package rune
Automatic differentiation and JIT compilation for OCaml
Install
Dune Dependency
Authors
Maintainers
Sources
raven-1.0.0.alpha0.tbz
sha256=a9a8a9787f8250337187bb7b21cb317c41bfd2ecf08bcfe0ab407c7b6660764d
sha512=fe13cf257c487e41efe2967be147d80fa94bac8996d3aab2b8fd16f0bbbd108c15e0e58c025ec9bf294d4a0d220ca2ba00c3b1b42fa2143f758c5f0ee4c15782
doc/src/rune.jit/lowerer.ml.html
Source file lowerer.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
(* lowerer.ml *) open Ir (* ───── helpers ───── *) let const_to_string : type a. a Dtype.t -> a -> string = fun dt v -> match dt with | Dtype.Float32 -> Printf.sprintf "%gf" v | Dtype.Int32 -> Int32.to_string v | Dtype.Uint8 -> string_of_int v | Dtype.Bool -> if v then "true" else "false" | Dtype.Unit -> "0" (* ───── lowering context ───── *) type lowering_ctx = { meta : (Var.t, var_metadata) Hashtbl.t; (* one shared table *) scalar_map : (Var.t, Var.t) Hashtbl.t; (* HL scalar → LL scalar *) buffer_map : (Var.t, Var.t) Hashtbl.t; (* HL buffer → LL buffer *) instrs : Lowered.instruction list ref; } let new_ctx (graph_meta : (Var.t, var_metadata) Hashtbl.t) (kernel_meta : (Var.t, var_metadata) Hashtbl.t) = (* meta starts as a shallow copy of both sources *) let meta = Hashtbl.copy graph_meta in Hashtbl.iter (Hashtbl.replace meta) kernel_meta; { meta; scalar_map = Hashtbl.create 16; buffer_map = Hashtbl.create 16; instrs = ref []; } let add_instr ctx i = ctx.instrs := i :: !(ctx.instrs) let ensure_meta ctx v meta = Hashtbl.replace ctx.meta v meta let meta_of ctx v = Hashtbl.find_opt ctx.meta v (* ───── mapping helpers ───── *) let ll_of_hl ctx hl ~buffer = let tbl = if buffer then ctx.buffer_map else ctx.scalar_map in match Hashtbl.find_opt tbl hl with | Some ll -> ll | None -> let ll = Var.fresh () in Hashtbl.add tbl hl ll; Option.iter (ensure_meta ctx ll) (meta_of ctx hl); ll (* ───── frequently used snippets ───── *) let gtid ctx = let v = Var.fresh () in ensure_meta ctx v { dtype = Dtype.Any_Dtype Dtype.Int32; shape = [| 1 |]; device = None }; add_instr ctx (Lowered.L_Special { dst = v; kind = Special_index_kind.Global_task_idx 0 }); v let load_scalar ctx ~hl_buffer ~idx ~dtype = let buf = ll_of_hl ctx hl_buffer ~buffer:true in let dst = Var.fresh () in ensure_meta ctx dst { dtype = Dtype.Any_Dtype dtype; shape = [| 1 |]; device = None }; add_instr ctx (Lowered.L_Load { dst; buf; idx; dtype = Dtype.Any_Dtype dtype; valid = None }); dst (* ───── node lowering ───── *) let lower_node ctx (Any_Node n) kernel_outs = let open Lowered in match n with | Placeholder { out_var; _ } -> ignore (ll_of_hl ctx out_var ~buffer:true); Ok () | Buffer { dtype; size_in_elements; device = _; out_var } -> let ll = ll_of_hl ctx out_var ~buffer:true in add_instr ctx (L_Buffer { dtype = Dtype.Any_Dtype dtype; size = size_in_elements; out = ll }); Ok () | Const_Scalar { value; dtype; out_var } -> let ll = ll_of_hl ctx out_var ~buffer:false in add_instr ctx (L_Const { dtype = Dtype.Any_Dtype dtype; value = const_to_string dtype value; out = ll; }); Ok () | Binop { op; a_var; b_var; out_var; dtype } -> let idx = gtid ctx in let a_ll = load_scalar ctx ~hl_buffer:a_var ~idx ~dtype in let b_ll = load_scalar ctx ~hl_buffer:b_var ~idx ~dtype in let dst = Var.fresh () in ensure_meta ctx dst { dtype = Dtype.Any_Dtype dtype; shape = [| 1 |]; device = None }; add_instr ctx (L_ALU { dst; op = Lowered.Binary op; args = [ a_ll; b_ll ]; dtype = Dtype.Any_Dtype dtype; }); Hashtbl.replace ctx.scalar_map out_var dst; (if List.mem out_var kernel_outs then let out_buf = ll_of_hl ctx out_var ~buffer:true in add_instr ctx (L_Store { buf = out_buf; idx; src = dst; valid = None })); Ok () | Reduce_Axis { in_var; reduce_op_kind; out_var; dtype; _ } -> (* look up shape once *) let shape = match meta_of ctx in_var with | Some m -> m.shape | None -> failwith ("No metadata for var " ^ Var.to_string in_var ^ " during Reduce") in let total = Array.fold_left ( * ) 1 shape in let idx = Var.fresh () in ensure_meta ctx idx { dtype = Dtype.Any_Dtype Dtype.Int32; shape = [| 1 |]; device = None }; let ub = Var.fresh () in ensure_meta ctx ub { dtype = Dtype.Any_Dtype Dtype.Int32; shape = [| 1 |]; device = None }; add_instr ctx (L_Const { dtype = Dtype.Any_Dtype Dtype.Int32; value = string_of_int total; out = ub; }); add_instr ctx (L_Range { idx; bound = ub }); let acc = Var.fresh () in ensure_meta ctx acc { dtype = Dtype.Any_Dtype dtype; shape = [| 1 |]; device = None }; let identity = match (dtype, reduce_op_kind) with | Dtype.Float32, Reduce_Sum -> "0.0" | Dtype.Float32, Reduce_Max -> "-INFINITY" | Dtype.Float32, Reduce_Prod -> "1.0" | Dtype.Int32, Reduce_Sum -> "0" | Dtype.Int32, Reduce_Max -> string_of_int min_int | Dtype.Int32, Reduce_Prod -> "1" | Dtype.Uint8, Reduce_Sum -> "0" | Dtype.Uint8, Reduce_Max -> "0" | Dtype.Uint8, Reduce_Prod -> "1" | Dtype.Bool, Reduce_Sum -> "false" | Dtype.Bool, Reduce_Max -> "true" | Dtype.Bool, Reduce_Prod -> "true" | Dtype.Unit, _ -> "0" in add_instr ctx (L_Const { dtype = Dtype.Any_Dtype dtype; value = identity; out = acc }); let cur = load_scalar ctx ~hl_buffer:in_var ~idx ~dtype in let op = match reduce_op_kind with | Reduce_Sum -> Lowered.Binary Add | Reduce_Max -> Lowered.Binary Max | Reduce_Prod -> Lowered.Binary Mul in add_instr ctx (L_ALU { dst = acc; op; args = [ acc; cur ]; dtype = Dtype.Any_Dtype dtype }); add_instr ctx L_EndRange; if List.mem out_var kernel_outs then ( let ob = ll_of_hl ctx out_var ~buffer:true in let z = Var.fresh () in ensure_meta ctx z { dtype = Dtype.Any_Dtype Dtype.Int32; shape = [| 1 |]; device = None; }; add_instr ctx (L_Const { dtype = Dtype.Any_Dtype Dtype.Int32; value = "0"; out = z }); add_instr ctx (L_Store { buf = ob; idx = z; src = acc; valid = None })) else Hashtbl.replace ctx.scalar_map out_var acc; Ok () | Unary { op; in_var; out_var; dtype } -> let idx = gtid ctx in let in_ll = load_scalar ctx ~hl_buffer:in_var ~idx ~dtype in let dst = Var.fresh () in ensure_meta ctx dst { dtype = Dtype.Any_Dtype dtype; shape = [| 1 |]; device = None }; add_instr ctx (L_ALU { dst; op = Lowered.Unary op; args = [ in_ll ]; dtype = Dtype.Any_Dtype dtype; }); Hashtbl.replace ctx.scalar_map out_var dst; (if List.mem out_var kernel_outs then let out_buf = ll_of_hl ctx out_var ~buffer:true in add_instr ctx (L_Store { buf = out_buf; idx; src = dst; valid = None })); Ok () | Ternary { op = Where; a_var = cond_var; b_var = x_var; c_var = y_var; out_var; dtype; } -> let idx = gtid ctx in let cond_ll = load_scalar ctx ~hl_buffer:cond_var ~idx ~dtype:Dtype.Bool in let x_ll = load_scalar ctx ~hl_buffer:x_var ~idx ~dtype in let y_ll = load_scalar ctx ~hl_buffer:y_var ~idx ~dtype in (* For now, simple implementation using compare and multiply *) let dst = Var.fresh () in ensure_meta ctx dst { dtype = Dtype.Any_Dtype dtype; shape = [| 1 |]; device = None }; (* This is a simplification - a real implementation would need a ternary op *) add_instr ctx (L_ALU { dst; op = Lowered.Ternary Where; args = [ cond_ll; x_ll; y_ll ]; dtype = Dtype.Any_Dtype dtype; }); Hashtbl.replace ctx.scalar_map out_var dst; (if List.mem out_var kernel_outs then let out_buf = ll_of_hl ctx out_var ~buffer:true in add_instr ctx (L_Store { buf = out_buf; idx; src = dst; valid = None })); Ok () | Expand { in_var; out_var; _ } | Reshape { in_var; out_var; _ } | Permute { in_var; out_var; _ } | Pad { in_var; out_var; _ } | Shrink { in_var; out_var; _ } | Flip { in_var; out_var; _ } | Contiguous { in_var; out_var; _ } | Copy { in_var; target_device = _; out_var; _ } -> (match Hashtbl.find_opt ctx.scalar_map in_var with | Some s -> Hashtbl.replace ctx.scalar_map out_var s | None -> let b = ll_of_hl ctx in_var ~buffer:true in Hashtbl.replace ctx.buffer_map out_var b); Ok () | Cast { in_var; target_dtype = _; out_var; dtype = _ } -> (* For now, treat cast as a view operation *) (match Hashtbl.find_opt ctx.scalar_map in_var with | Some s -> Hashtbl.replace ctx.scalar_map out_var s | None -> let b = ll_of_hl ctx in_var ~buffer:true in Hashtbl.replace ctx.buffer_map out_var b); Ok () | Cat { in_vars; axis = _; out_var; dtype = _ } -> (* Simplified cat - just map to first input for now *) (if Array.length in_vars > 0 then match Hashtbl.find_opt ctx.scalar_map in_vars.(0) with | Some s -> Hashtbl.replace ctx.scalar_map out_var s | None -> let b = ll_of_hl ctx in_vars.(0) ~buffer:true in Hashtbl.replace ctx.buffer_map out_var b); Ok () | Assign { target_var; updates = _; out_var; dtype = _ } -> (* Simplified assign - just map to target for now *) (match Hashtbl.find_opt ctx.scalar_map target_var with | Some s -> Hashtbl.replace ctx.scalar_map out_var s | None -> let b = ll_of_hl ctx target_var ~buffer:true in Hashtbl.replace ctx.buffer_map out_var b); Ok () | Threefry { ctr_var = _; key_var = _; out_var; dtype } -> (* Simplified threefry - needs proper implementation *) let idx = gtid ctx in let dst = Var.fresh () in ensure_meta ctx dst { dtype = Dtype.Any_Dtype dtype; shape = [| 1 |]; device = None }; add_instr ctx (L_Const { dtype = Dtype.Any_Dtype dtype; value = "0"; out = dst }); Hashtbl.replace ctx.scalar_map out_var dst; (if List.mem out_var kernel_outs then let out_buf = ll_of_hl ctx out_var ~buffer:true in add_instr ctx (L_Store { buf = out_buf; idx; src = dst; valid = None })); Ok () | Gather { src_var; indices_var = _; axis = _; out_var; dtype = _ } -> (* Simplified gather - just map to source for now *) (match Hashtbl.find_opt ctx.scalar_map src_var with | Some s -> Hashtbl.replace ctx.scalar_map out_var s | None -> let b = ll_of_hl ctx src_var ~buffer:true in Hashtbl.replace ctx.buffer_map out_var b); Ok () | Scatter { indices_var = _; updates_var = _; axis = _; shape = _; out_var; dtype } -> (* Simplified scatter - needs proper implementation *) let idx = gtid ctx in let dst = Var.fresh () in ensure_meta ctx dst { dtype = Dtype.Any_Dtype dtype; shape = [| 1 |]; device = None }; add_instr ctx (L_Const { dtype = Dtype.Any_Dtype dtype; value = "0"; out = dst }); Hashtbl.replace ctx.scalar_map out_var dst; (if List.mem out_var kernel_outs then let out_buf = ll_of_hl ctx out_var ~buffer:true in add_instr ctx (L_Store { buf = out_buf; idx; src = dst; valid = None })); Ok () | Ternary { op = Mulacc; a_var; b_var; c_var; out_var; dtype } -> let idx = gtid ctx in let a_ll = load_scalar ctx ~hl_buffer:a_var ~idx ~dtype in let b_ll = load_scalar ctx ~hl_buffer:b_var ~idx ~dtype in let c_ll = load_scalar ctx ~hl_buffer:c_var ~idx ~dtype in let dst = Var.fresh () in ensure_meta ctx dst { dtype = Dtype.Any_Dtype dtype; shape = [| 1 |]; device = None }; add_instr ctx (L_ALU { dst; op = Lowered.Ternary Mulacc; args = [ a_ll; b_ll; c_ll ]; dtype = Dtype.Any_Dtype dtype; }); Hashtbl.replace ctx.scalar_map out_var dst; (if List.mem out_var kernel_outs then let out_buf = ll_of_hl ctx out_var ~buffer:true in add_instr ctx (L_Store { buf = out_buf; idx; src = dst; valid = None })); Ok () | View { in_var; shape_tracker = _; out_var; _ } | Valid { in_var; shape_tracker = _; out_var; _ } | Detach { in_var; out_var; _ } | Contiguous_Backward { in_var; out_var; _ } | Bitcast { in_var; target_dtype = _; out_var; _ } -> (match Hashtbl.find_opt ctx.scalar_map in_var with | Some s -> Hashtbl.replace ctx.scalar_map out_var s | None -> let b = ll_of_hl ctx in_var ~buffer:true in Hashtbl.replace ctx.buffer_map out_var b); Ok () | Vconst { values; dtype; out_var } -> (* Vector constant - for now treat as buffer with preset values *) let ll = ll_of_hl ctx out_var ~buffer:true in add_instr ctx (L_Buffer { dtype = Dtype.Any_Dtype dtype; size = Array.length values; out = ll; }); (* TODO: Initialize buffer with values *) Ok () | Buffer_View { buffer_var; size = _; offset = _; dtype = _; out_var } -> (* For now, just alias the buffers *) let b = ll_of_hl ctx buffer_var ~buffer:true in Hashtbl.replace ctx.buffer_map out_var b; Ok () | Index { in_var; idx_var; valid_var = _; out_var; dtype } -> (* Simplified index - needs proper implementation *) let base_idx = gtid ctx in let idx = load_scalar ctx ~hl_buffer:idx_var ~idx:base_idx ~dtype:Dtype.Int32 in let in_ll = load_scalar ctx ~hl_buffer:in_var ~idx ~dtype in Hashtbl.replace ctx.scalar_map out_var in_ll; (if List.mem out_var kernel_outs then let out_buf = ll_of_hl ctx out_var ~buffer:true in add_instr ctx (L_Store { buf = out_buf; idx = base_idx; src = in_ll; valid = None })); Ok () | Gep { in_var; indices; out_var; dtype } -> (* Get element pointer - for vectors *) let ll = ll_of_hl ctx in_var ~buffer:false in let dst = Var.fresh () in ensure_meta ctx dst { dtype = Dtype.Any_Dtype dtype; shape = [| 1 |]; device = None }; add_instr ctx (L_Gep { dst; src = ll; indices; dtype = Dtype.Any_Dtype dtype }); Hashtbl.replace ctx.scalar_map out_var dst; Ok () | Vectorize { in_vars; out_var; dtype } -> (* Build vector from scalars *) let srcs = Array.map (fun v -> ll_of_hl ctx v ~buffer:false) in_vars in let dst = Var.fresh () in ensure_meta ctx dst { dtype = Dtype.Any_Dtype dtype; shape = [| Array.length in_vars |]; device = None; }; add_instr ctx (L_Vectorize { dst; srcs; dtype = Dtype.Any_Dtype dtype }); Hashtbl.replace ctx.scalar_map out_var dst; Ok () | Wmma { a_var; b_var; c_var; m; n; k; out_var; dtype } -> (* Tensor core operations *) let a_ll = ll_of_hl ctx a_var ~buffer:true in let b_ll = ll_of_hl ctx b_var ~buffer:true in let c_ll = ll_of_hl ctx c_var ~buffer:true in let dst = ll_of_hl ctx out_var ~buffer:true in add_instr ctx (L_Wmma { dst; a = a_ll; b = b_ll; c = c_ll; m; n; k; dtype = Dtype.Any_Dtype dtype; }); Ok () | Define_Var { sym_var; out_var; dtype = _ } -> let ll = ll_of_hl ctx out_var ~buffer:false in add_instr ctx (L_Define_Var { sym_var; out = ll }); Ok () | Bind { sym_var; value; out_var; dtype = _ } -> (* Bind symbolic var to value *) let sym_ll = ll_of_hl ctx sym_var ~buffer:false in let dst = ll_of_hl ctx out_var ~buffer:false in add_instr ctx (L_Const { dtype = Dtype.Any_Dtype Dtype.Int32; value = string_of_int value; out = dst; }); add_instr ctx (L_Assign { dst = sym_ll; src = dst }); Ok () | Multi { device_vars; axis = _; real_mask = _; out_var; dtype = _ } -> (* Multi-device tensor - for now just use first device *) (if Array.length device_vars > 0 then match Hashtbl.find_opt ctx.scalar_map device_vars.(0) with | Some s -> Hashtbl.replace ctx.scalar_map out_var s | None -> let b = ll_of_hl ctx device_vars.(0) ~buffer:true in Hashtbl.replace ctx.buffer_map out_var b); Ok () | Fuse { in_var; out_var; dtype = _ } -> (* Fusion marker - pass through *) (match Hashtbl.find_opt ctx.scalar_map in_var with | Some s -> Hashtbl.replace ctx.scalar_map out_var s | None -> let b = ll_of_hl ctx in_var ~buffer:true in Hashtbl.replace ctx.buffer_map out_var b); Ok () | Unroll { loop_var; unroll_factor; out_var; dtype = _ } -> (* Loop unroll directive *) let ll = ll_of_hl ctx loop_var ~buffer:false in let dst = ll_of_hl ctx out_var ~buffer:false in add_instr ctx (L_Unroll { idx = ll; iterations = unroll_factor }); add_instr ctx (L_Assign { dst; src = ll }); Ok () | Contract { in_vars = _; contraction_axes = _; out_var; dtype } -> (* Tensor contraction - simplified for now *) let idx = gtid ctx in let dst = Var.fresh () in ensure_meta ctx dst { dtype = Dtype.Any_Dtype dtype; shape = [| 1 |]; device = None }; add_instr ctx (L_Const { dtype = Dtype.Any_Dtype dtype; value = "0"; out = dst }); Hashtbl.replace ctx.scalar_map out_var dst; (if List.mem out_var kernel_outs then let out_buf = ll_of_hl ctx out_var ~buffer:true in add_instr ctx (L_Store { buf = out_buf; idx; src = dst; valid = None })); Ok () | Sink { deps = _; dtype = _ } -> (* Sink has no output, just ensures dependencies are computed *) Ok () | Kernel { ast = _; input_vars = _; output_vars = _; metadata = _; out_var; dtype } -> (* Kernel wrapper - simplified *) let ll = ll_of_hl ctx out_var ~buffer:true in add_instr ctx (L_Buffer { dtype = Dtype.Any_Dtype dtype; size = 1; out = ll }); Ok () | Unique { id; out_var; dtype } -> (* Unique identifier generation *) let ll = ll_of_hl ctx out_var ~buffer:false in add_instr ctx (L_Const { dtype = Dtype.Any_Dtype dtype; value = string_of_int id; out = ll }); Ok () | Device { device_name = _; out_var; dtype } -> (* Device marker - for now just create a dummy value *) let ll = ll_of_hl ctx out_var ~buffer:false in add_instr ctx (L_Const { dtype = Dtype.Any_Dtype dtype; value = "0"; out = ll }); Ok () | Custom { op_name; in_vars; attributes; out_var; dtype = _ } -> (* Custom operation *) let args = Array.map (fun v -> ll_of_hl ctx v ~buffer:false) in_vars in let dst = ll_of_hl ctx out_var ~buffer:false in add_instr ctx (L_Custom { dst = Some dst; op_name; args; attributes; inline = false }); Ok () | Noop { in_var = _; out_var; dtype } -> (* No operation - just create dummy output *) let ll = ll_of_hl ctx out_var ~buffer:false in add_instr ctx (L_Const { dtype = Dtype.Any_Dtype dtype; value = "0"; out = ll }); Ok () (* ───── top-level entry ───── *) let lower_kernel ~(kernel_spec : Scheduler.kernel_spec_t) ~original_graph_vars_metadata = let ( let* ) = Result.bind in let ( let+ ) = fun r f -> Result.map f r in let ctx = new_ctx original_graph_vars_metadata kernel_spec.vars_metadata in let open Result in let+ () = List.fold_left (fun acc n -> let* _ = acc in lower_node ctx n kernel_spec.outputs) (Ok ()) kernel_spec.nodes in { Lowered.instructions = List.rev !(ctx.instrs); vars_metadata = ctx.meta; kernel_input_vars = List.map (fun v -> ll_of_hl ctx v ~buffer:true) kernel_spec.inputs; kernel_output_vars = List.map (fun v -> ll_of_hl ctx v ~buffer:true) kernel_spec.outputs; symbolic_vars = []; }
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>