package rocq-runtime
The Rocq Prover -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
rocq-9.0.0.tar.gz
md5=8d522602d23e7a665631826dab9aa92b
sha512=f4f76a6a178e421c99ee7a331a2fd97a06e9c5d0168d7e60c44e3820d8e1a124370ea104ad90c7f87a9a1e9d87b2d0d7d2d387c998feeaed4a75ed04e176a4be
doc/src/rocq-runtime.pretyping/cbv.ml.html
Source file cbv.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
(************************************************************************) (* * The Rocq Prover / The Rocq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Util open Names open Constr open Vars open Esubst (**** Call by value reduction ****) (* The type of terms with closure. The meaning of the constructors and * the invariants of this datatype are the following: * VAL(k,c) represents the constr c with a delayed shift of k. c must be * in normal form and neutral (i.e. not a lambda, a construct or a * (co)fix, because they may produce redexes by applying them, * or putting them in a case) * STACK(k,v,stk) represents an irreductible value [v] in the stack [stk]. * [k] is a delayed shift to be applied to both the value and * the stack. * LAMBDA(n,a,b,S) is the term [S]([x:a]b) where [a] is a list of bindings and * [n] is the length of [a]. the environment [S] is propagated * only when the abstraction is applied, and then we use the rule * ([S]([x:a]b) c) --> [S.c]b * This corresponds to the usual strategy of weak reduction * PROD(na,t,u,S) is the term [S](forall na:t, u). * LETIN(na,b,t,S) is the term [S](let na:= b : t in.c). * FIX(op,bd,S,args) is the fixpoint (Fix or Cofix) of bodies bd under * the bindings S, and then applied to args. Here again, * weak reduction. * CONSTRUCT(c,args) is the constructor [c] applied to [args]. * PRIMITIVE(cop,args) represent a particial application of * a primitive, or a fully applied primitive * which does not reduce. * cop is the constr representing op. * *) type cbv_value = | VAL of int * constr | STACK of int * cbv_value * cbv_stack | LAMBDA of int * (Name.t Constr.binder_annot * types) list * constr * cbv_value subs | PROD of Name.t Constr.binder_annot * types * types * cbv_value subs | LETIN of Name.t Constr.binder_annot * cbv_value * types * constr * cbv_value subs | FIX of fixpoint * cbv_value subs * cbv_value array | COFIX of cofixpoint * cbv_value subs * cbv_value array | CONSTRUCT of constructor UVars.puniverses * cbv_value array | PRIMITIVE of CPrimitives.t * pconstant * cbv_value array | ARRAY of UVars.Instance.t * cbv_value Parray.t * cbv_value | SYMBOL of { cst: Constant.t UVars.puniverses; unfoldfix: bool; rules: Declarations.rewrite_rule list; stk: cbv_stack } (* type of terms with a hole. This hole can appear only under App or Case. * TOP means the term is considered without context * APP(v,stk) means the term is applied to v, and then the context stk * (v.0 is the first argument). * this corresponds to the application stack of the KAM. * The members of l are values: we evaluate arguments before calling the function. * CASE(t,br,pat,S,stk) means the term is in a case (which is himself in stk * t is the type of the case and br are the branches, all of them under * the subs S, pat is information on the patterns of the Case * (Weak reduction: we propagate the sub only when the selected branch * is determined) * PROJ(p,pb,stk) means the term is in a primitive projection p, itself in stk. * pb is the associated projection body * * Important remark: the APPs should be collapsed: * (APP (l,(APP ...))) forbidden *) and cbv_stack = | TOP | APP of cbv_value list * cbv_stack | CASE of UVars.Instance.t * constr array * case_return * case_branch array * Constr.case_invert * case_info * cbv_value subs * cbv_stack | PROJ of Projection.t * Sorts.relevance * cbv_stack (* les vars pourraient etre des constr, cela permet de retarder les lift: utile ?? *) (* relocation of a value; used when a value stored in a context is expanded * in a larger context. e.g. [%k (S.t)](k+1) --> [^k]t (t is shifted of k) *) let rec shift_value n = function | VAL (k,t) -> VAL (k+n,t) | STACK(k,v,stk) -> STACK(k+n,v,stk) | PROD (na,t,u,s) -> PROD(na,t,u,subs_shft(n,s)) | LETIN (na,b,t,c,s) -> LETIN(na,shift_value n b,t,c,subs_shft(n,s)) | LAMBDA (nlams,ctxt,b,s) -> LAMBDA (nlams,ctxt,b,subs_shft (n,s)) | FIX (fix,s,args) -> FIX (fix,subs_shft (n,s), Array.map (shift_value n) args) | COFIX (cofix,s,args) -> COFIX (cofix,subs_shft (n,s), Array.map (shift_value n) args) | CONSTRUCT (c,args) -> CONSTRUCT (c, Array.map (shift_value n) args) | PRIMITIVE(op,c,args) -> PRIMITIVE(op,c,Array.map (shift_value n) args) | ARRAY (u,t,ty) -> ARRAY(u, Parray.map (shift_value n) t, shift_value n ty) | SYMBOL s -> SYMBOL { s with stk = shift_stack n s.stk } and shift_stack n = function (* Slow *) | TOP -> TOP | APP (args, stk) -> APP (List.map (shift_value n) args, shift_stack n stk) | CASE (u,pms,c,b,iv,i,s,stk) -> CASE (u,pms,c,b,iv,i,subs_shft(n,s), shift_stack n stk) | PROJ (p, r, stk) -> PROJ (p, r, shift_stack n stk) let shift_value n v = if Int.equal n 0 then v else shift_value n v (* Contracts a fixpoint: given a fixpoint and a bindings, * returns the corresponding fixpoint body, and the bindings in which * it should be evaluated: its first variables are the fixpoint bodies * (S, (fix Fi {F0 := T0 .. Fn-1 := Tn-1})) * -> (S. [S]F0 . [S]F1 ... . [S]Fn-1, Ti) *) let rec mk_fix_subs make_body n env i = if Int.equal i n then env else mk_fix_subs make_body n (subs_cons (make_body i) env) (i + 1) let contract_fixp env ((reci,i),(_,_,bds as bodies)) = let make_body j = FIX(((reci,j),bodies), env, [||]) in let n = Array.length bds in mk_fix_subs make_body n env 0, bds.(i) let contract_cofixp env (i,(_,_,bds as bodies)) = let make_body j = COFIX((j,bodies), env, [||]) in let n = Array.length bds in mk_fix_subs make_body n env 0, bds.(i) let make_constr_ref n k t = match k with | RelKey p -> mkRel (n+p) | VarKey id -> t | ConstKey cst -> t (* Adds an application list. Collapse APPs! *) let stack_vect_app appl stack = if Int.equal (Array.length appl) 0 then stack else match stack with | APP(args,stk) -> APP(Array.fold_right (fun v accu -> v :: accu) appl args,stk) | _ -> APP(Array.to_list appl, stack) let stack_app appl stack = if List.is_empty appl then stack else match stack with | APP(args,stk) -> APP(appl @ args,stk) | _ -> APP(appl, stack) let rec stack_concat stk1 stk2 = match stk1 with TOP -> stk2 | APP(v,stk1') -> APP(v,stack_concat stk1' stk2) | CASE(u,pms,c,b,iv,i,s,stk1') -> CASE(u,pms,c,b,iv,i,s,stack_concat stk1' stk2) | PROJ (p,r,stk1') -> PROJ (p,r,stack_concat stk1' stk2) (* merge stacks when there is no shifts in between *) let mkSTACK = function v, TOP -> v | STACK(0,v0,stk0), stk -> STACK(0,v0,stack_concat stk0 stk) | v,stk -> STACK(0,v,stk) module KeyTable = Hashtbl.Make(struct type t = Constant.t UVars.puniverses tableKey let equal = Names.eq_table_key (eq_pair eq_constant_key UVars.Instance.equal) let hash = Names.hash_table_key (fun (c, _) -> Constant.UserOrd.hash c) end) type cbv_infos = { env : Environ.env; tab : (cbv_value, Empty.t, bool * Declarations.rewrite_rule list) Declarations.constant_def KeyTable.t; reds : RedFlags.reds; sigma : Evd.evar_map; strong : bool; } (* Change: zeta reduction cannot be avoided in CBV *) open RedFlags let red_set_ref flags = function | RelKey _ -> red_set flags fDELTA | VarKey id -> red_set flags (fVAR id) | ConstKey (sp,_) -> red_set flags (fCONST sp) (* Transfer application lists from a value to the stack * useful because fixpoints may be totally applied in several times. * On the other hand, irreductible atoms absorb the full stack. *) let strip_appl head stack = match head with | FIX (fix,env,app) -> (FIX(fix,env,[||]), stack_vect_app app stack) | COFIX (cofix,env,app) -> (COFIX(cofix,env,[||]), stack_vect_app app stack) | CONSTRUCT (c,app) -> (CONSTRUCT(c,[||]), stack_vect_app app stack) | PRIMITIVE(op,c,app) -> (PRIMITIVE(op,c,[||]), stack_vect_app app stack) | LETIN _ | VAL _ | STACK _ | PROD _ | LAMBDA _ | ARRAY _ | SYMBOL _ -> (head, stack) let destack head stack = match head with | FIX (fix,env,app) -> (FIX(fix,env,[||]), stack_vect_app app stack) | COFIX (cofix,env,app) -> (COFIX(cofix,env,[||]), stack_vect_app app stack) | CONSTRUCT (c,app) -> (CONSTRUCT(c,[||]), stack_vect_app app stack) | PRIMITIVE(op,c,app) -> (PRIMITIVE(op,c,[||]), stack_vect_app app stack) | STACK (k, v, stk) -> (shift_value k v, stack_concat (shift_stack k stk) stack) | SYMBOL ({ stk } as s) -> (SYMBOL { s with stk=TOP }, stack_concat stk stack) | LETIN _ | VAL _ | PROD _ | LAMBDA _ | ARRAY _ -> (head, stack) let rec fixp_reducible_symb_stk = function | TOP -> true | APP (_, stk) -> fixp_reducible_symb_stk stk | CASE _ | PROJ _ -> false (* Tests if fixpoint reduction is possible. *) let fixp_reducible flgs ((reci,i),_) stk = if red_set flgs fFIX then match stk with | APP(appl,_) -> let rec check n = function | [] -> false | v :: appl -> if Int.equal n 0 then match v with | CONSTRUCT _ -> true | SYMBOL { unfoldfix=true; stk; _ } -> fixp_reducible_symb_stk stk | _ -> false else check (n - 1) appl in check reci.(i) appl | _ -> false else false let cofixp_reducible flgs _ stk = if red_set flgs fCOFIX then match stk with | (CASE _ | PROJ _ | APP(_,CASE _) | APP(_,PROJ _)) -> true | _ -> false else false let debug_cbv = CDebug.create ~name:"Cbv" () (* Reduction of primitives *) open Primred module VNativeEntries = struct type elem = cbv_value type args = cbv_value array type evd = unit type uinstance = UVars.Instance.t let get = Array.get let get_int () e = match e with | VAL(_, ci) -> (match kind ci with | Int i -> i | _ -> raise Primred.NativeDestKO) | _ -> raise Primred.NativeDestKO let get_float () e = match e with | VAL(_, cf) -> (match kind cf with | Float f -> f | _ -> raise Primred.NativeDestKO) | _ -> raise Primred.NativeDestKO let get_string () e = match e with | VAL(_, cf) -> (match kind cf with | String s -> s | _ -> raise Primred.NativeDestKO) | _ -> raise Primred.NativeDestKO let get_parray () e = match e with | ARRAY(_u,t,_ty) -> t | _ -> raise Primred.NativeDestKO let mkInt env i = VAL(0, mkInt i) let mkFloat env f = VAL(0, mkFloat f) let mkString env s = VAL(0, mkString s) let mkBool env b = let (ct,cf) = get_bool_constructors env in CONSTRUCT(UVars.in_punivs (if b then ct else cf), [||]) let int_ty env = VAL(0, UnsafeMonomorphic.mkConst @@ get_int_type env) let float_ty env = VAL(0, UnsafeMonomorphic.mkConst @@ get_float_type env) let mkCarry env b e = let (c0,c1) = get_carry_constructors env in CONSTRUCT(UVars.in_punivs (if b then c1 else c0), [|int_ty env;e|]) let mkIntPair env e1 e2 = let int_ty = int_ty env in let c = get_pair_constructor env in CONSTRUCT(UVars.in_punivs c, [|int_ty;int_ty;e1;e2|]) let mkFloatIntPair env f i = let float_ty = float_ty env in let int_ty = int_ty env in let c = get_pair_constructor env in CONSTRUCT(UVars.in_punivs c, [|float_ty;int_ty;f;i|]) let mkLt env = let (_eq,lt,_gt) = get_cmp_constructors env in CONSTRUCT(UVars.in_punivs lt, [||]) let mkEq env = let (eq,_lt,_gt) = get_cmp_constructors env in CONSTRUCT(UVars.in_punivs eq, [||]) let mkGt env = let (_eq,_lt,gt) = get_cmp_constructors env in CONSTRUCT(UVars.in_punivs gt, [||]) let mkFLt env = let (_eq,lt,_gt,_nc) = get_f_cmp_constructors env in CONSTRUCT(UVars.in_punivs lt, [||]) let mkFEq env = let (eq,_lt,_gt,_nc) = get_f_cmp_constructors env in CONSTRUCT(UVars.in_punivs eq, [||]) let mkFGt env = let (_eq,_lt,gt,_nc) = get_f_cmp_constructors env in CONSTRUCT(UVars.in_punivs gt, [||]) let mkFNotComparable env = let (_eq,_lt,_gt,nc) = get_f_cmp_constructors env in CONSTRUCT(UVars.in_punivs nc, [||]) let mkPNormal env = let (pNormal,_nNormal,_pSubn,_nSubn,_pZero,_nZero,_pInf,_nInf,_nan) = get_f_class_constructors env in CONSTRUCT(UVars.in_punivs pNormal, [||]) let mkNNormal env = let (_pNormal,nNormal,_pSubn,_nSubn,_pZero,_nZero,_pInf,_nInf,_nan) = get_f_class_constructors env in CONSTRUCT(UVars.in_punivs nNormal, [||]) let mkPSubn env = let (_pNormal,_nNormal,pSubn,_nSubn,_pZero,_nZero,_pInf,_nInf,_nan) = get_f_class_constructors env in CONSTRUCT(UVars.in_punivs pSubn, [||]) let mkNSubn env = let (_pNormal,_nNormal,_pSubn,nSubn,_pZero,_nZero,_pInf,_nInf,_nan) = get_f_class_constructors env in CONSTRUCT(UVars.in_punivs nSubn, [||]) let mkPZero env = let (_pNormal,_nNormal,_pSubn,_nSubn,pZero,_nZero,_pInf,_nInf,_nan) = get_f_class_constructors env in CONSTRUCT(UVars.in_punivs pZero, [||]) let mkNZero env = let (_pNormal,_nNormal,_pSubn,_nSubn,_pZero,nZero,_pInf,_nInf,_nan) = get_f_class_constructors env in CONSTRUCT(UVars.in_punivs nZero, [||]) let mkPInf env = let (_pNormal,_nNormal,_pSubn,_nSubn,_pZero,_nZero,pInf,_nInf,_nan) = get_f_class_constructors env in CONSTRUCT(UVars.in_punivs pInf, [||]) let mkNInf env = let (_pNormal,_nNormal,_pSubn,_nSubn,_pZero,_nZero,_pInf,nInf,_nan) = get_f_class_constructors env in CONSTRUCT(UVars.in_punivs nInf, [||]) let mkNaN env = let (_pNormal,_nNormal,_pSubn,_nSubn,_pZero,_nZero,_pInf,_nInf,nan) = get_f_class_constructors env in CONSTRUCT(UVars.in_punivs nan, [||]) let mkArray env u t ty = ARRAY (u,t,ty) end module VredNative = RedNative(VNativeEntries) let debug_pr_key = function | ConstKey (sp,_) -> Names.Constant.print sp | VarKey id -> Names.Id.print id | RelKey n -> Pp.(str "REL_" ++ int n) let rec reify_stack t = function | TOP -> t | APP (args,st) -> reify_stack (mkApp(t,Array.map_of_list reify_value args)) st | CASE (u,pms,ty,br,iv,ci,env,st) -> reify_stack (apply_env env @@ mkCase (ci, u, pms, ty, iv, t,br)) st | PROJ (p, r, st) -> reify_stack (mkProj (p, r, t)) st and reify_value = function (* reduction under binders *) | VAL (n,t) -> lift n t | STACK (0,v,stk) -> reify_stack (reify_value v) stk | STACK (n,v,stk) -> lift n (reify_stack (reify_value v) stk) | PROD(na,t,u,env) -> apply_env env (mkProd (na,t,u)) | LETIN(na,b,t,c,env) -> apply_env env (mkLetIn (na,reify_value b,t,c)) | LAMBDA (k,ctxt,b,env) -> apply_env env @@ List.fold_left (fun c (n,t) -> mkLambda (n, t, c)) b ctxt | FIX ((lij,fix),env,args) -> let fix = mkFix (lij, fix) in mkApp (apply_env env fix, Array.map reify_value args) | COFIX ((j,cofix),env,args) -> let cofix = mkCoFix (j, cofix) in mkApp (apply_env env cofix, Array.map reify_value args) | CONSTRUCT (c,args) -> mkApp(mkConstructU c, Array.map reify_value args) | PRIMITIVE(op,c,args) -> mkApp(mkConstU c, Array.map reify_value args) | ARRAY (u,t,ty) -> let t, def = Parray.to_array t in mkArray(u, Array.map reify_value t, reify_value def, reify_value ty) | SYMBOL { cst; stk; _ } -> reify_stack (mkConstU cst) stk and apply_env env t = match kind t with | Rel i -> begin match expand_rel i env with | Inl (k, v) -> reify_value (shift_value k v) | Inr (k,_) -> mkRel k end | _ -> map_with_binders subs_lift apply_env env t let apply_env_context e ctx = let open Context.Rel.Declaration in let rec subst_context ctx = match ctx with | [] -> e, [] | LocalAssum (na, ty) :: ctx -> let e, ctx = subst_context ctx in let ty = apply_env e ty in subs_lift e, LocalAssum (na, ty) :: ctx | LocalDef (na, ty, bdy) :: ctx -> let e, ctx = subst_context ctx in let ty = apply_env e ty in let bdy = apply_env e bdy in subs_lift e, LocalDef (na, ty, bdy) :: ctx in snd @@ subst_context ctx let rec strip_app = function | APP (args,st) -> APP (args,strip_app st) | s -> TOP (* TODO: share the common parts with EConstr *) let expand_branch env u pms (ind, i) br = let open Declarations in let nas, _br = br.(i - 1) in let (mib, mip) = Inductive.lookup_mind_specif env ind in let paramdecl = Vars.subst_instance_context u mib.mind_params_ctxt in let paramsubst = Vars.subst_of_rel_context_instance paramdecl pms in let (ctx, _) = mip.mind_nf_lc.(i - 1) in let (ctx, _) = List.chop mip.mind_consnrealdecls.(i - 1) ctx in Inductive.instantiate_context u paramsubst nas ctx let cbv_subst_of_rel_context_instance_list mkclos sign args env = let rec aux subst sign l = let open Context.Rel.Declaration in match sign, l with | LocalAssum _ :: sign', a::args' -> aux (subs_cons a subst) sign' args' | LocalDef (_,c,_)::sign', args' -> aux (subs_cons (mkclos subst c) subst) sign' args' | [], [] -> subst | _ -> CErrors.anomaly (Pp.str "Instance and signature do not match.") in aux env (List.rev sign) args (* The main recursive functions * * Go under applications and cases/projections (pushed in the stack), * expand head constants or substitued de Bruijn, and try to a make a * constructor, a lambda or a fixp appear in the head. If not, it is a value * and is completely computed here. The head redexes are NOT reduced: * the function returns the pair of a cbv_value and its stack. * * Invariant: if the result of norm_head is CONSTRUCT or (CO)FIX, its last * argument is []. Because we must put all the applied terms in the * stack. *) exception PatternFailure let rec norm_head info env t stack = (* no reduction under binders *) match kind t with (* stack grows (remove casts) *) | App (head,args) -> (* Applied terms are normalized immediately; they could be computed when getting out of the stack *) let fold c accu = cbv_stack_term info TOP env c :: accu in let rem, stack = match stack with | APP (nargs, stack) -> nargs, stack | _ -> [], stack in let stack = APP (Array.fold_right fold args rem, stack) in norm_head info env head stack | Case (ci,u,pms,p,iv,c,v) -> norm_head info env c (CASE(u,pms,p,v,iv,ci,env,stack)) | Cast (ct,_,_) -> norm_head info env ct stack | Proj (p, r, c) -> let p' = if red_set info.reds (fPROJ (Projection.repr p)) then Projection.unfold p else p in norm_head info env c (PROJ (p', r, stack)) (* constants, axioms * the first pattern is CRUCIAL, n=0 happens very often: * when reducing closed terms, n is always 0 *) | Rel i -> (match expand_rel i env with | Inl (0,v) -> strip_appl v stack | Inl (n,v) -> strip_appl (shift_value n v) stack | Inr (n,None) -> (VAL(0, mkRel n), stack) | Inr (n,Some p) -> norm_head_ref (n-p) info env stack (RelKey p) t) | Var id -> norm_head_ref 0 info env stack (VarKey id) t | Const sp -> Reductionops.reduction_effect_hook info.env info.sigma (fst sp) (lazy (reify_stack t (strip_app stack))); norm_head_ref 0 info env stack (ConstKey sp) t | LetIn (na, b, u, c) -> (* zeta means letin are contracted; delta without zeta means we *) (* allow bindings but leave let's in place *) if red_set info.reds fZETA then (* New rule: for Cbv, Delta does not apply to locally bound variables or red_set info.reds fDELTA *) let env' = subs_cons (cbv_stack_term info TOP env b) env in norm_head info env' c stack else (* Note: we may also consider a commutative cut! *) LETIN(na,cbv_stack_term info TOP env b,u,c,env), stack | Evar ((e, _) as ev) -> (match Evd.existential_opt_value0 info.sigma ev with Some c -> norm_head info env c stack | None -> let ev = EConstr.of_existential ev in let map c = EConstr.of_constr @@ apply_env env (EConstr.Unsafe.to_constr c) in let ev' = EConstr.map_existential info.sigma map ev in (VAL(0, EConstr.Unsafe.to_constr @@ EConstr.mkEvar ev'), stack)) (* non-neutral cases *) | Lambda _ -> let ctxt,b = Term.decompose_lambda t in (LAMBDA(List.length ctxt, List.rev ctxt,b,env), stack) | Fix fix -> (FIX(fix,env,[||]), stack) | CoFix cofix -> (COFIX(cofix,env,[||]), stack) | Construct c -> (CONSTRUCT(c, [||]), stack) | Array(u,t,def,ty) -> let ty = cbv_stack_term info TOP env ty in let len = Array.length t in let t = Parray.init (Uint63.of_int len) (fun i -> cbv_stack_term info TOP env t.(i)) (cbv_stack_term info TOP env def) in (ARRAY (u,t,ty), stack) (* neutral cases *) | (Sort _ | Meta _ | Ind _ | Int _ | Float _ | String _) -> (VAL(0, t), stack) | Prod (na,t,u) -> (PROD(na,t,u,env), stack) and norm_head_ref k info env stack normt t = if red_set_ref info.reds normt then match cbv_value_cache info normt with | Declarations.Def body -> debug_cbv (fun () -> Pp.(str "Unfolding " ++ debug_pr_key normt)); strip_appl (shift_value k body) stack | Declarations.Primitive op -> let c = match normt with | ConstKey c -> c | RelKey _ | VarKey _ -> assert false in (PRIMITIVE(op,c,[||]),stack) | Declarations.Symbol (unfoldfix, rules) -> assert (k = 0); let cst = match normt with | ConstKey c -> c | RelKey _ | VarKey _ -> assert false in (SYMBOL { cst; unfoldfix; rules; stk=TOP }, stack) | Declarations.OpaqueDef _ | Declarations.Undef _ -> debug_cbv (fun () -> Pp.(str "Not unfolding " ++ debug_pr_key normt)); (VAL(0,make_constr_ref k normt t),stack) else begin debug_cbv (fun () -> Pp.(str "Not unfolding " ++ debug_pr_key normt)); (VAL(0,make_constr_ref k normt t),stack) end (* cbv_stack_term performs weak reduction on constr t under the subs * env, with context stack, i.e. ([env]t stack). First computes weak * head normal form of t and checks if a redex appears with the stack. * If so, recursive call to reach the real head normal form. If not, * we build a value. *) and cbv_stack_term info stack env t = cbv_stack_value info env (norm_head info env t stack) and cbv_stack_value info env = function (* a lambda meets an application -> BETA *) | (LAMBDA (nlams,ctxt,b,env), APP (args, stk)) when red_set info.reds fBETA -> let rec apply env lams args = if Int.equal lams 0 then let stk = if List.is_empty args then stk else APP (args, stk) in cbv_stack_term info stk env b else match args with | [] -> let ctxt' = List.skipn (nlams - lams) ctxt in LAMBDA (lams, ctxt', b, env) | v :: args -> let env = subs_cons v env in apply env (lams - 1) args in apply env nlams args (* a Fix applied enough -> IOTA *) | (FIX(fix,env,[||]), stk) when fixp_reducible info.reds fix stk -> let (envf,redfix) = contract_fixp env fix in cbv_stack_term info stk envf redfix (* constructor guard satisfied or Cofix in a Case -> IOTA *) | (COFIX(cofix,env,[||]), stk) when cofixp_reducible info.reds cofix stk-> let (envf,redfix) = contract_cofixp env cofix in cbv_stack_term info stk envf redfix (* constructor in a Case -> IOTA *) | (CONSTRUCT(((sp,n),_),[||]), APP(args,CASE(u,pms,_p,br,iv,ci,env,stk))) when red_set info.reds fMATCH -> let cargs = List.skipn ci.ci_npar args in let env = if (Int.equal ci.ci_cstr_ndecls.(n - 1) ci.ci_cstr_nargs.(n - 1)) then (* no lets *) List.fold_left (fun accu v -> subs_cons v accu) env cargs else let mkclos env c = cbv_stack_term info TOP env c in let ctx = expand_branch info.env u pms (sp, n) br in cbv_subst_of_rel_context_instance_list mkclos ctx cargs env in cbv_stack_term info stk env (snd br.(n-1)) (* constructor of arity 0 in a Case -> IOTA *) | (CONSTRUCT(((sp, n), _),[||]), CASE(u,pms,_,br,_,ci,env,stk)) when red_set info.reds fMATCH -> let env = if (Int.equal ci.ci_cstr_ndecls.(n - 1) ci.ci_cstr_nargs.(n - 1)) then (* no lets *) env else let mkclos env c = cbv_stack_term info TOP env c in let ctx = expand_branch info.env u pms (sp, n) br in cbv_subst_of_rel_context_instance_list mkclos ctx [] env in cbv_stack_term info stk env (snd br.(n-1)) (* constructor in a Projection -> IOTA *) | (CONSTRUCT(((sp,n),u),[||]), APP(args,PROJ(p,_,stk))) when red_set info.reds fMATCH && Projection.unfolded p -> let arg = List.nth args (Projection.npars p + Projection.arg p) in cbv_stack_value info env (strip_appl arg stk) (* may be reduced later by application *) | (FIX(fix,env,[||]), APP(appl,TOP)) -> FIX(fix,env,Array.of_list appl) | (COFIX(cofix,env,[||]), APP(appl,TOP)) -> COFIX(cofix,env,Array.of_list appl) | (CONSTRUCT(c,[||]), APP(appl,TOP)) -> CONSTRUCT(c,Array.of_list appl) (* primitive apply to arguments *) | (PRIMITIVE(op,(_,u as c),[||]), APP(appl,stk)) -> let nargs = CPrimitives.arity op in begin match List.chop nargs appl with | (args, appl) -> let stk = if List.is_empty appl then stk else stack_app appl stk in begin match VredNative.red_prim info.env () op u (Array.of_list args) with | Some (CONSTRUCT (c, args)) -> (* args must be moved to the stack to allow future reductions *) cbv_stack_value info env (CONSTRUCT(c, [||]), stack_vect_app args stk) | Some v -> cbv_stack_value info env (v,stk) | None -> mkSTACK(PRIMITIVE(op,c,Array.of_list args), stk) end | exception Failure _ -> (* partial application *) (assert (stk = TOP); PRIMITIVE(op,c,Array.of_list appl)) end | SYMBOL ({ cst; rules; stk } as s ), stk' -> let stk = stack_concat stk stk' in begin try let rhs, stack = cbv_apply_rules info env (snd cst) rules stk in cbv_stack_value info env (destack rhs stack) with PatternFailure -> SYMBOL { s with stk } end (* definitely a value *) | (head,stk) -> mkSTACK(head, stk) and cbv_value_cache info ref = try KeyTable.find info.tab ref with Not_found -> let v = try let body = match ref with | RelKey n -> let open Context.Rel.Declaration in begin match Environ.lookup_rel n info.env with | LocalDef (_, c, _) -> lift n c | LocalAssum _ -> raise Not_found end | VarKey id -> let open Context.Named.Declaration in begin match Environ.lookup_named id info.env with | LocalDef (_, c, _) -> c | LocalAssum _ -> raise Not_found end | ConstKey cst -> Environ.constant_value_in info.env cst in let v = cbv_stack_term info TOP (subs_id 0) body in Declarations.Def v with | Environ.NotEvaluableConst (Environ.IsPrimitive (_u,op)) -> Declarations.Primitive op | Environ.NotEvaluableConst (Environ.HasRules (u, b, r)) -> Declarations.Symbol (b, r) | Not_found | Environ.NotEvaluableConst _ -> Declarations.Undef None in KeyTable.add info.tab ref v; v and it_mkLambda_or_LetIn info ctx t = let open Context.Rel.Declaration in match List.rev ctx with | [] -> t | LocalAssum (n, ty) :: ctx -> let assums, ctx = List.map_until (function LocalAssum (n, ty) -> Some (n, ty) | LocalDef _ -> None) ctx in let assums = (n, ty) :: assums in LAMBDA (List.length assums, assums, Term.it_mkLambda_or_LetIn (reify_value t) (List.rev ctx), subs_id 0) | LocalDef _ :: _ -> cbv_stack_term info TOP (subs_id 0) (Term.it_mkLambda_or_LetIn (reify_value t) ctx) and cbv_match_arg_pattern info env ctx psubst p t = let open Declarations in let t' = it_mkLambda_or_LetIn info ctx t in match p with | EHole i -> Partial_subst.add_term i t' psubst | EHoleIgnored -> psubst | ERigid (ph, es) -> let t, stk = destack t TOP in let psubst = cbv_match_rigid_arg_pattern info env ctx psubst ph t in let psubst, stk = cbv_apply_rule info env ctx psubst es stk in match stk with | TOP -> psubst | APP _| CASE _ | PROJ _ -> raise PatternFailure and cbv_match_arg_pattern_lift info env ctx n psubst p t = let env = subs_liftn n env in cbv_match_arg_pattern info env ctx psubst p (cbv_stack_term info TOP env t) and match_sort ps s subst = match Sorts.pattern_match ps s subst with | Some subst -> subst | None -> raise PatternFailure and match_instance pu u psubst = match UVars.Instance.pattern_match pu u psubst with | Some subst -> subst | None -> raise PatternFailure and cbv_match_rigid_arg_pattern info env ctx psubst p t = let open Declarations in match [@ocaml.warning "-4"] p, t with | PHInd (ind, pu), VAL(0, t') -> begin match kind t' with Ind (ind', u) when Ind.CanOrd.equal ind ind' -> match_instance pu u psubst | _ -> raise PatternFailure end | PHConstr (constr, pu), CONSTRUCT ((constr', u), [||]) -> if Construct.CanOrd.equal constr constr' then match_instance pu u psubst else raise PatternFailure | PHRel i, VAL(k, t') -> begin match kind t' with Rel n when Int.equal i (k + n) -> psubst | _ -> raise PatternFailure end | PHSort ps, VAL(0, t') -> begin match kind t' with Sort s -> match_sort ps s psubst | _ -> raise PatternFailure end | PHSymbol (c, pu), SYMBOL { cst = c', u; _ } -> if Constant.CanOrd.equal c c' then match_instance pu u psubst else raise PatternFailure | PHInt i, VAL(0, t') -> begin match kind t' with Int i' when Uint63.equal i i' -> psubst | _ -> raise PatternFailure end | PHFloat f, VAL(0, t') -> begin match kind t' with Float f' when Float64.equal f f' -> psubst | _ -> raise PatternFailure end | PHString s, VAL(0, t') -> begin match kind t' with String s' when Pstring.equal s s' -> psubst | _ -> raise PatternFailure end | PHLambda (ptys, pbod), LAMBDA (nlam, ntys, body, env) -> let np = Array.length ptys in if np > nlam then raise PatternFailure; let ntys, body = if np = nlam then ntys, body else (* np < nlam *) let ntys, tys' = List.chop np ntys in ntys, Term.compose_lam (List.rev tys') body in let ctx' = List.rev_map (fun (n, ty) -> Context.Rel.Declaration.LocalAssum (n, ty)) ntys in let ctx' = apply_env_context env ctx' in let tys = Array.of_list ntys in let contexts_upto = Array.init np (fun i -> List.lastn i ctx' @ ctx) in let psubst = Array.fold_left3_i (fun i psubst ctx pty (_, ty) -> cbv_match_arg_pattern_lift info env ctx i psubst pty ty) psubst contexts_upto ptys tys in let psubst = cbv_match_arg_pattern_lift info env (ctx' @ ctx) np psubst pbod body in psubst | PHProd (ptys, pbod), PROD (na, ty, body, env) -> let ntys, _ = Term.decompose_prod body in let np = Array.length ptys in let nprod = 1 + List.length ntys in if np > nprod then raise PatternFailure; let ntys, body = Term.decompose_prod_n (np-1) body in let ctx' = List.map (fun (n, ty) -> Context.Rel.Declaration.LocalAssum (n, ty)) (ntys @ [na, ty]) in let ctx' = apply_env_context env ctx' in let tys = Array.of_list ((na, ty) :: List.rev ntys) in let na = Array.length tys in let contexts_upto = Array.init na (fun i -> List.lastn i ctx' @ ctx) in let psubst = Array.fold_left3_i (fun i psubst ctx pty (_, ty) -> cbv_match_arg_pattern_lift info env ctx i psubst pty ty) psubst contexts_upto ptys tys in let psubst = cbv_match_arg_pattern_lift info env (ctx' @ ctx) na psubst pbod body in psubst | (PHInd _ | PHConstr _ | PHRel _ | PHInt _ | PHFloat _ | PHString _ | PHSort _ | PHSymbol _ | PHLambda _ | PHProd _), _ -> raise PatternFailure and cbv_apply_rule info env ctx psubst es stk = match [@ocaml.warning "-4"] es, stk with | [], _ -> psubst, stk | Declarations.PEApp pargs :: e, APP (args, s) -> let args = Array.of_list args in let np = Array.length pargs in let na = Array.length args in if np == na then let psubst = Array.fold_left2 (cbv_match_arg_pattern info env ctx) psubst pargs args in cbv_apply_rule info env ctx psubst e s else if np < na then (* more real arguments *) let usedargs, remargs = Array.chop np args in let psubst = Array.fold_left2 (cbv_match_arg_pattern info env ctx) psubst pargs usedargs in cbv_apply_rule info env ctx psubst e (APP (Array.to_list remargs, s)) else (* more pattern arguments *) let usedpargs, rempargs = Array.chop na pargs in let psubst = Array.fold_left2 (cbv_match_arg_pattern info env ctx) psubst usedpargs args in cbv_apply_rule info env ctx psubst (PEApp rempargs :: e) s | Declarations.PECase (pind, pu, pret, pbrs) :: e, CASE (u, pms, (p, _), brs, iv, ci, env, s) -> if not @@ Ind.CanOrd.equal pind ci.ci_ind then raise PatternFailure; let specif = Inductive.lookup_mind_specif info.env ci.ci_ind in let ntys_ret = Inductive.expand_arity specif (ci.ci_ind, u) pms (fst p) in let ntys_ret = apply_env_context env ntys_ret in let ntys_brs = Inductive.expand_branch_contexts specif u pms brs in let psubst = match_instance pu u psubst in let brs = Array.map2 (fun ctx' br -> List.length ctx', ctx' @ ctx, (snd br)) ntys_brs brs in let psubst = cbv_match_arg_pattern_lift info env (ntys_ret @ ctx) (List.length ntys_ret) psubst pret (snd p) in let psubst = Array.fold_left2 (fun psubst pat (n, ctx, br) -> cbv_match_arg_pattern_lift info env (apply_env_context env ctx) n psubst pat br) psubst pbrs brs in cbv_apply_rule info env ctx psubst e s | Declarations.PEProj proj :: e, PROJ (proj', r, s) -> if not @@ Projection.(Repr.CanOrd.equal proj (repr proj')) then raise PatternFailure; cbv_apply_rule info env ctx psubst e s | _, _ -> raise PatternFailure and cbv_apply_rules info env u r stk = match r with | [] -> raise PatternFailure | { lhs_pat = (pu, elims); nvars; rhs } :: rs -> try let psubst = Partial_subst.make nvars in let psubst = match_instance pu u psubst in let psubst, stk = cbv_apply_rule info env [] psubst elims stk in let subst, qsubst, usubst = Partial_subst.to_arrays psubst in let subst = Array.fold_right subs_cons subst env in let usubst = UVars.Instance.of_array (qsubst, usubst) in let rhsu = Vars.subst_instance_constr usubst rhs in let rhs' = cbv_stack_term info TOP subst rhsu in rhs', stk with PatternFailure -> cbv_apply_rules info env u rs stk (* When we are sure t will never produce a redex with its stack, we * normalize (even under binders) the applied terms and we build the * final term *) let rec apply_stack info t = function | TOP -> t | APP (args,st) -> (* Note: should "theoretically" use a right-to-left version of map_of_list *) apply_stack info (mkApp(t,Array.map_of_list (cbv_norm_value info) args)) st | CASE (u,pms,ty,br,iv,ci,env,st) -> (* FIXME: Prevent this expansion by caching whether an inductive contains let-bindings *) let (_, (ty,r), _, _, br) = Inductive.expand_case info.env (ci, u, pms, ty, iv, mkProp, br) in let ty = let (_, mip) = Inductive.lookup_mind_specif info.env ci.ci_ind in Term.decompose_lambda_n_decls (mip.Declarations.mind_nrealdecls + 1) ty in let mk_br c n = Term.decompose_lambda_n_decls n c in let br = Array.map2 mk_br br ci.ci_cstr_ndecls in let aux = if info.strong then cbv_norm_term info else apply_env in let map_ctx (nas, c) = let open Context.Rel.Declaration in let fold decl e = match decl with | LocalAssum _ -> subs_lift e | LocalDef (_, b, _) -> let b = cbv_stack_term info TOP e b in (* The let-binding persists, so we have to shift *) subs_shft (1, subs_cons b e) in let env = List.fold_right fold nas env in let nas = Array.of_list (List.rev_map get_annot nas) in (nas, aux env c) in apply_stack info (mkCase (ci, u, Array.map (aux env) pms, (map_ctx ty,r), iv, t, Array.map map_ctx br)) st | PROJ (p, r, st) -> apply_stack info (mkProj (p, r, t)) st (* performs the reduction on a constr, and returns a constr *) and cbv_norm_term info env t = (* reduction under binders *) cbv_norm_value info (cbv_stack_term info TOP env t) (* reduction of a cbv_value to a constr *) and cbv_norm_value info = function | VAL (n,t) -> lift n t | STACK (0,v,stk) -> apply_stack info (cbv_norm_value info v) stk | STACK (n,v,stk) -> lift n (apply_stack info (cbv_norm_value info v) stk) | PROD(na,t,u,env) -> mkProd (na,cbv_norm_term info env t,cbv_norm_term info (subs_lift env) u) | LETIN (na,b,t,c,env) -> let aux = if info.strong then cbv_norm_term info else apply_env in mkLetIn (na,cbv_norm_value info b,aux env t,aux (subs_lift env) c) | LAMBDA (n,ctxt,b,env) -> let nctxt = List.map_i (fun i (x,ty) -> (x,cbv_norm_term info (subs_liftn i env) ty)) 0 ctxt in let aux = if info.strong then cbv_norm_term info else apply_env in Term.compose_lam (List.rev nctxt) (aux (subs_liftn n env) b) | FIX ((lij,(names,lty,bds)),env,args) -> let aux = if info.strong then cbv_norm_term info else apply_env in mkApp (mkFix (lij, (names, Array.map (aux env) lty, Array.map (aux (subs_liftn (Array.length lty) env)) bds)), Array.map (cbv_norm_value info) args) | COFIX ((j,(names,lty,bds)),env,args) -> mkApp (mkCoFix (j, (names,Array.map (cbv_norm_term info env) lty, Array.map (cbv_norm_term info (subs_liftn (Array.length lty) env)) bds)), Array.map (cbv_norm_value info) args) | CONSTRUCT (c,args) -> mkApp(mkConstructU c, Array.map (cbv_norm_value info) args) | PRIMITIVE(op,c,args) -> mkApp(mkConstU c,Array.map (cbv_norm_value info) args) | ARRAY (u,t,ty) -> let ty = cbv_norm_value info ty in let t, def = Parray.to_array t in let def = cbv_norm_value info def in mkArray(u, Array.map (cbv_norm_value info) t, def, ty) | SYMBOL { cst; stk; _ } -> apply_stack info (mkConstU cst) stk (* with profiling *) let cbv_norm infos constr = let constr = EConstr.Unsafe.to_constr constr in EConstr.of_constr (cbv_norm_term infos (subs_id 0) constr) (* constant bodies are normalized at the first expansion *) let create_cbv_infos reds ~strong env sigma = { tab = KeyTable.create 91; reds; env; sigma; strong }
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>