package rocq-runtime
The Rocq Prover -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
rocq-9.0.0.tar.gz
md5=8d522602d23e7a665631826dab9aa92b
sha512=f4f76a6a178e421c99ee7a331a2fd97a06e9c5d0168d7e60c44e3820d8e1a124370ea104ad90c7f87a9a1e9d87b2d0d7d2d387c998feeaed4a75ed04e176a4be
doc/src/rocq-runtime.tactics/btermdn.ml.html
Source file btermdn.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
(************************************************************************) (* * The Rocq Prover / The Rocq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Util open Constr open Names open Pattern (* Discrimination nets with bounded depth. See the module dn.ml for further explanations. Eduardo (5/8/97). *) let dnet_depth = ref 8 type term_label = | GRLabel of GlobRef.t | ProjLabel of Projection.Repr.t * int (** [ProjLabel (p, n)] represents a possibly partially applied projection [p] with [n] arguments missing to be fully applied. [n] is always zero for labels derived from [Proj] terms but can be greater than zero for labels derived from compatibility constants. *) | ProdLabel | SortLabel | CaseLabel let compare_term_label t1 t2 = match t1, t2 with | GRLabel gr1, GRLabel gr2 -> GlobRef.UserOrd.compare gr1 gr2 | ProjLabel (p1, n1), ProjLabel (p2, n2) -> let c = Int.compare n1 n2 in if c <> 0 then c else (Projection.Repr.UserOrd.compare p1 p2) | _ -> Stdlib.compare t1 t2 (** OK *) type 'res lookup_res = 'res Dn.lookup_res = Label of 'res | Nothing | Everything let eta_reduce = Reductionops.shrink_eta (* TODO: instead of doing that on patterns we should try to perform it on terms before translating them into patterns in Hints. *) let rec eta_reduce_pat (p:constr_pattern) = match p with | PLambda (_, _, q) -> let f, cl = match eta_reduce_pat q with | PApp (f, cl) -> f, cl | q -> q, [||] in let napp = Array.length cl in if napp > 0 then let r = eta_reduce_pat (Array.last cl) in match r with | PRel 1 -> let lc = Array.sub cl 0 (napp - 1) in let u = if Array.is_empty lc then f else PApp (f, lc) in if Patternops.noccurn_pattern 1 u then Patternops.lift_pattern (-1) u else p | _ -> p else p | PRef _ | PVar _ | PEvar _ | PRel _ | PApp _ | PSoApp _ | PProj _ | PProd _ | PLetIn _ | PSort _ | PMeta _ | PIf _ | PCase _ | PFix _ | PCoFix _ | PInt _ | PFloat _ | PString _ | PArray _ -> p | PUninstantiated _ -> . let evaluable_constant c env ts = (* This is a hack to work around a broken Print Module implementation, see bug #2668. *) (if Environ.mem_constant c env then Environ.evaluable_constant c env else true) && (match ts with None -> true | Some ts -> Structures.PrimitiveProjections.is_transparent_constant ts c) let evaluable_named id env ts = (try Environ.evaluable_named id env with Not_found -> true) && (match ts with None -> true | Some ts -> TransparentState.is_transparent_variable ts id) let evaluable_projection p _env ts = (match ts with None -> true | Some ts -> TransparentState.is_transparent_projection ts (Projection.repr p)) let label_of_opaque_constant c stack = match Structures.PrimitiveProjections.find_opt c with | None -> (GRLabel (ConstRef c), stack) | Some p -> let n_args_needed = Structures.Structure.projection_nparams c + 1 in (* +1 for the record value itself *) let n_args_given = List.length stack in let n_args_missing = max (n_args_needed - n_args_given) 0 in let n_args_drop = min (n_args_needed - 1) n_args_given in (* we do not drop the record value from the stack *) (ProjLabel (p, n_args_missing), List.skipn n_args_drop stack) (* The pattern view functions below try to overapproximate βι-neutral terms up to η-conversion. Some historical design choices are still incorrect w.r.t. to this specification. TODO: try to make them follow the spec. *) let constr_val_discr env sigma ts t = (* Should we perform weak βι here? *) let open GlobRef in let rec decomp stack t = match EConstr.kind sigma t with | App (f,l) -> decomp (Array.fold_right (fun a l -> a::l) l stack) f | Proj (p,_,c) when evaluable_projection p env ts -> Everything | Proj (p,_,c) -> Label(ProjLabel (Projection.repr p, 0), c :: stack) | Cast (c,_,_) -> decomp stack c | Const (c,_) when evaluable_constant c env ts -> Everything | Const (c,_) -> let c = Environ.QConstant.canonize env c in Label (label_of_opaque_constant c stack) | Ind (ind_sp,_) -> let ind_sp = Environ.QInd.canonize env ind_sp in Label(GRLabel (IndRef ind_sp), stack) | Construct (cstr_sp,_) -> let cstr_sp = Environ.QConstruct.canonize env cstr_sp in Label(GRLabel (ConstructRef cstr_sp), stack) | Var id when evaluable_named id env ts -> Everything | Var id -> Label(GRLabel (VarRef id), stack) | Prod (n,d,c) -> Label(ProdLabel, [d; c]) | Lambda _ when Option.is_empty ts && List.is_empty stack -> Nothing | Lambda _ -> Everything | Sort _ -> Label(SortLabel, []) | Evar _ -> Everything | Case (_, _, _, _, _, c, _) -> begin match decomp stack c with | Label (GRLabel (ConstructRef _), _) -> Everything (* over-approximating w.r.t. [fMATCH] *) | Label _ | Nothing -> Label(CaseLabel, c :: stack) | Everything -> Everything end | Rel _ | Meta _ | LetIn _ | Fix _ | CoFix _ | Int _ | Float _ | String _ | Array _ -> Nothing in decomp [] (eta_reduce sigma t) let constr_pat_discr env ts p = let open GlobRef in let rec decomp stack p = match p with | PApp (f,args) -> decomp (Array.to_list args @ stack) f | PProj (p,c) when evaluable_projection p env ts -> None | PProj (p,c) -> Some (ProjLabel (Projection.repr p, 0), c :: stack) | PRef ((IndRef _) as ref) | PRef ((ConstructRef _ ) as ref) -> let ref = Environ.QGlobRef.canonize env ref in Some (GRLabel ref, stack) | PRef (VarRef v) when evaluable_named v env ts -> None | PRef ((VarRef _) as ref) -> Some (GRLabel ref, stack) | PRef (ConstRef c) when evaluable_constant c env ts -> None | PRef (ConstRef c) -> let c = Environ.QConstant.canonize env c in Some (label_of_opaque_constant c stack) | PVar v when evaluable_named v env ts -> None | PVar v -> Some (GRLabel (VarRef v), stack) | PProd (_,d,c) when stack = [] -> Some (ProdLabel, [d ; c]) | PSort s when stack = [] -> Some (SortLabel, []) | PCase(_,_,p,_) | PIf(p,_,_) -> begin match decomp stack p with | Some (GRLabel (ConstructRef _), _) -> None (* over-approximating w.r.t. [fMATCH] *) | Some _ -> Some (CaseLabel, p :: stack) | None -> None end | _ -> None in decomp [] (eta_reduce_pat p) let constr_pat_discr_syntactic env p = let open GlobRef in let rec decomp stack p = match eta_reduce_pat p with | PApp (f,args) -> decomp (Array.to_list args @ stack) f | PProj (p,c) -> Some (ProjLabel (Names.Projection.repr p, 0), c :: stack) | PRef ((IndRef _) as ref) | PRef ((ConstructRef _ ) as ref) -> let ref = Environ.QGlobRef.canonize env ref in Some (GRLabel ref, stack) | PRef ((VarRef _) as ref) -> Some (GRLabel ref, stack) | PRef (ConstRef c) -> let c = Environ.QConstant.canonize env c in Some (label_of_opaque_constant c stack) | PVar v -> Some (GRLabel (VarRef v), stack) | PProd (_,d,c) when stack = [] -> Some (ProdLabel, [d ; c]) | PSort s when stack = [] -> Some (SortLabel, []) | _ -> None in decomp [] p let bounded_constr_pat_discr env st (t,depth) = if Int.equal depth 0 then None else match constr_pat_discr env st t with | None -> None | Some (c,l) -> Some(c,List.map (fun c -> (c,depth-1)) l) let bounded_constr_pat_discr_syntactic env (t,depth) = if Int.equal depth 0 then None else match constr_pat_discr_syntactic env t with | None -> None | Some (c,l) -> Some(c,List.map (fun c -> (c,depth-1)) l) let bounded_constr_val_discr env st sigma (t,depth) = if Int.equal depth 0 then Nothing else match constr_val_discr env sigma st t with | Label (c,l) -> Label(c,List.map (fun c -> (c,depth-1)) l) | Nothing -> Nothing | Everything -> Everything module Make = functor (Z : Map.OrderedType) -> struct module Y = struct type t = term_label let compare = compare_term_label end module Dn = Dn.Make(Y)(Z) type t = Dn.t type pattern = Dn.pattern let pattern env st pat = Dn.pattern (bounded_constr_pat_discr env st) (pat, !dnet_depth) let pattern_syntactic env pat = Dn.pattern (bounded_constr_pat_discr_syntactic env) (pat, !dnet_depth) let constr_pattern env sigma st pat = let mk p = match bounded_constr_val_discr env st sigma p with | Label l -> Some l | Everything | Nothing -> None in Dn.pattern mk (pat, !dnet_depth) let empty = Dn.empty let add = Dn.add let rmv = Dn.rmv let lookup env sigma st dn t = Dn.lookup dn (bounded_constr_val_discr env st sigma) (t,!dnet_depth) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>