package smtml
An SMT solver frontend for OCaml
Install
Dune Dependency
Authors
-
JJoão Pereira <joaomhmpereira@tecnico.ulisboa.pt>
-
FFilipe Marques <filipe.s.marques@tecnico.ulisboa.pt>
-
HHichem Rami Ait El Hara <hra@ocamlpro.com>
-
LLéo Andrès <contact@ndrs.fr>
-
AArthur Carcano <arthur.carcano@ocamlpro.com>
-
PPierre Chambart <pierre.chambart@ocamlpro.com>
-
JJosé Fragoso Santos <jose.fragoso@tecnico.ulisboa.pt>
Maintainers
Sources
v0.8.0.tar.gz
md5=f3384afc4c52ea0fcda2b434892f8412
sha512=47a70d32fae1c833b6a4765ab1152b241e1c60078a30c27b4669bb4a7fe499228d5c5783aca4462ed553408fa16488903924bad11b050bb22a985770796f56af
doc/src/smtml/eval.ml.html
Source file eval.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
(* SPDX-License-Identifier: MIT *) (* Copyright (C) 2023-2024 formalsec *) (* Written by the Smtml programmers *) (* Adapted from: *) (* - https://github.com/WebAssembly/spec/blob/main/interpreter/exec/ixx.ml, *) (* - https://github.com/WebAssembly/spec/blob/main/interpreter/exec/fxx.ml, and *) (* - https://github.com/WebAssembly/spec/blob/main/interpreter/exec *) (* TODO: This module should be concrete or a part of the reducer *) type op_type = [ `Unop of Ty.Unop.t | `Binop of Ty.Binop.t | `Relop of Ty.Relop.t | `Triop of Ty.Triop.t | `Cvtop of Ty.Cvtop.t | `Naryop of Ty.Naryop.t ] let pp_op_type fmt = function | `Unop op -> Fmt.pf fmt "unop '%a'" Ty.Unop.pp op | `Binop op -> Fmt.pf fmt "binop '%a'" Ty.Binop.pp op | `Relop op -> Fmt.pf fmt "relop '%a'" Ty.Relop.pp op | `Triop op -> Fmt.pf fmt "triop '%a'" Ty.Triop.pp op | `Cvtop op -> Fmt.pf fmt "cvtop '%a'" Ty.Cvtop.pp op | `Naryop op -> Fmt.pf fmt "naryop '%a'" Ty.Naryop.pp op exception Value of Ty.t (* FIXME: use snake case instead *) exception TypeError of { index : int ; value : Value.t ; ty : Ty.t ; op : op_type ; msg : string } (* FIXME: use snake case instead *) exception DivideByZero exception Conversion_to_integer exception Integer_overflow (* FIXME: use snake case instead *) exception Index_out_of_bounds let of_arg f n v op msg = try f v with Value t -> raise (TypeError { index = n; value = v; ty = t; op; msg }) [@@inline] let err_str n op ty_expected ty_actual = Fmt.str "Argument %d of %a expected type %a but got %a instead." n pp_op_type op Ty.pp ty_expected Ty.pp ty_actual module Int = struct let to_value (i : int) : Value.t = Int i [@@inline] let of_value (n : int) (op : op_type) (v : Value.t) : int = of_arg (function Int i -> i | _ -> raise_notrace (Value Ty_int)) n v op (err_str n op Ty_int (Value.type_of v)) [@@inline] let _str_value (n : int) (op : op_type) (v : Value.t) : string = of_arg (function Str str -> str | _ -> raise_notrace (Value Ty_str)) n v op (err_str n op Ty_str (Value.type_of v)) let unop (op : Ty.Unop.t) (v : Value.t) : Value.t = let f = match op with | Neg -> Int.neg | Not -> Int.lognot | Abs -> Int.abs | _ -> Fmt.failwith {|unop: Unsupported int operator "%a"|} Ty.Unop.pp op in to_value (f (of_value 1 (`Unop op) v)) let exp_by_squaring x n = let rec exp_by_squaring2 y x n = if n < 0 then exp_by_squaring2 y (1 / x) ~-n else if n = 0 then y else if n mod 2 = 0 then exp_by_squaring2 y (x * x) (n / 2) else begin assert (n mod 2 = 1); exp_by_squaring2 (x * y) (x * x) ((n - 1) / 2) end in exp_by_squaring2 1 x n let binop (op : Ty.Binop.t) (v1 : Value.t) (v2 : Value.t) : Value.t = let f = match op with | Add -> Int.add | Sub -> Int.sub | Mul -> Int.mul | Div -> Int.div | Rem -> Int.rem | Pow -> exp_by_squaring | Min -> Int.min | Max -> Int.max | And -> Int.logand | Or -> Int.logor | Xor -> Int.logxor | Shl -> Int.shift_left | ShrL -> Int.shift_right_logical | ShrA -> Int.shift_right | _ -> Fmt.failwith {|binop: Unsupported int operator "%a"|} Ty.Binop.pp op in to_value (f (of_value 1 (`Binop op) v1) (of_value 2 (`Binop op) v2)) let relop (op : Ty.Relop.t) (v1 : Value.t) (v2 : Value.t) : bool = let f = match op with | Lt -> ( < ) | Le -> ( <= ) | Gt -> ( > ) | Ge -> ( >= ) | _ -> Fmt.failwith {|relop: Unsupported int operator "%a"|} Ty.Relop.pp op in f (of_value 1 (`Relop op) v1) (of_value 2 (`Relop op) v2) let of_bool : Value.t -> int = function | True -> 1 | False -> 0 | _ -> assert false [@@inline] let cvtop (op : Ty.Cvtop.t) (v : Value.t) : Value.t = match op with | OfBool -> to_value (of_bool v) | Reinterpret_float -> Int (Int.of_float (match v with Real v -> v | _ -> assert false)) | _ -> Fmt.failwith {|cvtop: Unsupported int operator "%a"|} Ty.Cvtop.pp op end module Real = struct let to_value (v : float) : Value.t = Real v [@@inline] let of_value (n : int) (op : op_type) (v : Value.t) : float = of_arg (function Real v -> v | _ -> raise_notrace (Value Ty_int)) n v op (err_str n op Ty_real (Value.type_of v)) [@@inline] let unop (op : Ty.Unop.t) (v : Value.t) : Value.t = let v = of_value 1 (`Unop op) v in match op with | Neg -> to_value @@ Float.neg v | Abs -> to_value @@ Float.abs v | Sqrt -> to_value @@ Float.sqrt v | Nearest -> to_value @@ Float.round v | Ceil -> to_value @@ Float.ceil v | Floor -> to_value @@ Float.floor v | Trunc -> to_value @@ Float.trunc v | Is_nan -> if Float.is_nan v then Value.True else Value.False | _ -> Fmt.failwith {|unop: Unsupported real operator "%a"|} Ty.Unop.pp op let binop (op : Ty.Binop.t) (v1 : Value.t) (v2 : Value.t) : Value.t = let f = match op with | Add -> Float.add | Sub -> Float.sub | Mul -> Float.mul | Div -> Float.div | Rem -> Float.rem | Min -> Float.min | Max -> Float.max | Pow -> Float.pow | _ -> Fmt.failwith {|binop: Unsupported real operator "%a"|} Ty.Binop.pp op in to_value (f (of_value 1 (`Binop op) v1) (of_value 2 (`Binop op) v2)) let relop (op : Ty.Relop.t) (v1 : Value.t) (v2 : Value.t) : bool = let f = match op with | Lt -> Float.Infix.( < ) | Le -> Float.Infix.( <= ) | Gt -> Float.Infix.( > ) | Ge -> Float.Infix.( >= ) | Eq -> Float.Infix.( = ) | Ne -> Float.Infix.( <> ) | _ -> Fmt.failwith {|relop: Unsupported real operator "%a"|} Ty.Relop.pp op in f (of_value 1 (`Relop op) v1) (of_value 2 (`Relop op) v2) let cvtop (op : Ty.Cvtop.t) (v : Value.t) : Value.t = let op' = `Cvtop op in match op with | ToString -> Str (Float.to_string (of_value 1 op' v)) | OfString -> let v = match v with Str v -> v | _ -> raise_notrace (Value Ty_str) in begin match Float.of_string_opt v with | None -> raise (Invalid_argument "float_of_int") | Some v -> to_value v end | Reinterpret_int -> let v = match v with Int v -> v | _ -> raise_notrace (Value Ty_int) in to_value (float_of_int v) | Reinterpret_float -> Int (Float.to_int (of_value 1 op' v)) | _ -> Fmt.failwith {|cvtop: Unsupported real operator "%a"|} Ty.Cvtop.pp op end module Bool = struct let to_value (b : bool) : Value.t = if b then True else False [@@inline] let of_value (n : int) (op : op_type) (v : Value.t) : bool = of_arg (function | True -> true | False -> false | _ -> raise_notrace (Value Ty_bool) ) n v op (err_str n op Ty_bool (Value.type_of v)) [@@inline] let unop (op : Ty.Unop.t) v = let b = of_value 1 (`Unop op) v in match op with | Not -> to_value (not b) | _ -> Fmt.failwith {|unop: Unsupported bool operator "%a"|} Ty.Unop.pp op let xor b1 b2 = match (b1, b2) with | true, true -> false | true, false -> true | false, true -> true | false, false -> false let binop (op : Ty.Binop.t) v1 v2 = let f = match op with | And -> ( && ) | Or -> ( || ) | Xor -> xor | _ -> Fmt.failwith {|binop: Unsupported bool operator "%a"|} Ty.Binop.pp op in to_value (f (of_value 1 (`Binop op) v1) (of_value 2 (`Binop op) v2)) let triop (op : Ty.Triop.t) c v1 v2 = match op with | Ite -> ( match of_value 1 (`Triop op) c with true -> v1 | false -> v2 ) | _ -> Fmt.failwith {|triop: Unsupported bool operator "%a"|} Ty.Triop.pp op let relop (op : Ty.Relop.t) v1 v2 = match op with | Eq -> Value.equal v1 v2 | Ne -> not (Value.equal v1 v2) | _ -> Fmt.failwith {|relop: Unsupported bool operator "%a"|} Ty.Relop.pp op let naryop (op : Ty.Naryop.t) vs = let b = match op with | Logand -> List.fold_left ( && ) true (List.mapi (fun i -> of_value i (`Naryop op)) vs) | Logor -> List.fold_left ( || ) false (List.mapi (fun i -> of_value i (`Naryop op)) vs) | _ -> Fmt.failwith {|naryop: Unsupported bool operator "%a"|} Ty.Naryop.pp op in to_value b end module Str = struct let to_value (str : string) : Value.t = Str str [@@inline] let of_value (n : int) (op : op_type) (v : Value.t) : string = of_arg (function Str str -> str | _ -> raise_notrace (Value Ty_str)) n v op (err_str n op Ty_str (Value.type_of v)) [@@inline] let replace s t t' = let len_s = String.length s in let len_t = String.length t in let rec loop i = if i >= len_s then s else if i + len_t > len_s then s else if String.equal (String.sub s i len_t) t then let s' = Fmt.str "%s%s" (String.sub s 0 i) t' in let s'' = String.sub s (i + len_t) (len_s - i - len_t) in Fmt.str "%s%s" s' s'' else loop (i + 1) in loop 0 let indexof s sub start = let len_s = String.length s in let len_sub = String.length sub in let max_i = len_s - 1 in let rec loop i = if i > max_i then ~-1 else if i + len_sub > len_s then ~-1 else if String.equal sub (String.sub s i len_sub) then i else loop (i + 1) in if start <= 0 then loop 0 else loop start let contains s sub = if indexof s sub 0 < 0 then false else true let unop (op : Ty.Unop.t) v = let str = of_value 1 (`Unop op) v in match op with | Length -> Int.to_value (String.length str) | Trim -> to_value (String.trim str) | _ -> Fmt.failwith {|unop: Unsupported str operator "%a"|} Ty.Unop.pp op let binop (op : Ty.Binop.t) v1 v2 = let op' = `Binop op in let str = of_value 1 op' v1 in match op with | At -> ( let i = Int.of_value 2 op' v2 in try to_value (Fmt.str "%c" (String.get str i)) with Invalid_argument _ -> raise Index_out_of_bounds ) | String_prefix -> Bool.to_value (String.starts_with ~prefix:str (of_value 2 op' v2)) | String_suffix -> Bool.to_value (String.ends_with ~suffix:str (of_value 2 op' v2)) | String_contains -> Bool.to_value (contains str (of_value 2 op' v2)) | _ -> Fmt.failwith {|binop: Unsupported str operator "%a"|} Ty.Binop.pp op let triop (op : Ty.Triop.t) v1 v2 v3 = let op' = `Triop op in let str = of_value 1 op' v1 in match op with | String_extract -> let i = Int.of_value 2 op' v2 in let len = Int.of_value 3 op' v3 in to_value (String.sub str i len) | String_replace -> let t = of_value 2 op' v2 in let t' = of_value 2 op' v3 in to_value (replace str t t') | String_index -> let t = of_value 2 op' v2 in let i = Int.of_value 3 op' v3 in Int.to_value (indexof str t i) | _ -> Fmt.failwith {|triop: Unsupported str operator "%a"|} Ty.Triop.pp op let relop (op : Ty.Relop.t) v1 v2 = let f = match op with | Lt -> ( < ) | Le -> ( <= ) | Gt -> ( > ) | Ge -> ( >= ) | Eq -> ( = ) | Ne -> ( <> ) | _ -> Fmt.failwith {|relop: Unsupported string operator "%a"|} Ty.Relop.pp op in let f x y = f (String.compare x y) 0 in f (of_value 1 (`Relop op) v1) (of_value 2 (`Relop op) v2) let cvtop (op : Ty.Cvtop.t) v = let op' = `Cvtop op in match op with | String_to_code -> let str = of_value 1 op' v in Int.to_value (Char.code str.[0]) | String_from_code -> let code = Int.of_value 1 op' v in to_value (String.make 1 (Char.chr code)) | String_to_int -> let s = of_value 1 op' v in let i = match int_of_string_opt s with | None -> raise (Invalid_argument "string_to_int") | Some i -> i in Int.to_value i | String_from_int -> to_value (string_of_int (Int.of_value 1 op' v)) | String_to_float -> let s = of_value 1 op' v in let f = match float_of_string_opt s with | None -> raise (Invalid_argument "string_to_float") | Some f -> f in Real.to_value f | _ -> Fmt.failwith {|cvtop: Unsupported str operator "%a"|} Ty.Cvtop.pp op let naryop (op : Ty.Naryop.t) vs = let op' = `Naryop op in match op with | Concat -> to_value (String.concat "" (List.map (of_value 0 op') vs)) | _ -> Fmt.failwith {|naryop: Unsupported str operator "%a"|} Ty.Naryop.pp op end module Lst = struct let of_value (n : int) (op : op_type) (v : Value.t) : Value.t list = of_arg (function List lst -> lst | _ -> raise_notrace (Value Ty_list)) n v op (err_str n op Ty_list (Value.type_of v)) [@@inline] let unop (op : Ty.Unop.t) (v : Value.t) : Value.t = let lst = of_value 1 (`Unop op) v in match op with | Head -> begin match lst with hd :: _tl -> hd | [] -> assert false end | Tail -> begin match lst with _hd :: tl -> List tl | [] -> assert false end | Length -> Int.to_value (List.length lst) | Reverse -> List (List.rev lst) | _ -> Fmt.failwith {|unop: Unsupported list operator "%a"|} Ty.Unop.pp op let binop (op : Ty.Binop.t) v1 v2 = let op' = `Binop op in match op with | At -> let lst = of_value 1 op' v1 in let i = Int.of_value 2 op' v2 in begin (* TODO: change datastructure? *) match List.nth_opt lst i with | None -> raise Index_out_of_bounds | Some v -> v end | List_cons -> List (v1 :: of_value 1 op' v2) | List_append -> List (of_value 1 op' v1 @ of_value 2 op' v2) | _ -> Fmt.failwith {|binop: Unsupported list operator "%a"|} Ty.Binop.pp op let triop (op : Ty.Triop.t) (v1 : Value.t) (v2 : Value.t) (v3 : Value.t) : Value.t = let op' = `Triop op in match op with | List_set -> let lst = of_value 1 op' v1 in let i = Int.of_value 2 op' v2 in let rec set i lst v acc = match (i, lst) with | 0, _ :: tl -> List.rev_append acc (v :: tl) | i, hd :: tl -> set (i - 1) tl v (hd :: acc) | _, [] -> raise Index_out_of_bounds in List (set i lst v3 []) | _ -> Fmt.failwith {|triop: Unsupported list operator "%a"|} Ty.Triop.pp op let naryop (op : Ty.Naryop.t) (vs : Value.t list) : Value.t = let op' = `Naryop op in match op with | Concat -> List (List.concat_map (of_value 0 op') vs) | _ -> Fmt.failwith {|naryop: Unsupported list operator "%a"|} Ty.Naryop.pp op end module I64 = struct let cmp_u x op y = op Int64.(add x min_int) Int64.(add y min_int) [@@inline] let lt_u x y = cmp_u x Int64.Infix.( < ) y [@@inline] end module Bitv = struct let to_value bv : Value.t = Bitv bv [@@inline] let i32_to_value v = to_value @@ Bitvector.of_int32 v let i64_to_value v = to_value @@ Bitvector.of_int64 v let of_value (n : int) (op : op_type) (v : Value.t) : Bitvector.t = let todo = Ty.Ty_bitv 32 in of_arg (function Bitv bv -> bv | _ -> raise_notrace (Value todo)) n v op (err_str n op todo (Value.type_of v)) let i32_of_value n op v = of_value n op v |> Bitvector.to_int32 let i64_of_value n op v = of_value n op v |> Bitvector.to_int64 let unop op bv = let bv = of_value 1 (`Unop op) bv in to_value @@ match op with | Ty.Unop.Neg -> Bitvector.neg bv | Not -> Bitvector.lognot bv | Clz -> Bitvector.clz bv | Ctz -> Bitvector.ctz bv | Popcnt -> Bitvector.popcnt bv | _ -> Fmt.failwith {|unop: Unsupported bitvectore operator "%a"|} Ty.Unop.pp op let binop op bv1 bv2 = let bv1 = of_value 1 (`Binop op) bv1 in let bv2 = of_value 2 (`Binop op) bv2 in to_value @@ match op with | Ty.Binop.Add -> Bitvector.add bv1 bv2 | Sub -> Bitvector.sub bv1 bv2 | Mul -> Bitvector.mul bv1 bv2 | Div -> Bitvector.div bv1 bv2 | DivU -> Bitvector.div_u bv1 bv2 | Rem -> Bitvector.rem bv1 bv2 | RemU -> Bitvector.rem_u bv1 bv2 | And -> Bitvector.logand bv1 bv2 | Or -> Bitvector.logor bv1 bv2 | Xor -> Bitvector.logxor bv1 bv2 | Shl -> Bitvector.shl bv1 bv2 | ShrL -> Bitvector.lshr bv1 bv2 | ShrA -> Bitvector.ashr bv1 bv2 | Rotl -> Bitvector.rotate_left bv1 bv2 | Rotr -> Bitvector.rotate_right bv1 bv2 | _ -> Fmt.failwith {|binop: unsupported bitvector operator "%a"|} Ty.Binop.pp op let relop op bv1 bv2 = let bv1 = of_value 1 (`Relop op) bv1 in let bv2 = of_value 2 (`Relop op) bv2 in match op with | Ty.Relop.Lt -> Bitvector.lt bv1 bv2 | LtU -> Bitvector.lt_u bv1 bv2 | Le -> Bitvector.le bv1 bv2 | LeU -> Bitvector.le_u bv1 bv2 | Gt -> Bitvector.gt bv1 bv2 | GtU -> Bitvector.gt_u bv1 bv2 | Ge -> Bitvector.ge bv1 bv2 | GeU -> Bitvector.ge_u bv1 bv2 | Eq -> Bitvector.equal bv1 bv2 | Ne -> not @@ Bitvector.equal bv1 bv2 end module F32 = struct let to_float (v : int32) : float = Int32.float_of_bits v [@@inline] let of_float (v : float) : int32 = Int32.bits_of_float v [@@inline] let to_value (f : int32) : Value.t = Num (F32 f) [@@inline] let to_value' (f : float) : Value.t = to_value @@ of_float f [@@inline] let of_value (i : int) (op : op_type) (v : Value.t) : int32 = of_arg (function Num (F32 f) -> f | _ -> raise_notrace (Value (Ty_fp 32))) i v op (err_str i op (Ty_fp 32) (Value.type_of v)) [@@inline] let of_value' (i : int) (op : op_type) (v : Value.t) : float = of_value i op v |> to_float [@@inline] (* Stolen from Owi *) let abs x = Int32.logand x Int32.max_int let neg x = Int32.logxor x Int32.min_int let unop (op : Ty.Unop.t) (v : Value.t) : Value.t = let f = to_float @@ of_value 1 (`Unop op) v in match op with | Neg -> to_value @@ neg @@ of_value 1 (`Unop op) v | Abs -> to_value @@ abs @@ of_value 1 (`Unop op) v | Sqrt -> to_value' @@ Float.sqrt f | Nearest -> to_value' @@ Float.round f | Ceil -> to_value' @@ Float.ceil f | Floor -> to_value' @@ Float.floor f | Trunc -> to_value' @@ Float.trunc f | Is_nan -> if Float.is_nan f then Value.True else Value.False | _ -> Fmt.failwith {|unop: Unsupported f32 operator "%a"|} Ty.Unop.pp op (* Stolen from Owi *) let copy_sign x y = Int32.logor (abs x) (Int32.logand y Int32.min_int) let binop (op : Ty.Binop.t) (v1 : Value.t) (v2 : Value.t) : Value.t = let a = of_value' 1 (`Binop op) v1 in let b = of_value' 1 (`Binop op) v2 in match op with | Add -> to_value' @@ Float.add a b | Sub -> to_value' @@ Float.sub a b | Mul -> to_value' @@ Float.mul a b | Div -> to_value' @@ Float.div a b | Rem -> to_value' @@ Float.rem a b | Min -> to_value' @@ Float.min a b | Max -> to_value' @@ Float.max a b | Copysign -> let a = of_value 1 (`Binop op) v1 in let b = of_value 1 (`Binop op) v2 in to_value (copy_sign a b) | _ -> Fmt.failwith {|binop: Unsupported f32 operator "%a"|} Ty.Binop.pp op let relop (op : Ty.Relop.t) (v1 : Value.t) (v2 : Value.t) : bool = let f = match op with | Eq -> Float.Infix.( = ) | Ne -> Float.Infix.( <> ) | Lt -> Float.Infix.( < ) | Le -> Float.Infix.( <= ) | Gt -> Float.Infix.( > ) | Ge -> Float.Infix.( >= ) | _ -> Fmt.failwith {|relop: Unsupported f32 operator "%a"|} Ty.Relop.pp op in f (of_value' 1 (`Relop op) v1) (of_value' 2 (`Relop op) v2) end module F64 = struct let to_float (v : int64) : float = Int64.float_of_bits v [@@inline] let of_float (v : float) : int64 = Int64.bits_of_float v [@@inline] let to_value (f : int64) : Value.t = Num (F64 f) [@@inline] let to_value' (f : float) : Value.t = to_value @@ of_float f [@@inline] let of_value (i : int) (op : op_type) (v : Value.t) : int64 = of_arg (function Num (F64 f) -> f | _ -> raise_notrace (Value (Ty_fp 64))) i v op (err_str i op (Ty_fp 64) (Value.type_of v)) [@@inline] let of_value' (i : int) (op : op_type) (v : Value.t) : float = of_value i op v |> to_float [@@inline] (* Stolen from owi *) let abs x = Int64.logand x Int64.max_int let neg x = Int64.logxor x Int64.min_int let unop (op : Ty.Unop.t) (v : Value.t) : Value.t = let f = of_value' 1 (`Unop op) v in match op with | Neg -> to_value @@ neg @@ of_value 1 (`Unop op) v | Abs -> to_value @@ abs @@ of_value 1 (`Unop op) v | Sqrt -> to_value' @@ Float.sqrt f | Nearest -> to_value' @@ Float.round f | Ceil -> to_value' @@ Float.ceil f | Floor -> to_value' @@ Float.floor f | Trunc -> to_value' @@ Float.trunc f | Is_nan -> if Float.is_nan f then Value.True else Value.False | _ -> Fmt.failwith {|unop: Unsupported f32 operator "%a"|} Ty.Unop.pp op let copy_sign x y = Int64.logor (abs x) (Int64.logand y Int64.min_int) let binop (op : Ty.Binop.t) (v1 : Value.t) (v2 : Value.t) : Value.t = let a = of_value' 1 (`Binop op) v1 in let b = of_value' 1 (`Binop op) v2 in match op with | Add -> to_value' @@ Float.add a b | Sub -> to_value' @@ Float.sub a b | Mul -> to_value' @@ Float.mul a b | Div -> to_value' @@ Float.div a b | Rem -> to_value' @@ Float.rem a b | Min -> to_value' @@ Float.min a b | Max -> to_value' @@ Float.max a b | Copysign -> let a = of_value 1 (`Binop op) v1 in let b = of_value 1 (`Binop op) v2 in to_value @@ copy_sign a b | _ -> Fmt.failwith {|binop: Unsupported f32 operator "%a"|} Ty.Binop.pp op let relop (op : Ty.Relop.t) (v1 : Value.t) (v2 : Value.t) : bool = let f = match op with | Eq -> Float.Infix.( = ) | Ne -> Float.Infix.( <> ) | Lt -> Float.Infix.( < ) | Le -> Float.Infix.( <= ) | Gt -> Float.Infix.( > ) | Ge -> Float.Infix.( >= ) | _ -> Fmt.failwith {|relop: Unsupported f32 operator "%a"|} Ty.Relop.pp op in f (of_value' 1 (`Relop op) v1) (of_value' 2 (`Relop op) v2) end module I32CvtOp = struct (* let extend_s (n : int) (x : int32) : int32 = *) (* let shift = 32 - n in *) (* Int32.(shift_right (shift_left x shift) shift) *) let trunc_f32_s (x : int32) = if Int32.Infix.(x <> x) then raise Conversion_to_integer else let xf = F32.to_float x in if Float.Infix.( xf >= -.Int32.(to_float min_int) || xf < Int32.(to_float min_int) ) then raise Integer_overflow else Int32.of_float xf let trunc_f32_u (x : int32) = if Int32.Infix.(x <> x) then raise Conversion_to_integer else let xf = F32.to_float x in if Float.Infix.(xf >= -.Int32.(to_float min_int) *. 2.0 || xf <= -1.0) then raise Integer_overflow else Int32.of_float xf let trunc_f64_s (x : int64) = if Int64.Infix.(x <> x) then raise Conversion_to_integer else let xf = F64.to_float x in if Float.Infix.( xf >= -.Int64.(to_float min_int) || xf < Int64.(to_float min_int) ) then raise Integer_overflow else Int32.of_float xf let trunc_f64_u (x : int64) = if Int64.Infix.(x <> x) then raise Conversion_to_integer else let xf = F64.to_float x in if Float.Infix.(xf >= -.Int64.(to_float min_int) *. 2.0 || xf <= -1.0) then raise Integer_overflow else Int32.of_float xf let trunc_sat_f32_s x = if Int32.Infix.(x <> x) then 0l else let xf = F32.to_float x in if Float.Infix.(xf < Int32.(to_float min_int)) then Int32.min_int else if Float.Infix.(xf >= -.Int32.(to_float min_int)) then Int32.max_int else Int32.of_float xf let trunc_sat_f32_u x = if Int32.Infix.(x <> x) then 0l else let xf = F32.to_float x in if Float.Infix.(xf <= -1.0) then 0l else if Float.Infix.(xf >= -.Int32.(to_float min_int) *. 2.0) then -1l else Int32.of_float xf let trunc_sat_f64_s x = if Int64.Infix.(x <> x) then 0l else let xf = F64.to_float x in if Float.Infix.(xf < Int64.(to_float min_int)) then Int32.min_int else if Float.Infix.(xf >= -.Int64.(to_float min_int)) then Int32.max_int else Int32.of_float xf let trunc_sat_f64_u x = if Int64.Infix.(x <> x) then 0l else let xf = F64.to_float x in if Float.Infix.(xf <= -1.0) then 0l else if Float.Infix.(xf >= -.Int64.(to_float min_int) *. 2.0) then -1l else Int32.of_float xf let cvtop op v = let op' = `Cvtop op in match op with | Ty.Cvtop.WrapI64 -> Bitv.i32_to_value (Int64.to_int32 (Bitv.i64_of_value 1 op' v)) | TruncSF32 -> Bitv.i32_to_value (trunc_f32_s (F32.of_value 1 op' v)) | TruncUF32 -> Bitv.i32_to_value (trunc_f32_u (F32.of_value 1 op' v)) | TruncSF64 -> Bitv.i32_to_value (trunc_f64_s (F64.of_value 1 op' v)) | TruncUF64 -> Bitv.i32_to_value (trunc_f64_u (F64.of_value 1 op' v)) | Trunc_sat_f32_s -> Bitv.i32_to_value (trunc_sat_f32_s (F32.of_value 1 op' v)) | Trunc_sat_f32_u -> Bitv.i32_to_value (trunc_sat_f32_u (F32.of_value 1 op' v)) | Trunc_sat_f64_s -> Bitv.i32_to_value (trunc_sat_f64_s (F64.of_value 1 op' v)) | Trunc_sat_f64_u -> Bitv.i32_to_value (trunc_sat_f64_u (F64.of_value 1 op' v)) | Reinterpret_float -> Bitv.i32_to_value (F32.of_value 1 op' v) | Sign_extend n -> Bitv.to_value (Bitvector.sign_extend n (Bitv.of_value 1 op' v)) | Zero_extend n -> Bitv.to_value (Bitvector.zero_extend n (Bitv.of_value 1 op' v)) | OfBool -> v (* already a num here *) | ToBool | _ -> Fmt.failwith {|cvtop: Unsupported i32 operator "%a"|} Ty.Cvtop.pp op end module I64CvtOp = struct (* let extend_s n x = *) (* let shift = 64 - n in *) (* Int64.(shift_right (shift_left x shift) shift) *) let extend_i32_u (x : int32) = Int64.(logand (of_int32 x) 0x0000_0000_ffff_ffffL) let trunc_f32_s (x : int32) = if Int32.Infix.(x <> x) then raise Conversion_to_integer else let xf = F32.to_float x in if Float.Infix.( xf >= -.Int64.(to_float min_int) || xf < Int64.(to_float min_int) ) then raise Integer_overflow else Int64.of_float xf let trunc_f32_u (x : int32) = if Int32.Infix.(x <> x) then raise Conversion_to_integer else let xf = F32.to_float x in if Float.Infix.(xf >= -.Int64.(to_float min_int) *. 2.0 || xf <= -1.0) then raise Integer_overflow else if Float.Infix.(xf >= -.Int64.(to_float min_int)) then Int64.(logxor (of_float (xf -. 0x1p63)) min_int) else Int64.of_float xf let trunc_f64_s (x : int64) = if Int64.Infix.(x <> x) then raise Conversion_to_integer else let xf = F64.to_float x in if Float.Infix.( xf >= -.Int64.(to_float min_int) || xf < Int64.(to_float min_int) ) then raise Integer_overflow else Int64.of_float xf let trunc_f64_u (x : int64) = if Int64.Infix.(x <> x) then raise Conversion_to_integer else let xf = F64.to_float x in if Float.Infix.(xf >= -.Int64.(to_float min_int) *. 2.0 || xf <= -1.0) then raise Integer_overflow else if Float.Infix.(xf >= -.Int64.(to_float min_int)) then Int64.(logxor (of_float (xf -. 0x1p63)) min_int) else Int64.of_float xf let trunc_sat_f32_s (x : int32) = if Int32.Infix.(x <> x) then 0L else let xf = F32.to_float x in if Float.Infix.(xf < Int64.(to_float min_int)) then Int64.min_int else if Float.Infix.(xf >= -.Int64.(to_float min_int)) then Int64.max_int else Int64.of_float xf let trunc_sat_f32_u (x : int32) = if Int32.Infix.(x <> x) then 0L else let xf = F32.to_float x in if Float.Infix.(xf <= -1.0) then 0L else if Float.Infix.(xf >= -.Int64.(to_float min_int) *. 2.0) then -1L else if Float.Infix.(xf >= -.Int64.(to_float min_int)) then Int64.(logxor (of_float (xf -. 0x1p63)) min_int) else Int64.of_float xf let trunc_sat_f64_s (x : int64) = if Int64.Infix.(x <> x) then 0L else let xf = F64.to_float x in if Float.Infix.(xf < Int64.(to_float min_int)) then Int64.min_int else if Float.Infix.(xf >= -.Int64.(to_float min_int)) then Int64.max_int else Int64.of_float xf let trunc_sat_f64_u (x : int64) = if Int64.Infix.(x <> x) then 0L else let xf = F64.to_float x in if Float.Infix.(xf <= -1.0) then 0L else if Float.Infix.(xf >= -.Int64.(to_float min_int) *. 2.0) then -1L else if Float.Infix.(xf >= -.Int64.(to_float min_int)) then Int64.(logxor (of_float (xf -. 0x1p63)) min_int) else Int64.of_float xf let cvtop (op : Ty.Cvtop.t) (v : Value.t) : Value.t = let op' = `Cvtop op in match op with | Sign_extend n -> Bitv.to_value (Bitvector.sign_extend n (Bitv.of_value 1 op' v)) | Zero_extend n -> Bitv.to_value (Bitvector.zero_extend n (Bitv.of_value 1 op' v)) | TruncSF32 -> Bitv.i64_to_value (trunc_f32_s (F32.of_value 1 op' v)) | TruncUF32 -> Bitv.i64_to_value (trunc_f32_u (F32.of_value 1 op' v)) | TruncSF64 -> Bitv.i64_to_value (trunc_f64_s (F64.of_value 1 op' v)) | TruncUF64 -> Bitv.i64_to_value (trunc_f64_u (F64.of_value 1 op' v)) | Trunc_sat_f32_s -> Bitv.i64_to_value (trunc_sat_f32_s (F32.of_value 1 op' v)) | Trunc_sat_f32_u -> Bitv.i64_to_value (trunc_sat_f32_u (F32.of_value 1 op' v)) | Trunc_sat_f64_s -> Bitv.i64_to_value (trunc_sat_f64_s (F64.of_value 1 op' v)) | Trunc_sat_f64_u -> Bitv.i64_to_value (trunc_sat_f64_u (F64.of_value 1 op' v)) | Reinterpret_float -> Bitv.i64_to_value (F64.of_value 1 op' v) | WrapI64 -> raise (TypeError { index = 1 ; value = v ; ty = Ty_bitv 64 ; op = `Cvtop WrapI64 ; msg = "Cannot wrapI64 on an I64" } ) | ToBool | OfBool | _ -> Fmt.failwith {|cvtop: Unsupported i64 operator "%a"|} Ty.Cvtop.pp op end module F32CvtOp = struct let demote_f64 x = let xf = F64.to_float x in if Float.Infix.(xf = xf) then F32.of_float xf else let nan64bits = x in let sign_field = Int64.(shift_left (shift_right_logical nan64bits 63) 31) in let significand_field = Int64.(shift_right_logical (shift_left nan64bits 12) 41) in let fields = Int64.logor sign_field significand_field in Int32.logor 0x7fc0_0000l (Int64.to_int32 fields) let convert_i32_s x = F32.of_float (Int32.to_float x) let convert_i32_u x = F32.of_float Int32.( Int32.Infix.( if x >= 0l then to_float x else to_float (logor (shift_right_logical x 1) (logand x 1l)) *. 2.0 ) ) let convert_i64_s x = F32.of_float Int64.( Int64.Infix.( if abs x < 0x10_0000_0000_0000L then to_float x else let r = if logand x 0xfffL = 0L then 0L else 1L in to_float (logor (shift_right x 12) r) *. 0x1p12 ) ) let convert_i64_u x = F32.of_float Int64.( Int64.Infix.( if I64.lt_u x 0x10_0000_0000_0000L then to_float x else let r = if logand x 0xfffL = 0L then 0L else 1L in to_float (logor (shift_right_logical x 12) r) *. 0x1p12 ) ) let cvtop (op : Ty.Cvtop.t) (v : Value.t) : Value.t = let op' = `Cvtop op in match op with | DemoteF64 -> F32.to_value (demote_f64 (F64.of_value 1 op' v)) | ConvertSI32 -> F32.to_value (convert_i32_s (Bitv.i32_of_value 1 op' v)) | ConvertUI32 -> F32.to_value (convert_i32_u (Bitv.i32_of_value 1 op' v)) | ConvertSI64 -> F32.to_value (convert_i64_s (Bitv.i64_of_value 1 op' v)) | ConvertUI64 -> F32.to_value (convert_i64_u (Bitv.i64_of_value 1 op' v)) | Reinterpret_int -> F32.to_value (Bitv.i32_of_value 1 op' v) | PromoteF32 -> raise (TypeError { index = 1 ; value = v ; ty = Ty_fp 32 ; op = `Cvtop PromoteF32 ; msg = "F64 must promote a F32" } ) | ToString | OfString | _ -> Fmt.failwith {|cvtop: Unsupported f32 operator "%a"|} Ty.Cvtop.pp op end module F64CvtOp = struct Float.is_nan let promote_f32 x = let xf = F32.to_float x in if Float.Infix.(xf = xf) then F64.of_float xf else let nan32bits = I64CvtOp.extend_i32_u x in let sign_field = Int64.(shift_left (shift_right_logical nan32bits 31) 63) in let significand_field = Int64.(shift_right_logical (shift_left nan32bits 41) 12) in let fields = Int64.logor sign_field significand_field in Int64.logor 0x7ff8_0000_0000_0000L fields let convert_i32_s x = F64.of_float (Int32.to_float x) (* * Unlike the other convert_u functions, the high half of the i32 range is * within the range where f32 can represent odd numbers, so we can't do the * shift. Instead, we can use int64 signed arithmetic. *) let convert_i32_u x = F64.of_float Int64.(to_float (logand (of_int32 x) 0x0000_0000_ffff_ffffL)) let convert_i64_s x = F64.of_float (Int64.to_float x) (* * Values in the low half of the int64 range can be converted with a signed * conversion. The high half is beyond the range where f64 can represent odd * numbers, so we can shift the value right, adjust the least significant * bit to round correctly, do a conversion, and then scale it back up. *) let convert_i64_u (x : int64) = F64.of_float Int64.( Int64.Infix.( if x >= 0L then to_float x else to_float (logor (shift_right_logical x 1) (logand x 1L)) *. 2.0 ) ) let cvtop (op : Ty.Cvtop.t) v : Value.t = let op' = `Cvtop op in match op with | PromoteF32 -> F64.to_value (promote_f32 (F32.of_value 1 op' v)) | ConvertSI32 -> F64.to_value (convert_i32_s (Bitv.i32_of_value 1 op' v)) | ConvertUI32 -> F64.to_value (convert_i32_u (Bitv.i32_of_value 1 op' v)) | ConvertSI64 -> F64.to_value (convert_i64_s (Bitv.i64_of_value 1 op' v)) | ConvertUI64 -> F64.to_value (convert_i64_u (Bitv.i64_of_value 1 op' v)) | Reinterpret_int -> F64.to_value (Bitv.i64_of_value 1 op' v) | DemoteF64 -> raise (TypeError { index = 1 ; value = v ; ty = Ty_bitv 64 ; op = `Cvtop DemoteF64 ; msg = "F32 must demote a F64" } ) | ToString | OfString | _ -> Fmt.failwith {|cvtop: Unsupported f64 operator "%a"|} Ty.Cvtop.pp op end (* Dispatch *) let op int real bool str lst bv f32 f64 ty op = match ty with | Ty.Ty_int -> int op | Ty_real -> real op | Ty_bool -> bool op | Ty_str -> str op | Ty_list -> lst op | Ty_bitv _ -> bv op | Ty_fp 32 -> f32 op | Ty_fp 64 -> f64 op | Ty_fp _ | Ty_app | Ty_unit | Ty_none | Ty_regexp | Ty_roundingMode -> assert false [@@inline] let unop = op Int.unop Real.unop Bool.unop Str.unop Lst.unop Bitv.unop F32.unop F64.unop let binop = op Int.binop Real.binop Bool.binop Str.binop Lst.binop Bitv.binop F32.binop F64.binop let triop = function | Ty.Ty_bool -> Bool.triop | Ty_str -> Str.triop | Ty_list -> Lst.triop | _ -> assert false let relop = function | Ty.Ty_int -> Int.relop | Ty_real -> Real.relop | Ty_bool -> Bool.relop | Ty_str -> Str.relop | Ty_bitv _ -> Bitv.relop | Ty_fp 32 -> F32.relop | Ty_fp 64 -> F64.relop | _ -> assert false let cvtop = function | Ty.Ty_int -> Int.cvtop | Ty_real -> Real.cvtop | Ty_str -> Str.cvtop | Ty_bitv 32 -> I32CvtOp.cvtop | Ty_bitv 64 -> I64CvtOp.cvtop | Ty_fp 32 -> F32CvtOp.cvtop | Ty_fp 64 -> F64CvtOp.cvtop | _ -> assert false let naryop = function | Ty.Ty_bool -> Bool.naryop | Ty_str -> Str.naryop | Ty_list -> Lst.naryop | _ -> assert false
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>