package rocq-runtime
The Rocq Prover -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
rocq-9.0.0.tar.gz
md5=8d522602d23e7a665631826dab9aa92b
sha512=f4f76a6a178e421c99ee7a331a2fd97a06e9c5d0168d7e60c44e3820d8e1a124370ea104ad90c7f87a9a1e9d87b2d0d7d2d387c998feeaed4a75ed04e176a4be
doc/src/rocq-runtime.vernac/vernactypes.ml.html
Source file vernactypes.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
(** [('a,'b,'x) runner] means that any function taking ['a] and returning ['b] and some additional data can be interpreted as a function on a state ['x]. The additional return data ['d] is useful when combining runners. We don't need an additional input data as it can just go in the closure. *) type ('a,'b,'x) runner = { run : 'd. 'x -> ('a -> 'b * 'd) -> 'x * 'd } module Prog = struct type state = Declare.OblState.t type stack = state NeList.t type (_,_) t = | Ignore : (unit, unit) t | Modify : (state, state) t | Read : (state, unit) t | Push : (unit, unit) t | Pop : (state, unit) t let runner (type a b) (ty:(a,b) t) : (a,b,stack) runner = { run = fun pm f -> match ty with | Ignore -> let (), v = f () in pm, v | Modify -> let st, pm = NeList.repr pm in let st, v = f st in NeList.of_repr (st,pm), v | Read -> let (), v = f (NeList.head pm) in pm, v | Push -> let (), v = f () in NeList.push Declare.OblState.empty (Some pm), v | Pop -> let st, pm = NeList.repr pm in assert (not (CList.is_empty pm)); let (), v = f st in NeList.of_list pm, v } end module Proof = struct module LStack = Vernacstate.LemmaStack type state = Declare.Proof.t type stack = LStack.t option type (_,_) t = | Ignore : (unit, unit) t | Modify : (state, state) t | Read : (state, unit) t | ReadOpt : (state option, unit) t | Reject : (unit, unit) t | Close : (state, unit) t | Open : (unit, state) t let use = function | None -> CErrors.user_err (Pp.str "Command not supported (No proof-editing in progress).") | Some stack -> LStack.pop stack let runner (type a b) (ty:(a,b) t) : (a,b,stack) runner = { run = fun stack f -> match ty with | Ignore -> let (), v = f () in stack, v | Modify -> let p, rest = use stack in let p, v = f p in Some (LStack.push rest p), v | Read -> let p, _ = use stack in let (), v = f p in stack, v | ReadOpt -> let p = Option.map LStack.get_top stack in let (), v = f p in stack, v | Reject -> let () = if Option.has_some stack then CErrors.user_err (Pp.str "Command not supported (Open proofs remain).") in let (), v = f () in stack, v | Close -> let p, rest = use stack in let (), v = f p in rest, v | Open -> let p, v = f () in Some (LStack.push stack p), v } end module OpaqueAccess = struct (* Modification of opaque tables (by Require registering foreign tables and Qed/abstract/etc adding entries to the local table) is currently not tracked by vernactypes. *) type _ t = | Ignore : unit t | Access : Global.indirect_accessor t let access = Library.indirect_accessor[@@warning "-3"] let runner (type a) (ty:a t) : (a,unit,unit) runner = { run = fun () f -> match ty with | Ignore -> let (), v = f () in (), v | Access -> let (), v = f access in (), v } end (* lots of messing with tuples in there, can we do better? *) let combine_runners (type a b x c d y) (r1:(a,b,x) runner) (r2:(c,d,y) runner) : (a*c, b*d, x*y) runner = { run = fun (x,y) f -> match r1.run x @@ fun x -> match r2.run y @@ fun y -> match f (x,y) with ((b, d), o) -> (d, (b, o)) with (y, (b, o)) -> (b, (y, o)) with (x, (y, o)) -> ((x, y), o) } type ('prog,'proof,'opaque_access) state_gen = { prog : 'prog; proof : 'proof; opaque_access : 'opaque_access; } let tuple { prog; proof; opaque_access } = (prog, proof), opaque_access let untuple ((prog, proof), opaque_access) = { prog; proof; opaque_access } type no_state = (unit, unit, unit) state_gen let no_state = { prog = (); proof = (); opaque_access = (); } let ignore_state = { prog = Prog.Ignore; proof = Proof.Ignore; opaque_access = OpaqueAccess.Ignore } type 'r typed_vernac_gen = TypedVernac : { spec : (('inprog, 'outprog) Prog.t, ('inproof, 'outproof) Proof.t, 'inaccess OpaqueAccess.t) state_gen; run : ('inprog, 'inproof, 'inaccess) state_gen -> ('outprog, 'outproof, unit) state_gen * 'r; } -> 'r typed_vernac_gen let map_typed_vernac f (TypedVernac {spec; run}) = TypedVernac {spec; run = (fun st -> Util.on_snd f (run st)) } type typed_vernac = unit typed_vernac_gen type full_state = (Prog.stack,Vernacstate.LemmaStack.t option,unit) state_gen let run (TypedVernac { spec = { prog; proof; opaque_access }; run }) (st:full_state) : full_state * _ = let ( * ) = combine_runners in let runner = Prog.runner prog * Proof.runner proof * OpaqueAccess.runner opaque_access in let st, v = runner.run (tuple st) @@ fun st -> let st, v= run @@ untuple st in tuple st, v in untuple st, v let typed_vernac_gen spec run = TypedVernac { spec; run } let typed_vernac spec run = TypedVernac { spec; run = (fun st -> run st, () ) } let vtdefault f = typed_vernac ignore_state (fun (_:no_state) -> let () = f () in no_state) let vtnoproof f = typed_vernac { ignore_state with proof = Reject } (fun (_:no_state) -> let () = f () in no_state) let vtcloseproof f = typed_vernac { ignore_state with prog = Modify; proof = Close } (fun {prog; proof} -> let prog = f ~lemma:proof ~pm:prog in { no_state with prog }) let vtopenproof f = typed_vernac { ignore_state with proof = Open } (fun (_:no_state) -> let proof = f () in { no_state with proof }) let vtmodifyproof f = typed_vernac { ignore_state with proof = Modify } (fun {proof} -> let proof = f ~pstate:proof in { no_state with proof }) let vtreadproofopt f = typed_vernac { ignore_state with proof = ReadOpt } (fun {proof} -> let () = f ~pstate:proof in no_state) let vtreadproof f = typed_vernac { ignore_state with proof = Read } (fun {proof} -> let () = f ~pstate:proof in no_state) let vtreadprogram f = typed_vernac { ignore_state with prog = Read } (fun {prog} -> let () = f ~pm:prog in no_state) let vtmodifyprogram f = typed_vernac { ignore_state with prog = Modify } (fun {prog} -> let prog = f ~pm:prog in { no_state with prog }) let vtdeclareprogram f = typed_vernac { ignore_state with prog = Read; proof = Open } (fun {prog} -> let proof = f ~pm:prog in { no_state with proof }) let vtopenproofprogram f = typed_vernac { ignore_state with prog = Modify; proof = Open } (fun {prog} -> let prog, proof = f ~pm:prog in { no_state with prog; proof; }) let vtopaqueaccess f = typed_vernac { ignore_state with opaque_access = Access } (fun {opaque_access} -> let () = f ~opaque_access in no_state)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>