop ~init:k.init ~stop:k.stop | Some n -> let rec loop i r = if k.full r || i = n then r else loop (i + 1) (k.push r x) in bracket (loop 0) ~init:k.init ~stop:k.stop in { stream } let repeatedly ?times:n f = let stream (Sink k) = match n with | None -> let rec loop r = if k.full r then r else loop (k.push r (f ())) in bracket loop ~init:k.init ~stop:k.stop | Some n -> let rec loop i r = if k.full r || i = n then r else loop (i + 1) (k.push r (f ())) in bracket (loop 0) ~init:k.init ~stop:k.stop in { stream } (* Combining streams *) let flat_map f this = let stream (Sink k) = let push r x = (f x).stream (Sink { k with init = (fun () -> r); stop = (fun r -> r) }) in this.stream (Sink { k with push }) in { stream } let concat this that = let stream (Sink k) = let stop r = if k.full r then k.stop r else that.stream (Sink {k with init = (fun () -> r)}) in this.stream (Sink { k with stop }) in { stream } let (++) = concat let append x stream = concat stream (single x) let prepend x stream = concat (single x) stream let flatten nested = fold concat empty nested let cycle ?times:(n = -1) this = if n = 0 then empty else if n = 1 then this else let i = ref 1 in let stream (Sink k) = let rec stop r = if k.full r || !i = n then k.stop r else (incr i; this.stream (Sink {k with init = (fun () -> r); stop })) in this.stream (Sink { k with stop }) in { stream } (* let interleave this that = *) (* let stream (Sink k) = *) (* let push acc x = *) (* k.push acc x *) (* in *) (* this.stream (Sink {k with push}) *) (* in *) (* { stream } *) let interpose sep self = let stream (Sink k) = let started = ref false in let push acc x = if !started then let acc = k.push acc sep in if k.full acc then acc else k.push acc x else begin started := true; k.push acc x end in self.stream (Sink {k with push}) in { stream } let via {flow} this = let stream sink = into (flow sink) this in { stream } let map f this = via (Flow.map f) this let filter pred this = via (Flow.filter pred) this let take n this = via (Flow.take n) this let take_while pred this = via (Flow.take_while pred) this let drop n this = via (Flow.drop n) this let drop_while pred this = via (Flow.drop_while pred) this let rest self = drop 1 self let indexed self = let stream (Sink k) = let i = ref 0 in let push acc x = let acc' = k.push acc (!i, x) in incr i; acc' in self.stream (Sink { k with push }) in { stream } (* Groupping *) let partition n self = if n = 0 then empty else let stream (Sink k) = let init () = (k.init (), 0, empty) in let push (r, i, acc) x = if i = n then (k.push r acc, 1, single x) else (r, i + 1, acc ++ single x) in let stop (r, i, acc) = let r' = if i < n then (k.push r acc) else r in k.stop r' in let full (r, _, _) = k.full r in self.stream (Sink { init; push; full; stop }) in { stream } (* How efficient is this for > 1K elements? *) let split ~by:pred self = let stream (Sink k) = let init () = (k.init (), empty) in let push (r, acc) x = if pred x then (k.push r acc, empty) else (r, acc ++ single x) in let stop (r, acc) = k.push r acc |> k.stop in let full (r, _) = k.full r in self.stream (Sink { init; push; full; stop }) in { stream } let group ?equal:(_ =Pervasives.(=)) self = let stream (Sink k) = let push r x = k.push r x in self.stream (Sink { k with push }) in { stream } (* IO *) let of_file path = (* Using a lazy val will avoid opening the file if not needed. *) let ic = lazy (open_in path) in let stream (Sink k) = let rec loop r = if k.full r then r else match input_line (Lazy.force ic) with | x -> loop (k.push r x) | exception End_of_file -> r in let stop r = if Lazy.is_val ic then close_in (Lazy.force ic); k.stop r in bracket loop ~init:k.init ~stop in { stream } let to_file path = into (Sink.file path) let stdin = let stream (Sink k) = let rec loop r = if k.full r then r else try loop (k.push r (input_line Pervasives.stdin)) with End_of_file -> r in bracket loop ~init:k.init ~stop:k.stop in { stream } let stdout = into Sink.stdout let stderr = into Sink.stderr (**/**) let yield x = single x (**/**) module Syntax = struct let yield x = yield x let (let*) t f = flat_map f t end