package rocq-runtime
The Rocq Prover -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
rocq-9.0.0.tar.gz
md5=8d522602d23e7a665631826dab9aa92b
sha512=f4f76a6a178e421c99ee7a331a2fd97a06e9c5d0168d7e60c44e3820d8e1a124370ea104ad90c7f87a9a1e9d87b2d0d7d2d387c998feeaed4a75ed04e176a4be
doc/src/rocq-runtime.vernac/comFixpoint.ml.html
Source file comFixpoint.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
(************************************************************************) (* * The Rocq Prover / The Rocq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) module CVars = Vars open Pp open Util open Names open Context open EConstr open Constrexpr open Constrintern open Vernacexpr module RelDecl = Context.Rel.Declaration module NamedDecl = Context.Named.Declaration (* 3c| Fixpoints and co-fixpoints *) (* An (unoptimized) function that maps preorders to partial orders... Input: a list of associations (x,[y1;...;yn]), all yi distincts and different of x, meaning x<=y1, ..., x<=yn Output: a list of associations (x,Inr [y1;...;yn]), collecting all distincts yi greater than x, _or_, (x, Inl y) meaning that x is in the same class as y (in which case, x occurs nowhere else in the association map) partial_order : ('a * 'a list) list -> ('a * ('a,'a list) union) list *) let rec partial_order cmp = function | [] -> [] | (x,xge)::rest -> let rec browse res xge' = function | [] -> let res = List.map (function | (z, Inr zge) when List.mem_f cmp x zge -> (z, Inr (List.union cmp zge xge')) | r -> r) res in (x,Inr xge')::res | y::xge -> let rec link y = try match List.assoc_f cmp y res with | Inl z -> link z | Inr yge -> if List.mem_f cmp x yge then let res = List.remove_assoc_f cmp y res in let res = List.map (function | (z, Inl t) -> if cmp t y then (z, Inl x) else (z, Inl t) | (z, Inr zge) -> if List.mem_f cmp y zge then (z, Inr (List.add_set cmp x (List.remove cmp y zge))) else (z, Inr zge)) res in browse ((y,Inl x)::res) xge' (List.union cmp xge yge) else browse res (List.add_set cmp y (List.union cmp xge' yge)) xge with Not_found -> browse res (List.add_set cmp y xge') xge in link y in browse (partial_order cmp rest) [] xge let string_of_kind = function | Decls.IsDefinition Fixpoint -> "fixpoint" | IsDefinition CoFixpoint -> "cofixpoint" | _ -> "declaration" let non_full_mutual_message x xge y yge kind rest = let reason = if Id.List.mem x yge then Id.print y ++ str " depends on " ++ Id.print x ++ strbrk " but not conversely" else if Id.List.mem y xge then Id.print x ++ str " depends on " ++ Id.print y ++ strbrk " but not conversely" else Id.print y ++ str " and " ++ Id.print x ++ strbrk " are not mutually dependent" in let e = if List.is_empty rest then reason else strbrk "e.g., " ++ reason in let w = if kind <> Decls.IsDefinition CoFixpoint then strbrk "Well-foundedness check may fail unexpectedly." ++ fnl() else mt () in strbrk "Not a fully mutually defined " ++ str (string_of_kind kind) ++ fnl () ++ str "(" ++ e ++ str ")." ++ fnl () ++ w let warn_non_full_mutual = CWarnings.create ~name:"non-full-mutual" ~category:CWarnings.CoreCategories.fixpoints (fun (x,xge,y,yge,kind,rest) -> non_full_mutual_message x xge y yge kind rest) let warn_non_recursive = CWarnings.create ~name:"non-recursive" ~category:CWarnings.CoreCategories.fixpoints (fun (x,kind) -> strbrk "Not a truly recursive " ++ str (string_of_kind kind) ++ str ".") let check_true_recursivity env evd ~kind fixl = let names = List.map fst fixl in let preorder = List.map (fun (id,def) -> (id, List.filter (fun id' -> Termops.occur_var env evd id' def) names)) fixl in let po = partial_order Id.equal preorder in match List.filter (function (_,Inr _) -> true | _ -> false) po with | (x,Inr xge)::(y,Inr yge)::rest -> warn_non_full_mutual (x,xge,y,yge,kind,rest) | _ -> match po with | [x,Inr []] -> warn_non_recursive (x,kind) | _ -> () (*****************************************************) (* Utilities for Program Fixpoint with wf or measure *) open Rocqlib let init_constant sigma rf = Evd.fresh_global sigma rf let fix_sub_ref () = lib_ref "program.wf.fix_sub" let measure_on_R_ref () = lib_ref "program.wf.mr" let well_founded sigma = init_constant (Global.env ()) sigma (lib_ref "core.wf.well_founded") let mkSubset sigma name typ prop = let open EConstr in let sigma, app_h = Evd.fresh_global (Global.env ()) sigma (delayed_force build_sigma).typ in sigma, mkApp (app_h, [| typ; mkLambda (make_annot name ERelevance.relevant, typ, prop) |]) let ensure_program () = try fix_sub_ref (), measure_on_R_ref () with NotFoundRef r -> CErrors.user_err Pp.(str r ++ spc() ++ str "not registered," ++ spc() ++ str "you should try requiring library Corelib.Program.Wf.") let recproofid = Id.of_string "recproof" let argname = Id.of_string "recarg" let encapsulate_Fix_sub env sigma recname ctx body ccl (extradecl, rel, relargty, measure_body) = let len = Context.Rel.length ctx in let fix_sub_ref, measure_on_R_ref = ensure_program () in (* We curry the binders [x1:A1;...;xn:An] into [x:{x1&...&xn};x1:=x.1;...;xn:=x.2...2] *) (* argtyp is [{x1&...&xn}], letbinders is [x1:=x.1;...;xn:=x.2...2], argvalue is [(x.1,...,x.2...2)] *) let open Combinators in let sigma, letbinders, {telescope_type = tuple_type; telescope_value = tuple_value} = telescope env sigma ctx in let tupled_ctx = letbinders @ [LocalAssum (make_annot (Name argname) ERelevance.relevant, tuple_type)] in (* The function measure has type [tuple_type -> relargty] *) let measure = it_mkLambda_or_LetIn measure_body tupled_ctx in (* The relation wf_rel_measure is [fun x y => rel (measure x) (measure y)] *) let sigma, comb = Evd.fresh_global (Global.env ()) sigma measure_on_R_ref in let rel_measure = mkApp (comb, [| tuple_type; relargty; rel; measure |]) in (* The statement that rel_measure is well-founded *) let sigma, wf_term = well_founded sigma in let wf_type = mkApp (wf_term, [| tuple_type ; rel_measure |]) in (* A combinator building [rel (measure x) (measure y)] *) let tupled_measure_body = it_mkLambda_or_LetIn measure_body letbinders in let make_applied_rel x y = mkApp (rel, [| Vars.subst1 x tupled_measure_body; Vars.subst1 y tupled_measure_body |]) in (* Conclusion of fixpoint in currified context *) let tupled_ccl = it_mkLambda_or_LetIn ccl letbinders in (* Making Fix_sub ready to take the extended body as argument *) let sigma, fix_sub = let sigma, fix_sub_term = Evd.fresh_global (Global.env ()) sigma fix_sub_ref in let sigma, wf_proof = Evarutil.new_evar env sigma ~src:(Loc.tag @@ Evar_kinds.QuestionMark { Evar_kinds.default_question_mark with Evar_kinds.qm_obligation=Evar_kinds.Define false; }) wf_type in let sigma = Evd.set_obligation_evar sigma (fst (destEvar sigma wf_proof)) in let ccl_pred = mkLambda (make_annot (Name argname) ERelevance.relevant, tuple_type, tupled_ccl) in let def = mkApp (fix_sub_term, [| tuple_type ; rel_measure ; wf_proof ; ccl_pred |]) in Typing.solve_evars env sigma def in let arg = RelDecl.LocalAssum (make_annot (Name argname) ERelevance.relevant, tuple_type) in let argid' = Id.of_string (Id.to_string argname ^ "'") in let sigma, wfa = let sigma, ss_term = mkSubset sigma (Name argid') tuple_type (make_applied_rel (mkRel 1) (mkRel 2)) in sigma, RelDecl.LocalAssum (make_annot (Name argid') ERelevance.relevant, ss_term) in let sigma, fix_sub_F_sub_ctx = let sigma, proj = Evd.fresh_global (Global.env ()) sigma (delayed_force build_sigma).Rocqlib.proj1 in let wfargpred = mkLambda (make_annot (Name argid') ERelevance.relevant, tuple_type, make_applied_rel (mkRel 1) (mkRel 3)) in let projection = (* in wfarg :: arg :: before *) mkApp (proj, [| tuple_type ; wfargpred ; mkRel 1 |]) in let ccl_on_smaller_arg = Vars.substl [projection] (it_mkLambda_or_LetIn ccl letbinders) in (* substitute the projection of wfarg for something, now ccl_let is in wfarg :: arg *) let ccl_on_smaller_arg = it_mkProd_or_LetIn ccl_on_smaller_arg [wfa] in let recname' = Nameops.add_suffix recname "'" in let smaller_arg = RelDecl.LocalAssum (make_annot (Name recname') ERelevance.relevant, ccl_on_smaller_arg) in sigma, Vars.lift_rel_context 1 letbinders @ smaller_arg :: [arg] in let sigma, curryfier_body, curryfier_ty = (* In tupled_context where the function argument of Fix_sub (argid'), is inserted, that is, all expanded: [recarg;argid';letbinders], build the curryfying combinator [fun ctx (recproof : rel (measure ctx) (measure tupled_context)) => argid' (tuple_value,recproof)] of type [forall ctx (recproof : rel (measure ctx) (measure tupled_context)) => ccl] *) let sigma, intro = Evd.fresh_global (Global.env ()) sigma (delayed_force build_sigma).Rocqlib.intro in let app = let wfpred = mkLambda (make_annot (Name argid') ERelevance.relevant, tuple_type, make_applied_rel (mkRel 1) (mkRel (2 * len + 4))) in (* Build the sig pair [exist _ tuple_value recproof] *) let arg = mkApp (intro, [| tuple_type; wfpred; Vars.lift 1 tuple_value; mkRel 1 |]) in (* Build the body of combinator *) mkApp (mkRel (2 * len + 2 (* recproof + orig binders + current binders *)), [| arg |]) in let extended_ctx = extradecl :: ctx in let body = it_mkLambda_or_LetIn app extended_ctx in let ty = it_mkProd_or_LetIn (Vars.lift 1 ccl) extended_ctx in sigma, body, ty in (* Rephrase the body of the fixpoint as dependent in the telescope *) let body_ctx = RelDecl.LocalDef (make_annot (Name recname) ERelevance.relevant, curryfier_body, curryfier_ty) :: fix_sub_F_sub_ctx in let intern_body_lam = it_mkLambda_or_LetIn body body_ctx in (* Instantiate the argument Fix_sub_F of Fix_sub with the body of the fixpoint *) let sigma, fix_sub = Typing.solve_evars env sigma fix_sub in sigma, tupled_ctx, tuple_value, mkApp (fix_sub, [|intern_body_lam|]) let build_wellfounded env sigma poly udecl recname ctx body ccl impls rel_measure = let len = Context.Rel.length ctx in (* Restore body in the context of binders + extradecl *) let _, body = decompose_lambda_n_decls sigma (len + 1) body in (* Restore ccl in the context of binders *) let ccl = Vars.subst1 (mkRel 1) (snd (decompose_prod_n_decls sigma (len + 1) ccl)) in (* Apply the body to Program.Wf.Fix_sub *) let sigma, tupled_ctx, tuple_value, def = encapsulate_Fix_sub env sigma recname ctx body ccl rel_measure in (* Turn everything to constr *) let ctx = Evarutil.nf_rel_context_evar sigma ctx in let tupled_ctx = Evarutil.nf_rel_context_evar sigma tupled_ctx in let ccl = Evarutil.nf_evar sigma ccl in let tuple_value = Evarutil.nf_evar sigma tuple_value in (* Decide if using a curryfied indirection via recname_func *) let recname_func, typ = if len > 1 then Nameops.add_suffix recname "_func", it_mkProd_or_LetIn ccl tupled_ctx else recname, it_mkProd_or_LetIn ccl ctx in let body, typ, _uctx, evmap, obls = Declare.Obls.prepare_obligations ~name:recname_func ~body:def ~types:typ env sigma in let hook, impls = if len > 1 then let hook { Declare.Hook.S.dref; uctx; obls; _ } = let update c = CVars.replace_vars obls (evmap mkVar (Evarutil.nf_evar (Evd.from_ctx uctx) c)) in let tuple_value = update tuple_value in let ccl = update ccl in let ctx = Context.Rel.map_het (ERelevance.kind sigma) update ctx in let univs = UState.check_univ_decl ~poly uctx udecl in let h_body = let inst = UState.(match fst univs with | Polymorphic_entry uctx -> UVars.UContext.instance uctx | Monomorphic_entry _ -> UVars.Instance.empty) in Constr.mkRef (dref, inst) in let body = Term.it_mkLambda_or_LetIn (Constr.mkApp (h_body, [|tuple_value|])) ctx in let ty = Term.it_mkProd_or_LetIn ccl ctx in let ce = Declare.definition_entry ~types:ty ~univs body in (* FIXME: include locality *) let c = Declare.declare_constant ~name:recname ~kind:Decls.(IsDefinition Definition) (DefinitionEntry ce) in let gr = GlobRef.ConstRef c in if Impargs.is_implicit_args () || not (List.is_empty impls) then Impargs.declare_manual_implicits false gr impls in Some (Declare.Hook.make hook), [] else None, impls in sigma, recname_func, body, typ, impls, obls, hook (*********************************) (* Interpretation of Co/Fixpoint *) let make_qref s = Libnames.qualid_of_string s let lt_ref = make_qref "Init.Peano.lt" let position_of_argument ctx binders na = let exception Found of int in let name = Name na.CAst.v in try Context.Rel.fold_outside (fun decl n -> match Context.Rel.Declaration.(get_value decl, Name.equal (get_name decl) name) with | None, true -> raise (Found n) | Some _, true -> let loc = List.find_map (fun id -> if Name.equal name id.CAst.v then Some id.CAst.loc else None) (Constrexpr_ops.names_of_local_binders binders) in let loc = Option.default na.CAst.loc loc in CErrors.user_err ?loc (Name.print name ++ str" must be a proper parameter and not a local definition.") | None, false -> n + 1 | Some _, false -> n (* let-ins don't count *)) ~init:0 ctx |> ignore; CErrors.user_err ?loc:na.loc (str "No parameter named " ++ Id.print na.v ++ str"."); with Found k -> k (* Interpret the index of a recursion order annotation *) let find_rec_annot ~program_mode ~function_mode env sigma Vernacexpr.{fname={CAst.loc}; binders} ctx typ = function | None -> let ctx', _ = Reductionops.whd_decompose_prod_decls (push_rel_context ctx env) sigma typ in let n = Context.Rel.nhyps ctx + Context.Rel.nhyps ctx' in if Int.equal n 0 then CErrors.user_err ?loc Pp.(str "A fixpoint needs at least one parameter."); None, List.interval 0 (n - 1) | Some CAst.{v=rec_order;loc} -> let default_order r = Option.default (CAst.make @@ CRef (lt_ref,None)) r in match rec_order with | CStructRec na -> None, [position_of_argument ctx binders na] | CWfRec (na,r) -> if function_mode then None, [] else Some (r, Constrexpr_ops.mkIdentC na.CAst.v), [] (* useless for Program: will use Fix_sub *) | CMeasureRec (na, mes, rfel) -> if function_mode then let _ = match binders, na with | [CLocalDef({ CAst.v = Name id },_,_,_) | CLocalAssum([{ CAst.v = Name id }],_,_,_)], None -> () | _, None -> CErrors.user_err ?loc Pp.(str "Decreasing argument must be specified in measure clause.") | _, Some na -> (* check that the name exists *) ignore (position_of_argument ctx binders na) in (* Dummy *) None, [] else let r = match na, rfel with | Some id, None -> let loc = id.CAst.loc in CAst.make ?loc @@ CRef (Libnames.qualid_of_ident ?loc id.CAst.v,None) | Some _, Some _ -> CErrors.user_err ?loc Pp.(str"Measure takes three arguments only in Function.") | None, rfel -> default_order rfel in Some (r, mes), [] (* useless: will use Fix_sub *) let interp_rec_annot ~program_mode ~function_mode env sigma fixl ctxl ccll rec_order = let open Pretyping in let nowf () = List.map (fun _ -> None) fixl in match rec_order with (* If recursive argument was not given by user, we try all args. An earlier approach was to look only for inductive arguments, but doing it properly involves delta-reduction, and it finally doesn't seem to worth the effort (except for huge mutual fixpoints ?) *) | CFixRecOrder fix_orders -> let fixwf, possible_guard = List.split (List.map4 (find_rec_annot ~program_mode ~function_mode env sigma) fixl ctxl ccll fix_orders) in fixwf, {possibly_cofix = false; possible_fix_indices = possible_guard} | CCoFixRecOrder -> nowf (), {possibly_cofix = true; possible_fix_indices = List.map (fun _ -> []) fixl} | CUnknownRecOrder -> nowf (), RecLemmas.find_mutually_recursive_statements sigma ctxl ccll let interp_fix_context ~program_mode env sigma {Vernacexpr.binders} = let sigma, (impl_env, ((env', ctx), imps)) = interp_context_evars ~program_mode env sigma binders in sigma, (env', ctx, impl_env, imps) let interp_fix_ccl ~program_mode sigma impls env fix = let flags = Pretyping.{ all_no_fail_flags with program_mode } in let sigma, (c, impl) = interp_type_evars_impls ~flags ~impls env sigma fix.Vernacexpr.rtype in let r = Retyping.relevance_of_type env sigma c in sigma, (c, r, impl) let interp_fix_body ~program_mode env_rec ctx sigma impls fix ccl = Option.cata (fun body -> let env_rec_ctx = push_rel_context ctx env_rec in let sigma, body = interp_casted_constr_evars ~program_mode env_rec_ctx sigma ~impls body ccl in sigma, Some (it_mkLambda_or_LetIn body ctx)) (sigma, None) fix.Vernacexpr.body_def let build_fix_type sigma ctx ccl (_, extradecl) = let ccl = it_mkProd_or_LetIn (Vars.lift (Context.Rel.length extradecl) ccl) extradecl in Evarutil.nf_evar sigma (it_mkProd_or_LetIn ccl ctx) let build_dummy_fix_type sigma ctx ccl (_, extradecl) = (* Hack: the extra declarations are smashed to a dummy non-dependent so as not to contribute to the computation of implicit arguments *) let ccl = it_mkProd_or_LetIn (Vars.lift (Context.Rel.length extradecl) ccl) (List.map (RelDecl.map_type (fun _ -> mkProp)) extradecl) in Evarutil.nf_evar sigma (it_mkProd_or_LetIn ccl ctx) (* Wellfounded definition *) let encapsulate env sigma r t = (* Would probably be overkill to use a specific fix_proto in SProp when in SProp?? *) let fix_proto sigma = Evd.fresh_global (Global.env ()) sigma (Rocqlib.lib_ref "program.tactic.fix_proto") in let fix_proto_relevance = EConstr.ERelevance.relevant in let sigma, sort = Typing.type_of ~refresh:true env sigma t in try let sigma, h_term = fix_proto sigma in let app = EConstr.mkApp (h_term, [|sort; t|]) in let sigma, app = Typing.solve_evars env sigma app in sigma, fix_proto_relevance, app with e when CErrors.noncritical e -> sigma, r, t type ('constr, 'relevance) fix_data = { fixnames : Names.Id.t list; fixrs : 'relevance list; fixdefs : 'constr option list; fixtypes : 'constr list; fixctxs : EConstr.rel_context list; fiximps : (Names.Name.t * bool) option CAst.t list list; fixntns : Metasyntax.notation_interpretation_decl list; fixwfs : (rel_declaration * EConstr.t * EConstr.t * EConstr.t) option list; } let interp_wf ~program_mode env sigma recname ctx ccl = function | None -> sigma, ((false, []), None, []) | Some (r, measure) -> (* We have to insert an argument for the measure/wellfoundedness *) (* The extra implicit argument *) let impl = CAst.make (Some (Name recproofid, true)) in (* The well-founded relation *) let env_ctx = push_rel_context ctx env in let sigma, (rel, _) = interp_constr_evars_impls ~program_mode env sigma r in let relargty = Hipattern.is_homogeneous_relation ?loc:(Constrexpr_ops.constr_loc r) env_ctx sigma rel in (* The measure *) let sigma, measure = interp_casted_constr_evars ~program_mode env_ctx sigma measure relargty in let sigma, after, extradecl = if program_mode then let len = Context.Rel.length ctx in let applied_rel_measure = mkApp (rel, [| measure; Vars.lift len measure |]) in let extradecl = RelDecl.LocalAssum (make_annot (Name recproofid) ERelevance.relevant, applied_rel_measure) in sigma, true, extradecl else let sigma, wf_term = well_founded sigma in let applied_wf = mkApp (wf_term, [| relargty; rel; measure |]) in let extradecl = RelDecl.LocalAssum (make_annot (Name recproofid) ERelevance.relevant, applied_wf) in sigma, false, extradecl in sigma, ((after, [extradecl]), Some (extradecl, rel, relargty, measure), [impl]) let interp_mutual_definition env ~program_mode ~function_mode rec_order fixl = let open Context.Named.Declaration in let open EConstr in let fixnames = List.map (fun fix -> fix.Vernacexpr.fname.CAst.v) fixl in (* Interp arities allowing for unresolved types *) let sigma, decl = interp_mutual_univ_decl_opt env (List.map (fun Vernacexpr.{univs} -> univs) fixl) in let sigma, (fixenv, fixctxs, fixctximpenvs, fixctximps) = on_snd List.split4 @@ List.fold_left_map (fun sigma -> interp_fix_context ~program_mode env sigma) sigma fixl in let sigma, (fixccls,fixrs,fixcclimps) = on_snd List.split3 @@ List.fold_left3_map (interp_fix_ccl ~program_mode) sigma fixctximpenvs fixenv fixl in let fixwfs, possible_guard = interp_rec_annot ~program_mode ~function_mode env sigma fixl fixctxs fixccls rec_order in let sigma, (fixextras, fixwfs, fixwfimps) = on_snd List.split3 @@ (List.fold_left4_map (interp_wf ~program_mode env) sigma fixnames fixctxs fixccls fixwfs) in let fixtypes = List.map3 (build_fix_type sigma) fixctxs fixccls fixextras in let sigma, rec_sign = List.fold_left4 (fun (sigma, rec_sign) id r t (_,extradecl) -> let sigma, r, t = if program_mode && List.is_empty extradecl then encapsulate env sigma r t else sigma, r, t in sigma, LocalAssum (Context.make_annot id r, t) :: rec_sign) (sigma, []) fixnames fixrs fixtypes fixextras in let fixrecimps = List.map3 (fun ctximps wfimps cclimps -> ctximps @ wfimps @ cclimps) fixctximps fixwfimps fixcclimps in let fiximps = List.map2 (fun ctximps cclimps -> ctximps @ cclimps) fixctximps fixcclimps in (* Interp bodies with rollback because temp use of notations/implicit *) let fixntns = List.map_append (fun { Vernacexpr.notations } -> List.map Metasyntax.prepare_where_notation notations ) fixl in let sigma, fixdefs = let force = List.map (fun (_,extra) -> Id.Set.of_list (List.map_filter (fun d -> Nameops.Name.to_option (RelDecl.get_name d)) extra)) fixextras in let dummy_fixtypes = List.map3 (build_dummy_fix_type sigma) fixctxs fixccls fixextras in let impls = compute_internalization_env env sigma ~force Recursive fixnames dummy_fixtypes fixrecimps in Metasyntax.with_syntax_protection (fun () -> List.iter (Metasyntax.set_notation_for_interpretation env impls) fixntns; List.fold_left5_map (fun sigma fixctximpenv (after,extradecl) ctx body ccl -> let impls = Id.Map.fold Id.Map.add fixctximpenv impls in let env', ctx = if after then env, List.map NamedDecl.to_rel_decl rec_sign @ ctx else push_named_context rec_sign env, extradecl@ctx in interp_fix_body ~program_mode env' ctx sigma impls body (Vars.lift (Context.Rel.length extradecl) ccl)) sigma fixctximpenvs fixextras fixctxs fixl fixccls) () in (* Instantiate evars and check all are resolved *) let sigma = Evarconv.solve_unif_constraints_with_heuristics env sigma in let sigma = Evd.minimize_universes sigma in (* Build the fix declaration block *) let fix = {fixnames;fixrs;fixdefs;fixtypes;fixctxs;fiximps;fixntns;fixwfs} in (env, rec_sign, sigma), (fix, possible_guard, decl) let check_recursive ~kind env evd {fixnames;fixdefs;fixwfs} = (* TO MOVE AT FINAL DEFINITION TIME? *) if List.for_all Option.has_some fixdefs && List.for_all Option.is_empty fixwfs then begin let fixdefs = List.map Option.get fixdefs in check_true_recursivity env evd ~kind (List.combine fixnames fixdefs) end let ground_fixpoint env evd {fixnames;fixrs;fixdefs;fixtypes;fixctxs;fiximps;fixntns;fixwfs} = Pretyping.check_evars_are_solved ~program_mode:false env evd; let fixrs = List.map (fun r -> EConstr.ERelevance.kind evd r) fixrs in let fixdefs = List.map (fun c -> Option.map EConstr.(to_constr evd) c) fixdefs in let fixtypes = List.map EConstr.(to_constr evd) fixtypes in {fixnames;fixrs;fixdefs;fixtypes;fixctxs;fiximps;fixntns;fixwfs} (** For Funind *) let interp_fixpoint_short rec_order fixpoint_exprl = let env = Global.env () in let (_, _, sigma),(fix, _, _) = interp_mutual_definition ~program_mode:false ~function_mode:true env (CFixRecOrder rec_order) fixpoint_exprl in let sigma = Pretyping.(solve_remaining_evars all_no_fail_flags env sigma) in let typel = (ground_fixpoint env sigma fix).fixtypes in typel, sigma let build_recthms {fixnames;fixtypes;fixctxs;fiximps} = List.map4 (fun name typ ctx impargs -> let args = List.map Context.Rel.Declaration.get_name ctx in Declare.CInfo.make ~name ~typ ~args ~impargs () ) fixnames fixtypes fixctxs fiximps let collect_evars_of_term evd c ty = Evar.Set.union (Evd.evars_of_term evd c) (Evd.evars_of_term evd ty) let collect_evars env sigma rec_sign recname def typ = (* Generalize by the recursive prototypes *) let deps = collect_evars_of_term sigma def typ in let evars, _, def, typ = RetrieveObl.retrieve_obligations env recname sigma (List.length rec_sign) ~deps def typ in (Some def, typ, evars) let out_def = function | Some def -> def | None -> CErrors.user_err Pp.(str "Program Fixpoint needs defined bodies.") let build_program_fixpoint env sigma rec_sign possible_guard fixnames fixrs fixdefs fixtypes fixwfs = assert (List.for_all Option.is_empty fixwfs); (* Get the interesting evars, those that were not instantiated *) let sigma = Typeclasses.resolve_typeclasses ~filter:Typeclasses.no_goals ~fail:true env sigma in (* Solve remaining evars *) let sigma = Evarutil.nf_evar_map_undefined sigma in let fixdefs = List.map out_def fixdefs in (* An early check of guardedness before working on the obligations *) let () = let fixdecls = Array.of_list (List.map2 (fun x r -> Context.make_annot (Name x) r) fixnames fixrs), Array.of_list fixtypes, Array.of_list fixdefs in ignore (Pretyping.esearch_guard env sigma possible_guard fixdecls) in List.split3 (List.map3 (collect_evars env sigma rec_sign) fixnames fixdefs fixtypes) let finish_obligations env sigma rec_sign possible_guard poly udecl = function | {fixnames=[recname];fixrs;fixdefs=[body];fixtypes=[ccl];fixctxs=[ctx];fiximps=[imps];fixntns;fixwfs=[Some wf]} -> let sigma = Evarutil.nf_evar_map sigma in (* use nf_evar_map_undefined?? *) let sigma, recname, body, ccl, impls, obls, hook = build_wellfounded env sigma poly udecl recname ctx (Option.get body) ccl imps wf in let fixrs = List.map (EConstr.ERelevance.kind sigma) fixrs in sigma, {fixnames=[recname];fixrs;fixdefs=[Some body];fixtypes=[ccl];fixctxs=[ctx];fiximps=[impls];fixntns;fixwfs=[Some wf]}, [obls], hook | {fixnames;fixrs;fixdefs;fixtypes;fixctxs;fiximps;fixntns;fixwfs} -> let fixdefs, fixtypes, obls = build_program_fixpoint env sigma rec_sign possible_guard fixnames fixrs fixdefs fixtypes fixwfs in let fixrs = List.map (EConstr.ERelevance.kind sigma) fixrs in sigma, {fixnames;fixrs;fixdefs;fixtypes;fixctxs;fiximps;fixntns;fixwfs}, obls, None let finish_regular env sigma use_inference_hook fix = let inference_hook = if use_inference_hook then Some Declare.Obls.program_inference_hook else None in let sigma = Pretyping.(solve_remaining_evars ?hook:inference_hook all_no_fail_flags env sigma) in sigma, ground_fixpoint env sigma fix, [], None let do_mutually_recursive ?pm ~program_mode ?(use_inference_hook=false) ?scope ?clearbody ~kind ~poly ?typing_flags ?user_warns ?using (rec_order, fixl) : Declare.OblState.t option * Declare.Proof.t option = let env = Global.env () in let env = Environ.update_typing_flags ?typing_flags env in let (env,rec_sign,sigma),(fix,possible_guard,udecl) = interp_mutual_definition env ~program_mode ~function_mode:false rec_order fixl in check_recursive ~kind env sigma fix; let sigma, ({fixdefs=bodies;fixrs;fixtypes;fixwfs} as fix), obls, hook = match pm with | Some pm -> finish_obligations env sigma rec_sign possible_guard poly udecl fix | None -> finish_regular env sigma use_inference_hook fix in let info = Declare.Info.make ?scope ?clearbody ~kind ~poly ~udecl ?hook ?typing_flags ?user_warns ~ntns:fix.fixntns () in let cinfo = build_recthms fix in match pm with | Some pm -> (* Program Fixpoint struct *) let bodies = List.map Option.get bodies in Evd.check_univ_decl_early ~poly ~with_obls:true sigma udecl (bodies @ fixtypes); let sigma = if poly then sigma else Evd.fix_undefined_variables sigma in let uctx = Evd.ustate sigma in (match fixwfs, bodies, cinfo, obls with | [Some _], [body], [cinfo], [obls] -> (* Program Fixpoint wf/measure *) let pm, _ = Declare.Obls.add_definition ~pm ~cinfo ~info ~opaque:false ~body ~uctx ?using obls in Some pm, None | _ -> let possible_guard = (possible_guard, fixrs) in Some (Declare.Obls.add_mutual_definitions ~pm ~cinfo ~info ~opaque:false ~uctx ~bodies ~possible_guard ?using obls), None) | None -> try let bodies = List.map Option.get bodies in let uctx = Evd.ustate sigma in (* All bodies are defined *) let possible_guard = (possible_guard, fixrs) in let _ : GlobRef.t list = Declare.declare_mutual_definitions ~cinfo ~info ~opaque:false ~uctx ~possible_guard ~bodies ?using () in None, None with Option.IsNone -> (* At least one undefined body *) Evd.check_univ_decl_early ~poly ~with_obls:false sigma udecl (Option.List.flatten bodies @ fixtypes); let possible_guard = (possible_guard, fixrs) in let lemma = Declare.Proof.start_mutual_definitions ~info ~cinfo ~bodies ~possible_guard ?using sigma in None, Some lemma
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>