package rocq-runtime
The Rocq Prover -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
rocq-9.0.0.tar.gz
md5=8d522602d23e7a665631826dab9aa92b
sha512=f4f76a6a178e421c99ee7a331a2fd97a06e9c5d0168d7e60c44e3820d8e1a124370ea104ad90c7f87a9a1e9d87b2d0d7d2d387c998feeaed4a75ed04e176a4be
doc/src/rocq-runtime.kernel/hConstr.ml.html
Source file hConstr.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
(************************************************************************) (* * The Rocq Prover / The Rocq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Util open Names open Constr open Context (** Provide caching and hashconsing dependent on the local context used by a term. We want to cache the results of typechecking a term (at constant global environment). To do this, we need a map [constr -> result of typechecking], and - it must distinguish alpha equal terms (to get the desired names in the result of checking "fun x:nat => eq_refl x" and "fun y:nat => eq_refl y"). - it must distinguish terms which only differ in "cached" data like relevance marks (if we typecheck "fun x :(*Relevant*) nat => x", cache the result then check "fun x :(*Irrelevant*) nat => x" we must fail). - actually the map should be [(rel_context * constr) -> result] as the result of checking a bound variable depends on the context. To be more precise we only need to depend on the minimal context needed for the term, ie the context filtered to only the variables which appear in the term and recursively in the types and bodies of needed variables. Also note that we don't care about the names of local variables here, they only appear in error messages and since we stop at the first error there is no caching issue. (NB we need bodies as while the result of checking [Rel 1] does not depend on the body of rel 1, checking [eq_refl (Rel 1) : Rel 1 = 0] does need the body.) - the map should be fast. The first 2 points just mean we need a sufficiently precise equality test. To distinguish terms according to their context, we annotate each [Rel] subterm with their corresponding (recursively annotated) binder (ignoring the name). In practice we have an indirection such that each annotated binder is associated with a unique [int]. It's not clear how useful this is vs annotating with the actual binder data but it does allow handling unknow binders by just generating a fresh int (cf [push_unknown_rel]). While annotating [Rel]s we also share identical (for our equality) subterms and annotate each subterm with its hash, ie we hashcons according to our finer-than-[Constr.equal] equality. This means we can lookup by hash, and since identical subterms are shared we can compare them by [(==)] (in practice [hasheq_kind] which does [(==)] on immediate subterms) instead of structural equality (which would be O(size of term)). Finally we keep a reference count so that we can avoid caching subterms which aren't repeated. *) module Self = struct type t = { self : constr; kind : (t,t,Sorts.t,UVars.Instance.t,Sorts.relevance) kind_of_term; isRel : int (* 0 -> not a rel, otherwise unique identifier of that binder *); hash : int; mutable refcount : int; } (* XXX possibly should be just physical equality since we use [raw_equal] on not-yet-hashconsed terms *) let equal a b = a.isRel == b.isRel && hasheq_kind a.kind b.kind let hash x = x.hash end include Self let raw_equal a ~isRel ~kind = a.isRel == isRel && hasheq_kind a.kind kind let self x = x.self let refcount x = x.refcount module Tbl = struct type key = t (* The API looks like Hashtbl but implemented using Int.Map ref. We don't use Hashtbl for 2 reasons: - to provide the pre-hashconsing leaf lookup (not sure why it's so fast but it seems to be) (although note we could do this with Hashtbl by using something like [type key = Real of t | Fake of int (* hash *) * (t -> bool)], equality between [Real] and [Fake] uses the predicate in [Fake], wrap [add] so that we only add [Real] keys, then [raw_find] is [Hashtbl.find_opt] using [Fake].) - for unclear reasons Int.Map ref is dramatically faster on an artificial example (balanced binary tree whose leaves are all different primitive ints, such that there is no sharing). It is a bit slower in the real world. It seems that hashtbl produces overly large buckets which then need to be linearly scanned. hconsing doesn't seem to have this problem, perhaps because of differences between hashtbl and our hashset implementation. *) type 'a t = (key * 'a) list Int.Map.t ref let create () = ref Int.Map.empty let add tbl key v = tbl := Int.Map.update key.hash (function | None -> Some [(key,v)] | Some l -> Some ((key,v)::l)) !tbl let raw_find tbl h p = match Int.Map.find_opt h !tbl with | None -> None | Some l -> List.find_map (fun (k,v) -> if p k then Some v else None) l let find_opt tbl key = match Int.Map.find_opt key.hash !tbl with | None -> None | Some l -> List.find_map (fun (k',v) -> if equal key k' then Some v else None) l type stats = { hashes : int; bindings : int; most_collisions : int; } let empty_stats = { hashes = 0; bindings = 0; most_collisions = 0; } let stats tbl = Int.Map.fold (fun _ l acc -> let len = List.length l in { hashes = acc.hashes + 1; bindings = acc.bindings + len; most_collisions = max acc.most_collisions len; } ) !tbl empty_stats end type henv = { (* only used for globals, rel context is not correct *) globals : Environ.env; (* table of reified terms *) tbl : t Tbl.t; (* debug counter *) steps : int ref; (* unique identifiers for each binder crossed *) rels : int Range.t; (* counter to generate uids for binders *) binder_cnt : int ref; (* how many unknown_rel we have seen *) unknown_cnt : int ref; assum_uids : int Tbl.t; (* the surrounding table is for the body, the inner table for the type *) letin_uids : int Tbl.t Tbl.t; } let empty_env env = { globals = env; tbl = Tbl.create (); steps = ref 0; rels = Range.empty; binder_cnt = ref 0; unknown_cnt = ref 0; assum_uids = Tbl.create (); letin_uids = Tbl.create (); } (* still used in fixpoint *) let push_unknown_rel env = incr env.binder_cnt; incr env.unknown_cnt; { env with rels = Range.cons !(env.binder_cnt) env.rels } let push_assum t env = let uid = match Tbl.find_opt env.assum_uids t with | Some uid -> uid | None -> incr env.binder_cnt; let uid = !(env.binder_cnt) in Tbl.add env.assum_uids t uid; uid in { env with rels = Range.cons uid env.rels } let push_rec ts env = (* handling the lifting for mutual fixpoints doesn't seem worth the effort *) Array.fold_left_i (fun i env t -> if i = 0 then push_assum t env else push_unknown_rel env) env ts let push_letin ~body ~typ env = let uid = match Tbl.find_opt env.letin_uids body with | Some tbl -> begin match Tbl.find_opt tbl typ with | Some uid -> uid | None -> incr env.binder_cnt; let uid = !(env.binder_cnt) in Tbl.add tbl typ uid; uid end | None -> incr env.binder_cnt; let uid = !(env.binder_cnt) in let tbl = Tbl.create () in Tbl.add tbl typ uid; Tbl.add env.letin_uids body tbl; uid in { env with rels = Range.cons uid env.rels } module RelDecl = Context.Rel.Declaration let push_decl d env = match d with | RelDecl.LocalAssum (_,t) -> push_assum t env | RelDecl.LocalDef (_,body,typ) -> push_letin ~body ~typ env let hash_annot = hash_annot Name.hash let hash_array hashf a = Array.fold_left (fun hash x -> Hashset.Combine.combine hash (hashf x)) 0 a let hash_kind = let open Hashset.Combine in function | Var i -> combinesmall 1 (Id.hash i) | Sort s -> combinesmall 2 (Sorts.hash s) | Cast (c,k,t) -> combinesmall 3 (combine3 c.hash (hash_cast_kind k) t.hash) | Prod (na,t,c) -> combinesmall 4 (combine3 (hash_annot na) t.hash c.hash) | Lambda (na,t,c) -> combinesmall 5 (combine3 (hash_annot na) t.hash c.hash) | LetIn (na,b,t,c) -> combinesmall 6 (combine4 (hash_annot na) b.hash t.hash c.hash) | App (h,args) -> combinesmall 7 (Array.fold_left (fun hash c -> combine hash c.hash) h.hash args) | Evar _ -> assert false | Const (c,u) -> combinesmall 9 (combine (Constant.SyntacticOrd.hash c) (UVars.Instance.hash u)) | Ind (ind,u) -> combinesmall 10 (combine (Ind.SyntacticOrd.hash ind) (UVars.Instance.hash u)) | Construct (c,u) -> combinesmall 11 (combine (Construct.SyntacticOrd.hash c) (UVars.Instance.hash u)) | Case (_,u,pms,(p,_),_,c,bl) -> let hash_ctx (bnd,c) = Array.fold_left (fun hash na -> combine (hash_annot na) hash) c.hash bnd in let hpms = hash_array hash pms in let hbl = hash_array hash_ctx bl in let h = combine5 (UVars.Instance.hash u) c.hash hpms (hash_ctx p) hbl in combinesmall 12 h | Fix (_,(lna,tl,bl)) -> combinesmall 13 (combine3 (hash_array hash_annot lna) (hash_array hash tl) (hash_array hash bl)) | CoFix (_,(lna,tl,bl)) -> combinesmall 14 (combine3 (hash_array hash_annot lna) (hash_array hash tl) (hash_array hash bl)) | Meta _ -> assert false | Rel n -> combinesmall 16 n | Proj (p,_,c) -> combinesmall 17 (combine (Projection.SyntacticOrd.hash p) c.hash) | Int i -> combinesmall 18 (Uint63.hash i) | Float f -> combinesmall 19 (Float64.hash f) | String s -> combinesmall 20 (Pstring.hash s) | Array (u,t,def,ty) -> combinesmall 21 (combine4 (UVars.Instance.hash u) (hash_array hash t) def.hash ty.hash) let kind_to_constr = function | Rel n -> mkRel n | Var i -> mkVar i | Meta _ | Evar _ -> assert false | Sort s -> mkSort s | Cast (c,k,t) -> mkCast (c.self,k,t.self) | Prod (na,t,c) -> mkProd (na,t.self,c.self) | Lambda (na,t,c) -> mkLambda (na,t.self,c.self) | LetIn (na,b,t,c) -> mkLetIn (na,b.self,t.self,c.self) | App (h,args) -> mkApp (h.self, Array.map self args) | Const cu -> mkConstU cu | Ind iu -> mkIndU iu | Construct cu -> mkConstructU cu | Case (ci,u,pms,(p,r),iv,c,bl) -> let to_ctx (bnd,c) = bnd, c.self in let iv = match iv with | NoInvert -> NoInvert | CaseInvert x -> CaseInvert {indices=Array.map self x.indices} in mkCase (ci,u,Array.map self pms,(to_ctx p,r),iv,c.self,Array.map to_ctx bl) | Fix (ln,(lna,tl,bl)) -> mkFix (ln,(lna,Array.map self tl,Array.map self bl)) | CoFix (ln,(lna,tl,bl)) -> mkCoFix (ln,(lna,Array.map self tl,Array.map self bl)) | Proj (p,r,c) -> mkProj (p,r,c.self) | Int i -> mkInt i | Float f -> mkFloat f | String s -> mkString s | Array (u,t,def,ty) -> mkArray (u,Array.map self t,def.self,ty.self) let hcons_inplace f a = Array.iteri (fun i x -> Array.unsafe_set a i (f x)) a let of_kind_nohashcons = function | App (c, [||]) -> c | kind -> let self = kind_to_constr kind in let hash = hash_kind kind in let () = match kind with | Rel _ -> assert false | _ -> () in { self; kind; hash; isRel = 0; refcount = 1 } let eq_leaf c c' = match kind c, c'.kind with | Var i, Var i' -> Id.equal i i' | Const (c,u), Const (c',u') -> Constant.SyntacticOrd.equal c c' && UVars.Instance.equal u u' | Ind (i,u), Ind (i',u') -> Ind.SyntacticOrd.equal i i' && UVars.Instance.equal u u' | Construct (c,u), Construct (c',u') -> Construct.SyntacticOrd.equal c c' && UVars.Instance.equal u u' | _ -> false let nonrel_leaf tbl c = match kind c with | Rel _ -> None | Var _ | Const _ | Ind _ | Construct _ as k -> let h = hash_kind k in Tbl.raw_find tbl h (fun c' -> eq_leaf c c') | _ -> None let rec of_constr henv c = incr henv.steps; match nonrel_leaf henv.tbl c with | Some v -> v | None -> let kind = of_constr_aux henv c in let hash = hash_kind kind in let isRel, hash = match kind with | Rel n -> let uid = Range.get henv.rels (n-1) in assert (uid <> 0); uid, Hashset.Combine.combine uid hash | _ -> 0, hash in match Tbl.raw_find henv.tbl hash (fun c' -> raw_equal c' ~isRel ~kind) with | Some c' -> c'.refcount <- c'.refcount + 1; c' | None -> let c = let self = kind_to_constr kind in let self = if hasheq_kind (Constr.kind self) (Constr.kind c) then c else self in { self; kind; hash; isRel; refcount = 1 } in Tbl.add henv.tbl c c; c and of_constr_aux henv c = match kind c with | Var i -> let i = Id.hcons i in Var i | Rel _ as t -> t | Sort s -> let s = Sorts.hcons s in Sort s | Cast (c,k,t) -> let c = of_constr henv c in let t = of_constr henv t in Cast (c, k, t) | Prod (na,t,c) -> let na = hcons_annot na in let t = of_constr henv t in let c = of_constr (push_assum t henv) c in Prod (na, t, c) | Lambda (na, t, c) -> let na = hcons_annot na in let t = of_constr henv t in let c = of_constr (push_assum t henv) c in Lambda (na,t,c) | LetIn (na,b,t,c) -> let na = hcons_annot na in let b = of_constr henv b in let t = of_constr henv t in let c = of_constr (push_letin ~body:b ~typ:t henv) c in LetIn (na,b,t,c) | App (h,args) -> let h = of_constr henv h in let args = Array.map (of_constr henv) args in App (h, args) | Evar _ -> CErrors.anomaly Pp.(str "evar in typeops") | Meta _ -> CErrors.anomaly Pp.(str "meta in typeops") | Const (c,u) -> let c = hcons_con c in let u = UVars.Instance.hcons u in Const (c,u) | Ind (ind,u) -> let ind = hcons_ind ind in let u = UVars.Instance.hcons u in Ind (ind,u) | Construct (c,u) -> let c = hcons_construct c in let u = UVars.Instance.hcons u in Construct (c,u) | Case (ci,u,pms,(p,r),iv,c,bl) -> let pctx, blctx = let specif = Inductive.lookup_mind_specif henv.globals ci.ci_ind in let pctx = Inductive.expand_arity specif (ci.ci_ind,u) pms (fst p) in let blctx = Inductive.expand_branch_contexts specif u pms bl in pctx, blctx in let of_ctx (bnd, c) bnd' = let () = hcons_inplace hcons_annot bnd in let henv = push_rel_context henv bnd' in let c = of_constr henv c in bnd, c in let ci = hcons_caseinfo ci in let u = UVars.Instance.hcons u in let pms = Array.map (of_constr henv) pms in let p = of_ctx p pctx in let iv = match iv with | NoInvert -> NoInvert | CaseInvert {indices} -> CaseInvert {indices=Array.map (of_constr henv) indices} in let c = of_constr henv c in let bl = Array.map2 of_ctx bl blctx in Case (ci,u,pms,(p,r),iv,c,bl) | Fix (ln,(lna,tl,bl)) -> let () = hcons_inplace hcons_annot lna in let tl = Array.map (of_constr henv) tl in let body_env = push_rec tl henv in let bl = Array.map (of_constr body_env) bl in Fix (ln,(lna,tl,bl)) | CoFix (ln,(lna,tl,bl)) -> let () = hcons_inplace hcons_annot lna in let tl = Array.map (of_constr henv) tl in let body_env = push_rec tl henv in let bl = Array.map (of_constr body_env) bl in CoFix (ln,(lna,tl,bl)) | Proj (p,r,c) -> let p = Projection.hcons p in let c = of_constr henv c in Proj (p,r,c) | Int _ as t -> t | Float _ as t -> t | String _ as t -> t | Array (u,t,def,ty) -> let u = UVars.Instance.hcons u in let t = Array.map (of_constr henv) t in let def = of_constr henv def in let ty = of_constr henv ty in Array (u,t,def,ty) and push_rel_context henv ctx = List.fold_right (fun d henv -> let d = RelDecl.map_constr_het (fun r -> r) (of_constr henv) d in push_decl d henv) ctx henv let dbg = CDebug.create ~name:"hconstr" () let tree_size c = let rec aux size c = Constr.fold aux (size+1) c in aux 0 c let of_constr env c = let henv = empty_env env in let henv = iterate push_unknown_rel (Environ.nb_rel env) henv in let c = NewProfile.profile "HConstr.of_constr" (fun () -> of_constr henv c) () in dbg Pp.(fun () -> let stats = Tbl.stats henv.tbl in let tree_size = tree_size (self c) in v 0 ( str "steps = " ++ int !(henv.steps) ++ spc() ++ str "rel cnt = " ++ int !(henv.binder_cnt) ++ spc() ++ str "unknwown rels = " ++ int !(henv.unknown_cnt) ++ spc() ++ str "hashes = " ++ int stats.Tbl.hashes ++ spc() ++ str "bindings = " ++ int stats.Tbl.bindings ++ spc() ++ str "tree size = " ++ int tree_size ++ spc() ++ str "most_collisions = " ++ int stats.Tbl.most_collisions ) ); c let kind x = x.kind let hcons x = let tbl = Tbl.create () in let module HCons = GenHCons(struct type nonrec t = t let kind = kind let self = self let refcount = refcount let via_hconstr = true module Tbl = struct let find_opt x = Tbl.find_opt tbl x let add x y = Tbl.add tbl x y end end) in HCons.hcons x
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>