package rocq-runtime
The Rocq Prover -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
rocq-9.0.0.tar.gz
md5=8d522602d23e7a665631826dab9aa92b
sha512=f4f76a6a178e421c99ee7a331a2fd97a06e9c5d0168d7e60c44e3820d8e1a124370ea104ad90c7f87a9a1e9d87b2d0d7d2d387c998feeaed4a75ed04e176a4be
doc/src/rocq-runtime.interp/notationextern.ml.html
Source file notationextern.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
(************************************************************************) (* * The Rocq Prover / The Rocq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (** Declaration of uninterpretation functions (i.e. printing rules) for notations *) (*i*) open Util open Names open Globnames open Constrexpr open Notation_term open Glob_term (*i*) let notation_with_optional_scope_eq inscope1 inscope2 = match (inscope1,inscope2) with | LastLonelyNotation, LastLonelyNotation -> true | NotationInScope s1, NotationInScope s2 -> String.equal s1 s2 | (LastLonelyNotation | NotationInScope _), _ -> false let entry_relative_level_eq t1 t2 = match t1, t2 with | LevelLt n1, LevelLt n2 -> Int.equal n1 n2 | LevelLe n1, LevelLe n2 -> Int.equal n1 n2 | LevelSome, LevelSome -> true | (LevelLt _ | LevelLe _ | LevelSome), _ -> false let notation_entry_eq s1 s2 = match (s1,s2) with | InConstrEntry, InConstrEntry -> true | InCustomEntry s1, InCustomEntry s2 -> String.equal s1 s2 | (InConstrEntry | InCustomEntry _), _ -> false let notation_entry_level_eq { notation_entry = e1; notation_level = n1 } { notation_entry = e2; notation_level = n2 } = notation_entry_eq e1 e2 && Int.equal n1 n2 let notation_entry_relative_level_eq { notation_subentry = e1; notation_relative_level = n1; notation_position = s1 } { notation_subentry = e2; notation_relative_level = n2; notation_position = s2 } = notation_entry_eq e1 e2 && entry_relative_level_eq n1 n2 && s1 = s2 let notation_eq (from1,ntn1) (from2,ntn2) = notation_entry_eq from1 from2 && String.equal ntn1 ntn2 let pair_eq f g (x1, y1) (x2, y2) = f x1 x2 && g y1 y2 let notation_binder_kind_eq k1 k2 = match k1, k2 with | AsIdent, AsIdent -> true | AsName, AsName -> true | AsAnyPattern, AsAnyPattern -> true | AsStrictPattern, AsStrictPattern -> true | (AsIdent | AsName | AsAnyPattern | AsStrictPattern), _ -> false let notation_binder_source_eq s1 s2 = match s1, s2 with | NtnBinderParsedAsSomeBinderKind bk1, NtnBinderParsedAsSomeBinderKind bk2 -> notation_binder_kind_eq bk1 bk2 | NtnBinderParsedAsBinder, NtnBinderParsedAsBinder -> true | NtnBinderParsedAsConstr bk1, NtnBinderParsedAsConstr bk2 -> notation_binder_kind_eq bk1 bk2 | (NtnBinderParsedAsSomeBinderKind _ | NtnBinderParsedAsBinder | NtnBinderParsedAsConstr _), _ -> false let ntpe_eq t1 t2 = match t1, t2 with | NtnTypeConstr, NtnTypeConstr -> true | NtnTypeBinder s1, NtnTypeBinder s2 -> notation_binder_source_eq s1 s2 | NtnTypeConstrList, NtnTypeConstrList -> true | NtnTypeBinderList s1, NtnTypeBinderList s2 -> notation_binder_source_eq s1 s2 | (NtnTypeConstr | NtnTypeBinder _ | NtnTypeConstrList | NtnTypeBinderList _), _ -> false let var_attributes_eq (_, ((entry1, sc1), binders1, tp1)) (_, ((entry2, sc2), binders2, tp2)) = notation_entry_relative_level_eq entry1 entry2 && pair_eq (List.equal String.equal) (List.equal String.equal) sc1 sc2 && Id.Set.equal binders1 binders2 && ntpe_eq tp1 tp2 let interpretation_eq (vars1, t1 as x1) (vars2, t2 as x2) = x1 == x2 || List.equal var_attributes_eq vars1 vars2 && Notation_ops.eq_notation_constr (List.map fst vars1, List.map fst vars2) t1 t2 type level = notation_entry_level * entry_relative_level list let level_eq ({ notation_entry = s1; notation_level = l1}, t1) ({ notation_entry = s2; notation_level = l2}, t2) = notation_entry_eq s1 s2 && Int.equal l1 l2 && List.equal entry_relative_level_eq t1 t2 (** Uninterpretation tables *) type 'a interp_rule_gen = | NotationRule of Constrexpr.specific_notation | AbbrevRule of 'a type interp_rule = KerName.t interp_rule_gen let specific_notation_eq (sc1, (e1, s1)) (sc2, (e2, s2)) = notation_with_optional_scope_eq sc1 sc2 && notation_entry_eq e1 e2 && String.equal s1 s2 let interp_rule_eq r1 r2 = match r1, r2 with | NotationRule n1, NotationRule n2 -> specific_notation_eq n1 n2 | AbbrevRule kn1, AbbrevRule kn2 -> KerName.equal kn1 kn2 | (AbbrevRule _ | NotationRule _), _ -> false (* We define keys for glob_constr and aconstr to split the syntax entries according to the key of the pattern (adapted from Chet Murthy by HH) *) type key = | RefKey of GlobRef.t | Oth let key_compare k1 k2 = match k1, k2 with | RefKey gr1, RefKey gr2 -> GlobRef.CanOrd.compare gr1 gr2 | RefKey _, Oth -> -1 | Oth, RefKey _ -> 1 | Oth, Oth -> 0 module KeyOrd = struct type t = key let compare = key_compare end module KeyMap = Map.Make(KeyOrd) type notation_applicative_status = | AppBoundedNotation of int | AppUnboundedNotation | NotAppNotation let notation_applicative_status_eq s1 s2 = match s1, s2 with | AppBoundedNotation n1, AppBoundedNotation n2 -> Int.equal n1 n2 | AppUnboundedNotation, AppUnboundedNotation -> true | NotAppNotation, NotAppNotation -> true | (AppBoundedNotation _ | AppUnboundedNotation | NotAppNotation), _ -> false type notation_rule = { not_rule : interp_rule; not_patt : interpretation; not_status : notation_applicative_status; } let notation_rule_eq x1 x2 = x1 == x2 || (interp_rule_eq x1.not_rule x2.not_rule && interpretation_eq x1.not_patt x2.not_patt && notation_applicative_status_eq x1.not_status x2.not_status) module NotationSet : sig type t val empty : t val add : notation_rule -> t -> t val remove : notation_rule -> t -> t val repr : t -> notation_rule list end = struct type diff = Add | Sub type data = { ntn_todo : (diff * notation_rule) list; ntn_done : notation_rule list; } type t = data ref option let empty = None let push k r s = match s with | None -> Some (ref { ntn_done = []; ntn_todo = [k, r] }) | Some { contents = s } -> Some (ref { ntn_done = s.ntn_done; ntn_todo = (k, r) :: s.ntn_todo }) let add r s = push Add r s let remove r s = push Sub r s let force s = if List.is_empty s.ntn_todo then None else let cmp r1 r2 = Notation_ops.strictly_finer_interpretation_than r1.not_patt r2.not_patt in (* strictly finer interpretation are kept in front *) let fold accu (knd, ntn) = match knd with | Add -> let finer, rest = List.partition (fun c -> cmp c ntn) accu in (finer @ ntn :: rest) | Sub -> List.remove_first (fun rule -> notation_rule_eq ntn rule) accu in Some (List.fold_left fold s.ntn_done (List.rev s.ntn_todo)) let repr s = match s with | None -> [] | Some r -> match force !r with | None -> r.contents.ntn_done | Some ans -> let () = r := { ntn_done = ans; ntn_todo = [] } in ans end let keymap_add key interp map = let old = try KeyMap.find key map with Not_found -> NotationSet.empty in KeyMap.add key (NotationSet.add interp old) map let keymap_remove key interp map = let old = try KeyMap.find key map with Not_found -> NotationSet.empty in KeyMap.add key (NotationSet.remove interp old) map let keymap_find key map = try NotationSet.repr (KeyMap.find key map) with Not_found -> [] (* Scopes table : interpretation -> scope_name *) let notations_key_table = Summary.ref ~stage:Summary.Stage.Interp ~name:"notation_uninterpretation" (KeyMap.empty : NotationSet.t KeyMap.t) let glob_constr_keys c = match DAst.get c with | GApp (c, _) -> begin match DAst.get c with | GRef (ref, _) -> [RefKey (canonical_gr ref); Oth] | _ -> [Oth] end | GProj ((cst,_), _, _) -> [RefKey (canonical_gr (GlobRef.ConstRef cst))] | GRef (ref,_) -> [RefKey (canonical_gr ref)] | _ -> [Oth] let cases_pattern_key c = match DAst.get c with | PatCstr (ref,_,_) -> RefKey (canonical_gr (GlobRef.ConstructRef ref)) | _ -> Oth let notation_constr_key = function (* Rem: NApp(NRef ref,[]) stands for @ref *) | NApp (NRef (ref,_),args) -> RefKey(canonical_gr ref), AppBoundedNotation (List.length args) | NProj ((cst,_),args,_) -> RefKey(canonical_gr (GlobRef.ConstRef cst)), AppBoundedNotation (List.length args + 1) | NList (_,_,NApp (NRef (ref,_),args),_,_) | NBinderList (_,_,NApp (NRef (ref,_),args),_,_) -> RefKey (canonical_gr ref), AppBoundedNotation (List.length args) | NRef (ref,_) -> RefKey(canonical_gr ref), NotAppNotation | NApp (NList (_,_,NApp (NRef (ref,_),args),_,_), args') -> RefKey (canonical_gr ref), AppBoundedNotation (List.length args + List.length args') | NApp (NList (_,_,NApp (_,args),_,_), args') -> Oth, AppBoundedNotation (List.length args + List.length args') | NApp (NVar _,_) -> Oth, AppUnboundedNotation | NApp (_,args) -> Oth, AppBoundedNotation (List.length args) | NList (_,_,NApp (NVar x,_),_,_) when x = Notation_ops.ldots_var -> Oth, AppUnboundedNotation | _ -> Oth, NotAppNotation let uninterp_notations c = List.map_append (fun key -> keymap_find key !notations_key_table) (glob_constr_keys c) let uninterp_cases_pattern_notations c = keymap_find (cases_pattern_key c) !notations_key_table let uninterp_ind_pattern_notations ind = keymap_find (RefKey (canonical_gr (GlobRef.IndRef ind))) !notations_key_table let remove_uninterpretation rule (metas,c as pat) = let (key,n) = notation_constr_key c in notations_key_table := keymap_remove key { not_rule = rule; not_patt = pat; not_status = n } !notations_key_table let declare_uninterpretation rule (metas,c as pat) = let (key,n) = notation_constr_key c in notations_key_table := keymap_add key { not_rule = rule; not_patt = pat; not_status = n } !notations_key_table let freeze () = !notations_key_table let unfreeze fkm = notations_key_table := fkm let with_notation_uninterpretation_protection f x = let fs = freeze () in try let a = f x in unfreeze fs; a with reraise -> let reraise = Exninfo.capture reraise in let () = unfreeze fs in Exninfo.iraise reraise (** Miscellaneous *) type notation_use = | OnlyPrinting | OnlyParsing | ParsingAndPrinting
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>