package rocq-runtime
The Rocq Prover -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
rocq-9.0.0.tar.gz
md5=8d522602d23e7a665631826dab9aa92b
sha512=f4f76a6a178e421c99ee7a331a2fd97a06e9c5d0168d7e60c44e3820d8e1a124370ea104ad90c7f87a9a1e9d87b2d0d7d2d387c998feeaed4a75ed04e176a4be
doc/src/rocq-runtime.kernel/rtree.ml.html
Source file rtree.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
(************************************************************************) (* * The Rocq Prover / The Rocq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Util (* Type of regular trees: - Var denotes tree variables (like de Bruijn indices) the first int is the depth of the occurrence, and the second int is the index in the array of trees introduced at that depth. Warning: Var's indices both start at 0! - Node denotes the usual tree node, labelled with 'a, to the exception that it takes an array of arrays as argument - Rec(j,v1..vn) introduces infinite tree. It denotes v(j+1) with parameters 0..n-1 replaced by Rec(0,v1..vn)..Rec(n-1,v1..vn) respectively. *) type 'a t = Var of int * int | Node of 'a * 'a t array array | Rec of int * 'a t array (* Building trees *) let mk_rec_calls i = Array.init i (fun j -> Var(0,j)) let mk_node lab sons = Node (lab, sons) (* The usual lift operation *) let rec lift_rtree_rec depth n = function Var (i,j) as t -> if i < depth then t else Var (i+n,j) | Node (l,sons) -> Node (l,Array.map (Array.map (lift_rtree_rec depth n)) sons) | Rec(j,defs) -> Rec(j, Array.map (lift_rtree_rec (depth+1) n) defs) let lift n t = if Int.equal n 0 then t else lift_rtree_rec 0 n t let rec subst mk sub = function | Var (i, j) -> begin match Esubst.expand_rel (i + 1) sub with | Util.Inl (k, v) -> mk k j v | Util.Inr (m, _) -> Var (m - 1, j) end | Node (l,sons) -> Node (l,Array.map (Array.map (subst mk sub)) sons) | Rec(j, defs) -> Rec(j, Array.map (subst mk (Esubst.subs_lift sub)) defs) type 'a clos = Clos of 'a t array * 'a clos Esubst.subs type 'a expansion = ExpVar of int * int | ExpNode of 'a * 'a clos Esubst.subs * 'a t array array (* To avoid looping, we must check that every body introduces a node or a parameter *) let rec expand0 sub = function | Var (i, j) -> begin match Esubst.expand_rel (i + 1) sub with | Util.Inl (k, v) -> let Clos (v, sub) = v in expand0 (Esubst.subs_shft (k, sub)) (Rec (j, v)) | Util.Inr (m, _) -> ExpVar (m - 1, j) end | Rec (j, defs) -> let sub = Esubst.subs_cons (Clos (defs, sub)) sub in expand0 sub defs.(j) | Node (l, sons) -> ExpNode (l, sub, sons) let expand t = match expand0 (Esubst.subs_id 0) t with | ExpVar (i, j) -> Var (i, j) | ExpNode (l, sub, sons) -> let rec mk k j (Clos (v, sub)) = subst mk (Esubst.subs_shft (k, sub)) (Rec (j, v)) in let map t = subst mk sub t in let sons = Array.map (fun v -> Array.map map v) sons in Node (l, sons) (* Given a vector of n bodies, builds the n mutual recursive trees. Recursive calls are made with parameters (0,0) to (0,n-1). We check the bodies actually build something by checking it is not directly one of the parameters of depth 0. Some care is taken to accept definitions like rec X=Y and Y=f(X,Y) *) let mk_rec defs = let rec check histo d = match expand d with | Var (0, j) -> if Int.Set.mem j histo then failwith "invalid rec call" else check (Int.Set.add j histo) defs.(j) | _ -> () in Array.mapi (fun i d -> check (Int.Set.singleton i) d; Rec(i,defs)) defs (* let v(i,j) = lift i (mk_rec_calls(j+1)).(j);; let r = (mk_rec[|(mk_rec[|v(1,0)|]).(0)|]).(0);; let r = mk_rec[|v(0,1);v(1,0)|];; the last one should be accepted *) (* Tree destructors, expanding loops when necessary *) let dest_var t = match expand0 (Esubst.subs_id 0) t with | ExpVar (i, j) -> (i, j) | _ -> failwith "Rtree.dest_var" let dest_node t = match expand t with Node (l,sons) -> (l,sons) | _ -> failwith "Rtree.dest_node" let dest_head t = match expand0 (Esubst.subs_id 0) t with | ExpVar _ -> failwith "Rtree.dest_head" | ExpNode (l, _, _) -> l let is_node t = match expand t with Node _ -> true | _ -> false let rec map f t = match t with Var(i,j) -> Var(i,j) | Node (a,sons) -> Node (f a, Array.map (Array.map (map f)) sons) | Rec(j,defs) -> Rec (j, Array.map (map f) defs) module Smart = struct let map f t = match t with Var _ -> t | Node (a,sons) -> let a'=f a and sons' = Array.Smart.map (Array.Smart.map (map f)) sons in if a'==a && sons'==sons then t else Node (a',sons') | Rec(j,defs) -> let defs' = Array.Smart.map (map f) defs in if defs'==defs then t else Rec(j,defs') end module Kind = struct type 'a rtree = 'a t type 'a t = { node : 'a rtree; subs : 'a clos Esubst.subs } let var i j = Var (i, j) let node l sons = Node (l, sons) type 'a kind = Var of int * int | Node of 'a * 'a t array array let make t = { node = t; subs = Esubst.subs_id 0 } let kind t : 'a kind = match expand0 t.subs t.node with | ExpVar (i, j) -> Var (i, j) | ExpNode (l, subs, sons) -> let map node = { node; subs } in let sons = Array.map (fun v -> Array.map map v) sons in Node (l, sons) let repr t = match expand0 t.subs t.node with | ExpVar (i, j) -> var i j | ExpNode (l, subs, sons) -> let rec mk k j (Clos (v, sub)) = subst mk (Esubst.subs_shft (k, sub)) (Rec (j, v)) in let map t = subst mk subs t in let sons = Array.map (fun v -> Array.map map v) sons in node l sons end (** Structural equality test, parametrized by an equality on elements *) let rec raw_eq cmp t t' = match t, t' with | Var (i,j), Var (i',j') -> Int.equal i i' && Int.equal j j' | Node (x, a), Node (x', a') -> cmp x x' && Array.equal (Array.equal (raw_eq cmp)) a a' | Rec (i, a), Rec (i', a') -> Int.equal i i' && Array.equal (raw_eq cmp) a a' | _ -> false let raw_eq2 cmp (t,u) (t',u') = raw_eq cmp t t' && raw_eq cmp u u' (** Equivalence test on expanded trees. It is parametrized by two equalities on elements: - [cmp] is used when checking for already seen trees - [cmp'] is used when comparing node labels. *) let equiv cmp cmp' = let rec compare histo t t' = List.mem_f (raw_eq2 cmp) (t,t') histo || match expand t, expand t' with | Node(x,v), Node(x',v') -> cmp' x x' && Int.equal (Array.length v) (Array.length v') && Array.for_all2 (Array.for_all2 (compare ((t,t')::histo))) v v' | _ -> false in compare [] (** The main comparison on rtree tries first physical equality, then the structural one, then the logical equivalence *) let equal cmp t t' = t == t' || raw_eq cmp t t' || equiv cmp cmp t t' (** Intersection of rtrees of same arity *) let rec inter cmp interlbl def n histo t t' = try let (i,j) = List.assoc_f (raw_eq2 cmp) (t,t') histo in Var (n-i-1,j) with Not_found -> match t, t' with | Var (i,j), Var (i',j') -> assert (Int.equal i i' && Int.equal j j'); t | Node (x, a), Node (x', a') -> (match interlbl x x' with | None -> mk_node def [||] | Some x'' -> Node (x'', Array.map2 (Array.map2 (inter cmp interlbl def n histo)) a a')) | Rec (i,v), Rec (i',v') -> (* If possible, we preserve the shape of input trees *) if Int.equal i i' && Int.equal (Array.length v) (Array.length v') then let histo = ((t,t'),(n,i))::histo in Rec(i, Array.map2 (inter cmp interlbl def (n+1) histo) v v') else (* Otherwise, mutually recursive trees are transformed into nested trees *) let histo = ((t,t'),(n,0))::histo in Rec(0, [|inter cmp interlbl def (n+1) histo (expand t) (expand t')|]) | Rec _, _ -> inter cmp interlbl def n histo (expand t) t' | _ , Rec _ -> inter cmp interlbl def n histo t (expand t') | _ -> assert false let inter cmp interlbl def t t' = inter cmp interlbl def 0 [] t t' (** Inclusion of rtrees. We may want a more efficient implementation. *) let incl cmp interlbl def t t' = equal cmp t (inter cmp interlbl def t t') (** Tests if a given tree is infinite, i.e. has a branch of infinite length. This corresponds to a cycle when visiting the expanded tree. We use a specific comparison to detect already seen trees. *) let is_infinite cmp t = let rec is_inf histo t = List.mem_f (raw_eq cmp) t histo || match expand t with | Node (_,v) -> Array.exists (Array.exists (is_inf (t::histo))) v | _ -> false in is_inf [] t (* Pretty-print a tree (not so pretty) *) open Pp let rec pr_tree prl t = match t with | Var (i,j) -> str"#"++int i++str":"++int j | Node(lab,[||]) -> prl lab | Node(lab,v) -> hov 0 (prl lab++str","++spc()++ str"["++ hv 0 (prvect_with_sep pr_comma (fun a -> str"("++ hv 0 (prvect_with_sep pr_comma (pr_tree prl) a)++ str")") v)++ str"]") | Rec(i,v) -> if Int.equal (Array.length v) 0 then str"Rec{}" else if Int.equal (Array.length v) 1 then hv 2 (str"Rec{"++pr_tree prl v.(0)++str"}") else hv 2 (str"Rec{"++int i++str","++brk(1,0)++ prvect_with_sep pr_comma (pr_tree prl) v++str"}")
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>