package sarek
GPGPU kernel DSL for OCaml
Install
Dune Dependency
Authors
Maintainers
Sources
spoc_ppx-20210823.tbz
sha256=bdb247f51bce29609c0a6d7155a2f180b26cb7388489cf21961b4d6754a0eb03
sha512=1cdb37b214e06a32436d23308c4555f6ddefcd4674d73964faa4bb184f843c477c95ef719b8794ead32d12b1ee6a5b5541683ec76ab9e6b1c2e3f3d7371ba41c
doc/src/sarek.internal_kernels/gen_kir.ml.html
Source file gen_kir.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
(****************************************************************************** * Mathias Bourgoin, Université Pierre et Marie Curie (2013) * * Mathias.Bourgoin@gmail.com * * This software is a computer program whose purpose is to allow * GPU programming with the OCaml language. * * This software is governed by the CeCILL-B license under French law and * abiding by the rules of distribution of free software. You can use, * modify and/ or redistribute the software under the terms of the CeCILL-B * license as circulated by CEA, CNRS and INRIA at the following URL * "http://www.cecill.info". * * As a counterpart to the access to the source code and rights to copy, * modify and redistribute granted by the license, users are provided only * with a limited warranty and the software's author, the holder of the * economic rights, and the successive licensors have only limited * liability. * * In this respect, the user's attention is drawn to the risks associated * with loading, using, modifying and/or developing or reproducing the * software by the user in light of its specific status of free software, * that may mean that it is complicated to manipulate, and that also * therefore means that it is reserved for developers and experienced * professionals having in-depth computer knowledge. Users are therefore * encouraged to load and test the software's suitability as regards their * requirements in conditions enabling the security of their systems and/or * data to be ensured and, more generally, to use and operate it in the * same conditions as regards security. * * The fact that you are presently reading this means that you have had * knowledge of the CeCILL-B license and that you accept its terms. *******************************************************************************) open Camlp4.PreCast open Syntax open Ast open Sarek_types open Debug let remove_int_var var = match var.e with | Id (_loc, s) -> Hashtbl.remove !current_args (string_of_ident s); | _ -> failwith "error new_var" let rec parse_int2 i t= match i.e with | Id (_loc,s) -> (try let var = (Hashtbl.find !current_args (string_of_ident s)) in if var.is_global then <:expr<global_int_var $ExId(_loc,s)$>> else <:expr<var $ExInt(_loc, string_of_int var.n)$ $str:string_of_ident s$>> with | Not_found -> try let c_const = Hashtbl.find !intrinsics_const (string_of_ident s) in match c_const.typ with | x when x = t -> <:expr< intrinsics $ExStr(_loc, c_const.cuda_val)$ $ExStr(_loc, c_const.opencl_val)$>> | _ -> my_eprintf __LOC__; assert (not debug); raise (TypeError (t, c_const.typ, _loc)) with Not_found -> (my_eprintf __LOC__; assert (not debug); raise (Unbound_value ((string_of_ident s),_loc)))) | Ref (_, {loc=_; e=Id(_loc,s); t=_}) -> <:expr<global_int_var (fun () -> ! $ExId(_loc, s)$)>> | Int (_loc, s) -> <:expr<spoc_int32 $(ExInt32 (_loc, s))$>> | Int32 (_loc, s) -> <:expr<spoc_int32 $(ExInt32 (_loc, s))$>> | Int64 (_loc, s) -> <:expr<spoc_int64 $(ExInt64 (_loc, s))$>> | Plus32 _ | Plus64 _ | Min32 _ | Min64 _ | Mul32 _ | Mul64 _ | Mod _ | Div32 _ | Div64 _ -> parse_body2 i false | Bind (_loc, var, y, z, is_mutable) -> parse_body2 i false | VecGet (_loc, vector, index) -> <:expr<get_vec $parse_int2 vector (TVec t)$ $parse_int2 index TInt32$>> | ArrGet (_loc, array, index) -> <:expr<get_arr $parse_int2 array (TVec t)$ $parse_int2 index TInt32$>> | App _ -> parse_body2 i false | RecGet _ -> parse_body2 i false | Nat (_loc, code) -> <:expr< spoc_native $code$>> | _ -> (my_eprintf (Printf.sprintf "--> (*** val2 %s *)\n%!" (k_expr_to_string i.e)); assert (not debug); raise (TypeError (t, i.t, i.loc));) and parse_float2 f t= match f.e with | App (_loc, e1, e2) -> parse_body2 f false | Id (_loc,s) -> (try let var = (Hashtbl.find !current_args (string_of_ident s)) in if var.is_global then <:expr<global_float_var $ExId(_loc,s)$>> else <:expr<var $ExInt(_loc, string_of_int var.n)$ $str:string_of_ident s$>> with | Not_found -> try let c_const = Hashtbl.find !intrinsics_const (string_of_ident s) in match c_const.typ with | x when x = t -> <:expr< intrinsics $ExStr(_loc, c_const.cuda_val)$ $ExStr(_loc, c_const.opencl_val)$>> | _ -> my_eprintf __LOC__; assert (not debug); raise (TypeError (t, c_const.typ, _loc)) with Not_found -> (my_eprintf __LOC__; assert (not debug); raise (Unbound_value ((string_of_ident s),_loc)))) | Ref (_, {loc=_; e=Id(_loc,s); t=_}) -> <:expr<global_float_var (fun () -> ! $ExId(_loc, s)$)>> | Float (_loc, s) -> <:expr<spoc_float $(ExFlo(_loc, s))$>> | Float32 (_loc, s) -> <:expr<spoc_float $(ExFlo(_loc, s))$>> | Float64 (_loc, s) -> <:expr<spoc_double $(ExFlo(_loc, s))$>> | PlusF32 _ | PlusF64 _ | MinF32 _ | MinF64 _ | MulF32 _ | MulF64 _ | DivF32 _ | DivF64 _ | ModuleAccess _ | RecGet _ | Acc _ -> parse_body2 f false | VecGet (_loc, vector, index) -> <:expr<get_vec $parse_float2 vector (TVec t)$ $parse_int2 index TInt32$>> | Nat (_loc, code) -> <:expr< spoc_native $code$>> | _ -> ( my_eprintf (Printf.sprintf "(*** val2 %s *)\n%!" (k_expr_to_string f.e)); assert (not debug); raise (TypeError (t, f.t, f.loc));) and parse_special a = match a.e with | (*create_array *) App (_loc,{t=typ; e= Id(_,<:ident< create_array>>); loc=_}, [b]) -> <:expr< $parse_body2 b false$>> | App (_loc, {e=App (_, {t=_; e= App (_,{t=_; e=Id(_,<:ident< map>>); loc=_}, [f]); loc=_}, [a]); _}, [b]) -> <:expr< map $parse_body2 f false$ $parse_body2 a false$ $parse_body2 b false$>>; | App (_loc, {e=App (_, {t=_; e= App (_,{t=_; e=Id(_,<:ident< reduce>>); loc=_}, [f]); loc=_}, [a]); _}, [b]) -> <:expr< reduce $parse_body2 f false$ $parse_body2 a false$ $parse_body2 b false$>>; |_ -> raise Not_found and parse_app a = my_eprintf (Printf.sprintf "(* val2 parse_app %s *)\n%!" (k_expr_to_string a.e)); try parse_special a with | Not_found -> match a.e with | App (_loc, e1, e2::[]) -> let res = ref [] in let constr = ref false in let rec aux app = my_eprintf (Printf.sprintf "(* val2 parse_app_app %s *)\n%!" (k_expr_to_string app.e)); let has_vec_lengths = ref false in match app.e with | Id (_loc, s) -> (try let intr = Hashtbl.find !intrinsics_fun (string_of_ident s) in <:expr< intrinsics $ExStr(_loc, intr.cuda_val)$ $ExStr(_loc, intr.opencl_val)$>> with Not_found -> try ignore(Hashtbl.find !global_fun (string_of_ident s)); has_vec_lengths := true; (<:expr< global_fun $id:s$>> ) with Not_found -> try ignore(Hashtbl.find !local_fun (string_of_ident s)); has_vec_lengths := true; <:expr< global_fun $id:s$>> with Not_found -> try let t = Hashtbl.find !constructors (string_of_ident s) in constr := true; <:expr< spoc_constr $str:t.name$ $str:string_of_ident s$ [$parse_body2 e2 false$]>> with _ -> parse_body2 e1 false;) | App (_loc, e3, e4::[]) -> let e = aux e3 in res := <:expr< ($parse_body2 e4 false$)>> :: !res; e | ModuleAccess (_loc, s, e3) -> open_module s _loc; let e = aux e3 in close_module s; e | _ -> my_eprintf __LOC__; assert false; in let intr = aux e1 in if !constr then <:expr< $intr$ >> else ( res := (parse_body2 e2 false) :: !res; (match !res with | [] -> my_eprintf __LOC__; assert false | t::[] -> <:expr< app $intr$ [| ($t$) |]>> | t::q -> <:expr< app $intr$ [| $exSem_of_list (List.rev !res)$ |]>>) ) | _ -> parse_body2 a false and expr_of_app t _loc gen_var y = match t with | TApp (t1,((TApp (t2,t3)) as tt)) -> expr_of_app tt _loc gen_var y | TApp (t1,t2) -> (match t2 with | TInt32 -> <:expr<(new_int_var $`int:gen_var.n$)>>, (parse_body2 y false) | TInt64 -> <:expr<(new_int_var $`int:gen_var.n$)>>, (parse_body2 y false) | TFloat32 -> <:expr<(new_float_var $`int:gen_var.n$)>>,(parse_body2 y false) | TFloat64 -> <:expr<(new_double_var $`int:gen_var.n$)>>, (parse_body2 y false) | _ -> failwith "unknown var type") | _ -> my_eprintf __LOC__; assert false and parse_case2 mc _loc = let aux (_loc,patt,e) = match patt with | Constr (_,None) -> <:expr< spoc_case $`int:ident_of_patt _loc patt$ None $parse_body2 e false$>> | Constr (s,Some id) -> incr arg_idx; Hashtbl.add !current_args (string_of_ident id) {n = !arg_idx; var_type = ktyp_of_typ (TyId(_loc,IdLid(_loc,type_of_patt patt))); is_mutable = false; read_only = false; write_only = false; is_global = false;}; let i = !arg_idx in let bb = parse_body2 e false in let e = <:expr< spoc_case $`int:ident_of_patt _loc patt$ (Some ($str:ctype_of_sarek_type (type_of_patt patt)$,$str:s$,$`int:i$,$str:string_of_ident id$)) $bb$>> in Hashtbl.remove !current_args (string_of_ident id); e in let l = List.map aux mc in <:expr< [| $exSem_of_list l$ |]>> and parse_body2 body bool = let rec aux ?return_bool:(r=false) body = my_eprintf (Printf.sprintf "(* val2 %s : %b*)\n%!" (k_expr_to_string body.e) r); match body.e with | Bind (_loc, var,y, z, is_mutable) -> (match var.e with | Id (_loc, s) -> (match y.e with | Fun _ -> parse_body2 z bool; | _ -> (let gen_var = try (Hashtbl.find !current_args (string_of_ident s)) with _ -> let s = Printf.sprintf "Var : %s not found in [ %s ]" (string_of_ident s) (Hashtbl.fold (fun a b c -> c^a^"; ") !current_args "") in failwith s; in let rec f () = match var.t with | TInt32 -> <:expr<(new_int_var $`int:gen_var.n$ $str:string_of_ident s$)>>, (aux y) | TInt64 -> <:expr<(new_int_var $`int:gen_var.n$ $str:string_of_ident s$)>>, (aux y) | TFloat32 -> <:expr<(new_float_var $`int:gen_var.n$ $str:string_of_ident s$)>>,(aux y) | TFloat64 -> <:expr<(new_double_var $`int:gen_var.n$ $str:string_of_ident s$)>>,(aux y) | TBool -> <:expr< (new_int_var $`int:gen_var.n$ $str:string_of_ident s$)>>, (aux y) (* use int instead of bools *) | TApp _ -> expr_of_app var.t _loc gen_var y | Custom (t,n) -> <:expr<(new_custom_var $str:n$ $`int:gen_var.n$ $str:string_of_ident s$)>>,(aux y) | TUnknown -> if gen_var.var_type <> TUnknown then ( var.t <- gen_var.var_type; f ();) else (my_eprintf __LOC__; raise (TypeError (TUnknown, gen_var.var_type , _loc));) | TArr (t,m) -> let elttype = match t with | TInt32 -> <:expr<eint32>> | TInt64 -> <:expr<eint64>> | TFloat32 -> <:expr<efloat32>> | TFloat64 -> <:expr<efloat64>> | _ -> my_eprintf __LOC__; assert false and memspace = match m with | Local -> <:expr<local>> | Shared -> <:expr<shared>> | Global -> <:expr<global>> | _ -> my_eprintf __LOC__; assert false in <:expr<(new_array $str:string_of_ident s$) ($aux y$) $elttype$ $memspace$>>,(aux y) | _ -> ( assert (not debug); raise (TypeError (TUnknown, gen_var.var_type , _loc));) in let ex1, ex2 = f () in arg_list := <:expr<(spoc_declare $ex1$)>>:: !arg_list; (let var_ = parse_body2 var false in let y = aux y in let z = aux z in let res = match var.t with TArr _ -> <:expr< $z$>> | _ -> <:expr< seq (spoc_set $var_$ $y$) $z$>> in remove_int_var var; res))) | _ -> failwith "strange binding"); | Plus32 (_loc, a,b) -> body.t <- TInt32; let p1 = (parse_int2 a TInt32) and p2 = (parse_int2 b TInt32) in if not r then return_type := TInt32; ( <:expr<spoc_plus $p1$ $p2$>>) | Plus64 (_loc, a,b) -> body.t <- TInt64; let p1 = (parse_int2 a TInt64) and p2 = (parse_int2 b TInt64) in if not r then return_type := TInt64; ( <:expr<spoc_plus $p1$ $p2$>>) | PlusF32 (_loc, a,b) -> let p1 = (parse_float2 a TFloat32) and p2 = (parse_float2 b TFloat32) in if not r then return_type := TFloat32; ( <:expr<spoc_plus_float $p1$ $p2$>>) | PlusF64 (_loc, a,b) -> let p1 = (parse_float2 a TFloat64) and p2 = (parse_float2 b TFloat64) in if not r then return_type := TFloat64; ( <:expr<spoc_plus_float $p1$ $p2$>>) | Min32 (_loc, a,b) -> body.t <- TInt32; ( <:expr<spoc_min $(parse_int2 a TInt32)$ $(parse_int2 b TInt32)$>>) | Min64 (_loc, a,b) -> body.t <- TInt64; ( <:expr<spoc_min $(parse_int2 a TInt64)$ $(parse_int2 b TInt64)$>>) | MinF32 (_loc, a,b) -> ( <:expr<spoc_min_float $(parse_float2 a TFloat32)$ $(parse_float2 b TFloat32)$>>) | MinF64 (_loc, a,b) -> ( <:expr<spoc_min_float $(parse_float2 a TFloat64)$ $(parse_float2 b TFloat64)$>>) | Mul32 (_loc, a,b) -> if not r then return_type := TInt32; ( <:expr<spoc_mul $(parse_int2 a TInt32)$ $(parse_int2 b TInt32)$>>) | Mul64 (_loc, a,b) -> body.t <- TInt64; ( <:expr<spoc_mul $(parse_int2 a TInt64)$ $(parse_int2 b TInt64)$>>) | MulF32 (_loc, a,b) -> if not r then return_type := TFloat32; ( <:expr<spoc_mul_float $(parse_float2 a TFloat32)$ $(parse_float2 b TFloat32)$>>) | MulF64 (_loc, a,b) -> ( <:expr<spoc_mul_float $(parse_float2 a TFloat64)$ $(parse_float2 b TFloat64)$>>) | Div32 (_loc, a,b) -> body.t <- TInt32; ( <:expr<spoc_div $(parse_int2 a TInt32)$ $(parse_int2 b TInt32)$>>) | Div64 (_loc, a,b) -> body.t <- TInt64; ( <:expr<spoc_div $(parse_int2 a TInt64)$ $(parse_int2 b TInt64)$>>) | DivF32 (_loc, a,b) -> ( <:expr<spoc_div_float $(parse_float2 a TFloat32)$ $(parse_float2 b TFloat32)$>>) | DivF64 (_loc, a,b) -> ( <:expr<spoc_div_float $(parse_float2 a TFloat64)$ $(parse_float2 b TFloat64)$>>) | Mod (_loc, a,b) -> body.t <- TInt32; let p1 = (parse_int2 a TInt32) and p2 = (parse_int2 b TInt32) in if not r then return_type := TInt32; ( <:expr<spoc_mod $p1$ $p2$>>) | Id (_loc,s) -> let id = (try let var = (Hashtbl.find !current_args (string_of_ident s)) in if not r then return_type := var.var_type; (match var.var_type with | TUnit -> <:expr< Unit>> | _ -> body.t <- var.var_type; if var.is_global then match var.var_type with | TFloat32 -> <:expr<global_float_var (fun () -> $ExId(_loc,s)$)>> | TInt32 -> <:expr<global_int_var (fun () -> $ExId(_loc,s)$)>> | _ -> my_eprintf __LOC__; assert false else <:expr<var $ExInt(_loc, string_of_int var.n)$ $str:string_of_ident s$>> ) with _ -> try let c_const = (Hashtbl.find !intrinsics_const (string_of_ident s)) in if body.t <> c_const.typ then if body.t = TUnknown then body.t <- c_const.typ else (my_eprintf __LOC__; raise (TypeError (c_const.typ, body.t, _loc))); <:expr<intrinsics $ExStr(_loc, c_const.cuda_val)$ $ExStr(_loc, c_const.opencl_val)$>> with _ -> (try let intr = Hashtbl.find !intrinsics_fun (string_of_ident s) in <:expr< intrinsics $ExStr(_loc, intr.cuda_val)$ $ExStr(_loc, intr.opencl_val)$>> with Not_found -> try ignore(Hashtbl.find !global_fun (string_of_ident s)); <:expr< global_fun $id:s$>> with Not_found -> try ignore(Hashtbl.find !local_fun (string_of_ident s)); <:expr< global_fun $id:s$>> with Not_found -> try let t = Hashtbl.find !constructors (string_of_ident s) in <:expr< spoc_constr $str:t.name$ $str:(string_of_ident s)$ [] >> with | _ -> (my_eprintf __LOC__; raise (Unbound_value ((string_of_ident s), _loc))))) in if r then (return_type := body.t; <:expr< spoc_return $id$ >>) else id; | Int (_loc, i) -> <:expr<spoc_int $ExInt(_loc, i)$>> | Int32 (_loc, i) -> <:expr<spoc_int32 $ExInt32(_loc, i)$>> | Int64 (_loc, i) -> <:expr<spoc_int64 $ExInt64(_loc, i)$>> | Float (_loc, f) -> <:expr<spoc_float $ExFlo(_loc, f)$>> | Float32 (_loc, f) -> <:expr<spoc_float $ExFlo(_loc, f)$>> | Float64 (_loc, f) -> <:expr<spoc_double $ExFlo(_loc, f)$>> | Seq (_loc, x, y) -> (match y.e with | Seq _ -> let x = parse_body2 x false in let y = parse_body2 y bool in <:expr<seq $x$ $y$>> | _ -> let e1 = parse_body2 x false in let e2 = aux (~return_bool:true) y in <:expr<seq $e1$ $e2$>> ) | End (_loc, x) -> let res = <:expr< $aux x$>> in <:expr<$res$>> | VecSet (_loc, vector, value) -> let gen_value = aux value in let gen_value = match vector.t, value.e with | TInt32, (Int32 _) -> <:expr<( $gen_value$)>> | TInt64, (Int64 _) -> <:expr<( $gen_value$)>> | TFloat32, (Float32 _) -> <:expr<( $gen_value$)>> | TFloat64, (Float64 _) -> <:expr<( $gen_value$)>> | _ -> gen_value in let v = aux (~return_bool:true) vector in let e = <:expr<set_vect_var $v$ $gen_value$>> in return_type := TUnit; e | VecGet(_loc, vector, index) -> let e = <:expr<get_vec $aux vector$ $parse_int2 index TInt32$>> in (match vector.t with | TVec ty-> (); | _ -> my_eprintf __LOC__; assert (not debug)); e | ArrSet (_loc, array, value) -> let gen_value = aux value in let gen_value = match array.t, value.e with | TInt32, (Int32 _) -> <:expr<( $gen_value$)>> | TInt64, (Int64 _) -> <:expr<( $gen_value$)>> | TFloat32, (Float32 _) -> <:expr<( $gen_value$)>> | TFloat64, (Float64 _) -> <:expr<( $gen_value$)>> | _ -> gen_value in let v = aux (~return_bool:true) array in let e = <:expr<set_arr_var $v$ $gen_value$>> in return_type := TUnit; e | ArrGet(_loc, array, index) -> let e = <:expr<get_arr $aux array$ $parse_int2 index TInt32$>> in (match array.t with | TArr ty-> (); | _ -> my_eprintf __LOC__; assert (not debug)); e | True _loc -> if not r then return_type := TBool; <:expr<spoc_int32 $(ExInt32 (_loc, "1"))$>> | False _loc -> if not r then return_type := TBool; <:expr<spoc_int32 $(ExInt32 (_loc, "0"))$>> | BoolNot(_loc, a) -> if not r then return_type := TBool; <:expr< b_not $aux a$>> | BoolOr(_loc, a, b) -> if not r then return_type := TBool; <:expr< b_or $aux a$ $aux b$>> | BoolAnd(_loc, a, b) -> if not r then return_type := TBool; <:expr< b_and $aux a$ $aux b$>> | BoolEq(_loc, a, b) -> if not r then return_type := TBool; (match a.t with | Custom (_,n) -> <:expr< equals_custom $str:"spoc_custom_compare_"^n^"_sarek"$ $aux a$ $aux b$>> | _ -> <:expr< equals32 $aux a$ $aux b$>> ) | BoolEq32 (_loc, a, b) -> if not r then return_type := TBool; <:expr< equals32 $aux a$ $aux b$>> | BoolEq64(_loc, a, b) -> <:expr< equals64 $aux a$ $aux b$>> | BoolEqF32(_loc, a, b) -> <:expr< equalsF $aux a$ $aux b$>> | BoolEqF64(_loc, a, b) -> <:expr< equalsF64 $aux a$ $aux b$>> | BoolLt(_loc, a, b) -> let p1 = (parse_int2 a TInt32) and p2 = (parse_int2 b TInt32) in if not r then return_type := TInt32; ( <:expr<lt $p1$ $p2$>>) | BoolLt32(_loc, a, b) -> let p1 = (parse_int2 a TInt32) and p2 = (parse_int2 b TInt32) in if not r then return_type := TInt32; ( <:expr<lt32 $p1$ $p2$>>) | BoolLt64(_loc, a, b) -> <:expr< lt64 $aux a$ $aux b$>> | BoolLtF32(_loc, a, b) -> <:expr< ltF $aux (~return_bool:false) a$ $aux (~return_bool:false) b$>> | BoolLtF64(_loc, a, b) -> <:expr< ltF64 $aux a$ $aux b$>> | BoolGt(_loc, a, b) -> let p1 = (parse_int2 a TInt32) and p2 = (parse_int2 b TInt32) in if not r then return_type := TInt32; ( <:expr<gt $p1$ $p2$>>) | BoolGt32(_loc, a, b) -> let p1 = (parse_int2 a TInt32) and p2 = (parse_int2 b TInt32) in if not r then return_type := TInt32; ( <:expr<gt32 $p1$ $p2$>>) | BoolGt64(_loc, a, b) -> <:expr< gt64 $aux a$ $aux b$>> | BoolGtF32(_loc, a, b) -> <:expr< gtF $aux a$ $aux b$>> | BoolGtF64(_loc, a, b) -> <:expr< gtF64 $aux a$ $aux b$>> | BoolLtE(_loc, a, b) -> <:expr< lte $aux a$ $aux b$>> | BoolLtE32(_loc, a, b) -> <:expr< lte32 $aux a$ $aux b$>> | BoolLtE64(_loc, a, b) -> <:expr< lte64 $aux a$ $aux b$>> | BoolLtEF32(_loc, a, b) -> <:expr< lteF $aux a$ $aux b$>> | BoolLtEF64(_loc, a, b) -> <:expr< lteF64 $aux a$ $aux b$>> | BoolGtE(_loc, a, b) -> <:expr< gte $aux a$ $aux b$>> | BoolGtE32(_loc, a, b) -> <:expr< gte32 $aux a$ $aux b$>> | BoolGtE64(_loc, a, b) -> <:expr< gte64 $aux a$ $aux b$>> | BoolGtEF32(_loc, a, b) -> <:expr< gteF $aux a$ $aux b$>> | BoolGtEF64(_loc, a, b) -> <:expr< gteF64 $aux a$ $aux b$>> | Ife (_loc, cond, cons1, cons2) -> let p1 = aux (~return_bool:false) cond and p2 = aux cons1 and p3 = aux cons2 in if r then return_type := cons2.t; (<:expr< spoc_ife $p1$ $p2$ $p3$>>) | If (_loc, cond, cons1) -> let cons1_ = aux cons1 in return_type := cons1.t; (<:expr< spoc_if $aux cond$ $cons1_$>>) | DoLoop (_loc, id, min, max, body) -> (<:expr<spoc_do $aux id$ $aux min$ $aux max$ $aux body$>>) | While (_loc, cond, body) -> let cond = aux cond in let body = aux body in (<:expr<spoc_while $cond$ $body$>>) | App (_loc, e1, e2) -> let e = <:expr< $parse_app body$>> in let rec app_return_type = function | TApp (_,(TApp (a,b))) -> app_return_type b | TApp (_,b) -> b | a -> a in return_type := app_return_type body.t; e | Open (_loc, id, e) -> let rec aux2 = function | IdAcc (l,a,b) -> aux2 a; aux2 b | IdUid (l,s) -> open_module s l | _ -> my_eprintf __LOC__; assert (not debug) in aux2 id; let ex = <:expr< $aux e$>> in let rec aux2 = function | IdAcc (l,a,b) -> aux2 a; aux2 b | IdUid (l,s) -> close_module s | _ -> assert (not debug) in aux2 id; ex | ModuleAccess (_loc, s, e) -> open_module s _loc; let ex = <:expr< $aux e$>> in close_module s; ex | Noop -> let _loc = body.loc in <:expr< spoc_unit () >> | Acc (_loc, e1, e2) -> let e1 = parse_body2 e1 false and e2 = parse_body2 e2 false in if not r then return_type := TUnit; <:expr< spoc_acc $e1$ $e2$>> | Ref (_loc, {t=_; e=Id(_loc2, s);loc=_}) -> let var = Hashtbl.find !current_args (string_of_ident s) in body.t <- var.var_type; if not r then return_type := body.t; (*if var.is_global then*) (match var.var_type with | TFloat32 -> <:expr<global_float_var (fun _ -> ! $ExId(_loc,s)$)>> | TFloat64 -> <:expr<global_float64_var (fun _ -> ! $ExId(_loc,s)$)>> | TInt32 -> <:expr<global_int_var (fun _ -> ! $ExId(_loc,s)$)>> | Custom _ -> <:expr<global_custom_var (fun _ -> ! $ExId(_loc,s)$)>> | TBool -> <:expr<global_int_var (fun _ -> ! $ExId(_loc,s)$)>> | _ -> assert false) (*else assert false*) | Match(_loc,e, ((_,Constr (n,_),ec)::q as mc )) -> let e = parse_body2 e false and mc = parse_case2 mc _loc in let name = (Hashtbl.find !constructors n).name in if not r then return_type := ec.t; <:expr< spoc_match $str:name$ $e$ $mc$ >> | Match _ -> assert false | Record (_loc,fl) -> begin (*get Krecord from field list *) let t,name = let rec aux (acc:string list) (flds : field list) : string list = match flds with | (_loc,t,_)::q -> let rec_fld : recrd_field = try Hashtbl.find !rec_fields (string_of_ident t) with | _ -> (assert (not debug); raise (FieldError (string_of_ident t, List.hd acc, _loc))) in aux (let rec aux2 (res:string list) (acc_:string list) (flds_:string list) = match acc_,flds_ with | (t1::q1),(t2::q2) -> if t1 = t2 then aux2 (t1::acc_) acc q2 else aux2 (t1::acc_) q1 (t2::q2) | _,[] -> res | [],q -> aux2 res acc q in aux2 [] acc rec_fld.ctyps) q | [] -> acc in let start : string list = let (_loc,t,_) = (List.hd fl) in try (Hashtbl.find !rec_fields (string_of_ident t)).ctyps with | _ -> (assert (not debug); raise (FieldError (string_of_ident t, "\"\"", _loc))) in let r : string list = aux start fl in ktyp_of_typ (TyId(_loc,IdLid(_loc,List.hd r))),(List.hd r) in (* sort fields *) let res = (match t with | Custom (KRecord (l1,l2,_),n) -> let fl = List.map (fun x -> List.find (fun (_,y,_) -> (string_of_ident y) = (string_of_ident x)) fl) l2 in let r = List.map (fun (_,_,b) -> <:expr< $parse_body2 b false$>>) fl in <:expr< spoc_record $str:name$ [$Ast.exSem_of_list r$] >> | _ -> assert false) in if not r then return_type := body.t; res; end | RecGet (_loc,r,fld) -> <:expr< spoc_rec_get $parse_body2 r false$ $str:string_of_ident fld$>> | RecSet (_loc,e1,e2) -> <:expr< spoc_rec_set $parse_body2 e1 false$ $parse_body2 e2 false$>> | TypeConstraint (_loc, e, tt) -> if not r then return_type := tt; parse_body2 e false | Nat (_loc, code) -> <:expr< spoc_native $code$ >> | Fun (_loc,stri,tt,funv,lifted) -> <:expr< global_fun $stri$ >> | Pragma (_loc, lopt, expr) -> let lopt = List.map (fun opt -> <:expr< $str:opt$>>) lopt in <:expr< pragma [$exSem_of_list lopt$] $parse_body2 expr false$ >> | _ -> ( my_eprintf __LOC__; failwith ((k_expr_to_string body.e)^": not implemented yet");) in let _loc = body.loc in if bool then ( my_eprintf (Printf.sprintf"(* val2 return %s *)\n%!" (k_expr_to_string body.e)); match body.e with | Bind (_loc, var,y, z, is_mutable) -> ( (match var.e with | Id (_loc, s) -> (match y.e with | Fun _ -> <:expr< spoc_return $aux z$>> | _ -> (let gen_var = ( try Hashtbl.find !current_args (string_of_ident s) with _ -> assert false) in let ex1,ex2 = match var.t with | TInt32 -> <:expr<(new_int_var $`int:gen_var.n$ $str:string_of_ident s$) >>, (aux y) | TInt64 -> <:expr<(new_int_var $`int:gen_var.n$ $str:string_of_ident s$)>>, (aux y) | TFloat32 -> <:expr<(new_float_var $`int:gen_var.n$$str:string_of_ident s$)>>,(aux y) | TFloat64 -> <:expr<(new_double_var $`int:gen_var.n$ $str:string_of_ident s$)>>,(aux y) | TBool -> <:expr< (new_int_var $`int:gen_var.n$ $str:string_of_ident s$)>>, (aux y) (* use int instead of bools *) | TUnit -> <:expr<Unit>>,aux y; | Custom (t,n) -> <:expr<(new_custom_var $str:n$ $`int:gen_var.n$ $str:string_of_ident s$)>>,(aux y) | _ -> assert (not debug); failwith "unknown var type" in arg_list := <:expr<(spoc_declare $ex1$)>>:: !arg_list); (let var_ = parse_body2 var false in let y = aux y in let z = aux (~return_bool:true) z in let res = match var.t with TArr _ -> <:expr< $z$>> | _ -> <:expr< seq (spoc_set $var_$ $y$) $z$>> in remove_int_var var; res)) | _ -> failwith "this binding is not a binding")) | Seq (a,b,c) -> <:expr<spoc_return $aux body$>> | _ -> let e = {t=body.t; e =End(_loc, body); loc = _loc} in match body.t with | TUnit -> let res = aux e in return_type := TUnit; <:expr< $res$ >> |_ -> <:expr<spoc_return $aux e$>> ) else aux body
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>