package refl
PPX deriver for reflection
Install
Dune Dependency
Authors
Maintainers
Sources
refl.0.4.1.tar.gz
sha512=d34dc88a84fdeecc7148fd148e99cb92a8c36770ada1b5bcd31e4965b16b671cfb921535c4ad09510b54d9e04857928bde40ac7e0d10b58ae12fc8bbeef25cb8
doc/src/ppx_refl/ppx_refl.ml.html
Source file ppx_refl.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
open Common (* let attr_nobuiltin : (Ppxlib.core_type, unit -> unit) Ppxlib.Attribute.t = Ppxlib.Attribute.declare "refl.nobuiltin" Core_type (Ppxlib.Ast_pattern.(pstr nil)) Fun.id let attr_opaque : (Ppxlib.core_type, unit -> unit) Ppxlib.Attribute.t = Ppxlib.Attribute.declare "refl.opaque" Core_type (Ppxlib.Ast_pattern.(pstr nil)) Fun.id *) let map_lident f (ident : Longident.t) : Longident.t = match ident with | Ldot (prefix, name) -> Ldot (prefix, f name) | Lident ident -> Lident (f ident) | _ -> assert false let rec remove_ident_prefix_opt (prefix : Longident.t) (ident : Longident.t) : Longident.t option = match ident with | Ldot (prefix', name) -> if prefix = prefix' then Some (Lident name) else Option.map (fun new_prefix -> Longident.Ldot (new_prefix, name)) (remove_ident_prefix_opt prefix prefix') | Lapply (a, b) -> begin match a, remove_ident_prefix_opt prefix a, b, remove_ident_prefix_opt prefix b with | _, Some a, _, Some b | a, None, _, Some b | _, Some a, b, None -> Some (Lapply (a, b)) | _, None, _, None -> None end | Lident _ -> None let ident_of_str (x : Ast_helper.str) : Ppxlib.expression = Ppxlib.Ast_helper.Exp.ident ~loc:x.loc (Metapp.lid_of_str x) let item i = Printf.sprintf "item%d" i let rec iterate acc f i = if i > 0 then iterate (f acc) f (pred i) else acc let rec iterate_i_aux acc f i j = if i < j then iterate_i_aux (f i acc) f (succ i) j else acc let iterate_i acc f i = iterate_i_aux acc f 0 i let peano_type_of_int i = iterate [%type: [`Zero]] (fun t -> [%type: [`Succ of [%t t]]]) i let refl_dot field : Longident.t = Ldot (Lident "Refl", field) let rec cut l = match l with | even :: odd :: tail -> let even_tail, odd_tail = cut tail in even :: even_tail, odd :: odd_tail | [even] -> [even], [] | [] -> [], [] let rec binary_of_int zero one final i length = if length > 1 then if i mod 2 = 0 then zero (binary_of_int zero one final (i / 2) ((length + 1) / 2)) else one (binary_of_int zero one final (i / 2) (length - (length + 1) / 2)) else final let binary_type_of_int i length = binary_of_int (fun tail k -> tail [%type: [`Zero of [%t k]]]) (fun tail k -> tail [%type: [`One of [%t k]]]) Fun.id i length [%type: [`Start]] module ReflValue (Value : Metapp.ValueS) = struct include Value let peano_of_int zero succ i = iterate zero (fun arg -> construct succ [arg]) i let typed_vector_of_list nil cons l = let add_item item acc = construct cons [record [ Lident "head", item; Lident "tail", acc]] in List.fold_right add_item l nil let sequence_of_list l = let add_item item acc = tuple [item; acc] in List.fold_right add_item l (construct (Lident "()") []) let tnil = refl_dot "TNil" let tcons = refl_dot "TCons" let tuple_of_list l = typed_vector_of_list (construct tnil []) tcons l let rnil = refl_dot "RNil" let rcons = refl_dot "RCons" let record_of_list l = typed_vector_of_list (construct rnil []) rcons l let cnode = refl_dot "CNode" let cleaf = refl_dot "CLeaf" let rec binary_choices_of_list l = match l with | [] -> assert false | [leaf] -> construct cleaf [leaf] | _ -> let even, odd = cut l in construct cnode [record [ (Lident "zero", binary_choices_of_list even); (Lident "one", binary_choices_of_list odd)]] let vcnil = refl_dot "VCNil" let vccons = refl_dot "VCCons" let variant_choices_of_list l = typed_vector_of_list (construct vcnil []) vccons l let onil = refl_dot "ONil" let ocons = refl_dot "OCons" let object_methods_of_list l = typed_vector_of_list (construct onil []) ocons l let vnil = refl_dot "VNil" let vcons = refl_dot "VCons" let vector_of_list l = typed_vector_of_list (construct vnil []) vcons l let sfirst = refl_dot "Start" let snext = refl_dot "Next" let selection_of_int i = peano_of_int (construct sfirst []) snext i let vfirst = refl_dot "VFirst" let vnext = refl_dot "VNext" let variable_of_int i = peano_of_int (construct vfirst []) vnext i let cfirst = refl_dot "CFirst" let cnext = refl_dot "CNext" let choice_of_int i sequence = peano_of_int (construct cfirst [sequence]) cnext i let cend = refl_dot "CEnd" let czero = refl_dot "CZero" let cone = refl_dot "COne" let binary_choice_of_int i length sequence = binary_of_int (fun tail -> construct czero [tail]) (fun tail -> construct cone [tail]) (construct cend [sequence]) i length let binary_start = refl_dot "BinaryStart" let zero = refl_dot "Zero" let one = refl_dot "One" let select = refl_dot "Select" let binary_selection_of_int i length = binary_of_int (fun tail k -> tail (construct zero [k])) (fun tail k -> tail (construct one [k])) (fun k -> construct select [k]) i length (construct binary_start []) let s_zero = refl_dot "Zero" let s_succ = refl_dot "Succ" let length_of_int i = peano_of_int (construct s_zero []) s_succ i let s_nil = refl_dot "Nil" let s_append = refl_dot "Add" let append_of_int i = peano_of_int (construct s_nil []) s_append i let vtanil = refl_dot "VTANil" let vtacons = refl_dot "VTACons" let transfer_arguments_of_list l = typed_vector_of_list (construct vtanil []) vtacons l let vtnil = refl_dot "VTNil" let vtcons = refl_dot "VTCons" let transfer_of_list l = typed_vector_of_list (construct vtnil []) vtcons l let enil = refl_dot "ENil" let econs = refl_dot "ECons" let equalities_of_list l = typed_vector_of_list (construct enil []) econs l end let append_type_sequence_of_list l e = List.fold_right (fun ty acc -> [%type: [%t ty] * [%t acc]]) l e let type_sequence_of_list l = append_type_sequence_of_list l [%type: unit] let rec binary_type_of_list l = match l with | [] -> [%type: unit] | [leaf] -> [%type: [%t leaf] ref] | _ -> let even, odd = cut l in [%type: [%t binary_type_of_list even] * [%t binary_type_of_list odd]] type type_info = { desc_name : string; arity : int; td : Ppxlib.type_declaration; recursive : Ppxlib.Asttypes.rec_flag ref; } let refl_name s = s ^ "_refl" let structure_name s = s ^ "__structure" let rec_group_name s = s ^ "__rec_group" let arity_name s = s ^ "__arity" let kinds_name s = s ^ "__kinds" let gadt_name s = s ^ "__gadt" let type_refl_ctor s = "Refl_" ^ s type type_names = { refl : string; structure : string; rec_group : string; arity : string; kinds : string; gadt : string; refl_ctor : string; } let type_names_of_type_name type_name = { refl = refl_name type_name; structure = structure_name type_name; rec_group = rec_group_name type_name; arity = arity_name type_name; kinds = kinds_name type_name; gadt = gadt_name type_name; refl_ctor = type_refl_ctor type_name; } let type_info_of_type_declaration recursive (td : Ppxlib.type_declaration) = { td; desc_name = refl_name td.ptype_name.txt; arity = List.length td.ptype_params; recursive; } type free_variable = { index : int; name : string; mutable bound : bool; } module StringIndexer = Indexer.Make (String) type context = { name : string option; rec_types : (int * int * type_info) StringMap.t option; vars : StringIndexer.t; fresh_counter : int ref; free_var_table : free_variable StringHashtbl.t; free_vars : free_variable list ref; rec_type_refs : IntSet.t ref; constraints : Constraints.t ref; origin : Constraints.Variables.Path.origin; selector : Constraints.Variables.Path.selector; rev_eqs : Ppxlib.core_type list ref; eqs_counter : int ref; type_names : type_names; type_args : string list; type_vars : Ppxlib.core_type list; type_expr : Ppxlib.core_type; exists : Constraints.Transfer.t option ref; gadt_args : Ppxlib.core_type list; original_vars : Ppxlib.core_type list; } let var_of_core_type_opt (ty : Ppxlib.core_type) = match ty with | [%type: _] -> Some None | { ptyp_desc = Ptyp_var s; _ } -> Some (Some s) | _ -> None let var_of_core_type (ty : Ppxlib.core_type) = match var_of_core_type_opt ty with | Some var -> var | None -> Location.raise_errorf ~loc:!Ast_helper.default_loc "Type variable expected but '%a' found" Ppxlib.Pprintast.core_type ty let make_index (f : 'a -> string option) (l : 'a list) (count : int) : (int * int * 'a) StringMap.t = let add_type_arg i acc arg = let acc = match f arg with | None -> acc | Some var -> StringMap.add var (i, count, arg) acc in acc in ListExt.fold_lefti add_type_arg StringMap.empty l let type_arg i = Printf.sprintf "a%d" i let type_constr_of_string ?(args = []) s = Ppxlib.Ast_helper.Typ.constr (Metapp.mkloc (Longident.Lident s)) args let make_context ?name rec_types original_vars vars = let type_args = List.init (StringIndexer.count vars) type_arg in let type_vars = List.map Ppxlib.Ast_helper.Typ.var type_args in let name_default = Option.value ~default:"" name in let type_expr = type_constr_of_string name_default ~args:type_vars in { name; rec_types; vars; fresh_counter = ref 0; free_var_table = StringHashtbl.create 7; free_vars = ref []; rec_type_refs = ref IntSet.empty; constraints = ref Constraints.bottom; origin = []; selector = Direct; rev_eqs = ref []; eqs_counter = ref 0; type_names = type_names_of_type_name name_default; type_args; type_vars; type_expr; exists = ref None; gadt_args = type_vars; original_vars; } let context_of_type_declaration (td : Ppxlib.type_declaration) rec_types : context = let vars = StringIndexer.of_list (td.ptype_params |> List.map (fun (ty, _) -> var_of_core_type ty)) in make_context ~name:td.ptype_name.txt rec_types (List.map fst td.ptype_params) vars let builtins_dot field : Longident.t = Ldot (refl_dot "Builtins", field) let irrefutable () = [Ppxlib.Ast_helper.Exp.case [%pat? _] (Ppxlib.Ast_helper.Exp.unreachable ())] let structure_of_tuple structure_of_type context (types : Ppxlib.core_type list) : Ppxlib.core_type * Ppxlib.expression = let arity = List.length types in let types, descs = List.split (List.map (structure_of_type context) types) in let module Values (Value : Metapp.ValueS) = struct include ReflValue (Value) let items = List.init arity (fun i -> var (item i)) let sequence = sequence_of_list items let tuple = tuple items end in let module ValuesExp = Values (Metapp.Exp) in let module ValuesPat = Values (Metapp.Pat) in let construct = Ppxlib.Ast_helper.Exp.case ValuesPat.sequence ValuesExp.tuple :: irrefutable () in let destruct = Ppxlib.Ast_helper.Exp.case ValuesPat.tuple ValuesExp.sequence in [%type: [`Tuple of [%t type_sequence_of_list types]]], [%expr Refl.Tuple { structure = [%e ValuesExp.tuple_of_list descs]; construct = [%e Ppxlib.Ast_helper.Exp.function_ construct]; destruct = [%e Ppxlib.Ast_helper.Exp.function_ [destruct]]; }] let rec for_alli_from index p list = match list with | [] -> true | hd :: tl -> p index hd && for_alli_from (succ index) p tl let for_alli p list = for_alli_from 0 p list let type_args_regular context (args : Ppxlib.core_type list) = List.length args = StringIndexer.count context.vars && args |> for_alli begin fun i (arg : Ppxlib.core_type) -> match arg with | { ptyp_desc = Ptyp_var s; _ } -> begin match StringIndexer.find_opt s context.vars with | Some j -> i = j | None -> false end | _ -> false end (* let lzero = refl_dot "LZero" let lsucc = refl_dot "LSucc" let sequence_length_of_int i = peano_of_int (construct lzero) lsucc i *) (* let anil = refl_dot "ANil" let acons = refl_dot "ACons" let rec_group_of_list l = typed_vector_of_list (construct anil) acons l *) let make_transfer present unknown compose (transfer : Constraints.Variables.transfer) = match transfer with | Present -> present | Depend depend -> let add_depend unknown longident_list = let add_longident present txt = compose txt present unknown in List.fold_left add_longident present longident_list in List.fold_left add_depend unknown depend let compose_transfer txt present unknown = Constraints.Transfer.Constr (txt, present, unknown) let compose_type txt present unknown = Ppxlib.Ast_helper.Typ.constr (Metapp.mkloc txt) [present; unknown] let compose_expr txt present unknown = [%expr [%e Ppxlib.Ast_helper.Exp.ident (Metapp.mkloc txt)] [%e present] [%e unknown]] let variable_types type_name arity name absent = type_sequence_of_list (List.init arity begin fun i -> Ppxlib.Ast_helper.Typ.constr (Metapp.mkloc (subst_ident (fun s -> name s i) type_name)) [[%type: [`Present]]; absent i] end) module ReflValueExp = ReflValue (Metapp.Exp) module ReflValuePat = ReflValue (Metapp.Pat) module ReflValueVal = ReflValue (Metapp.Value) let subst_free_variables (f : Location.t -> string option -> Ppxlib.core_type) (ty : Ppxlib.core_type) : Ppxlib.core_type = let mapper = object inherit Ppxlib.Ast_traverse.map as super method! core_type (ty : Ppxlib.core_type) : Ppxlib.core_type = match var_of_core_type_opt ty with | None -> super#core_type ty | Some var -> f ty.ptyp_loc var end in mapper#core_type ty exception Exists of Location.t * string option let () = Printexc.register_printer (fun exc -> match exc with | Exists (loc, name) -> Some (Format.asprintf "@[Exists@ (@[%a@],@[%a@])@]" Location.print_loc loc (Format.pp_print_option Format.pp_print_string) name) | _ -> None) let subst_type_vars_opt map _loc name = Option.bind name @@ fun name -> Option.bind (StringMap.find_opt name map) @@ fun index -> Some (Ppxlib.Ast_helper.Typ.var (type_arg index)) let subst_type_vars map loc name = match subst_type_vars_opt map loc name with | None -> raise (Exists (loc, name)) | Some result -> result (* let subst_type_vars_exists map loc name = match subst_type_vars_opt map loc name with | None -> Ppxlib.Ast_helper.Typ.any () | Some result -> result *) let instantiate_with_free accu map _loc name = match name with | None -> invalid_arg "subst_type_vars_with_free" | Some name -> match StringMap.find_opt name map with | Some index -> type_constr_of_string (type_arg index) | None -> accu |> Metapp.mutate (StringSet.add name); type_constr_of_string name let instantiate _loc var = match var with | None -> failwith "Not implemented: instantiate" | Some var -> type_constr_of_string var let structure_of_constr structure_of_type context ?rec_type (constr : Longident.t) (args : Ppxlib.core_type list) : Ppxlib.core_type * Ppxlib.expression = let t, desc = match rec_type with | None -> context.constraints |> Metapp.mutate ( Constraints.add_inherited_kind (subst_ident kinds_name constr)); let structure = Ppxlib.Ast_helper.Typ.constr (Metapp.mkloc (subst_ident structure_name constr)) [] in let rec_group_type = Ppxlib.Ast_helper.Typ.constr (Metapp.mkloc (subst_ident rec_group_name constr)) [] in let unwrapped_desc = Ppxlib.Ast_helper.Exp.ident (Metapp.mkloc (subst_ident refl_name constr)) in let t, desc = [%type: [`RecGroup of [%t structure] * [%t rec_group_type]]], [%expr RecGroup { desc = [%e unwrapped_desc](*; rec_group = [%e rec_group_expr] *)}] in let arrow = [%type: [%t type_constr_of_string context.type_names.gadt ~args:context.gadt_args] -> [%t Ppxlib.Ast_helper.Typ.constr (Metapp.mkloc (subst_ident gadt_name constr)) args]] in [%type: [`SubGADT of [%t t]]], [%expr Refl.SubGADT ([%e desc] : [%t arrow])] | Some (index, length, { desc_name; recursive; _ }) -> recursive := Recursive; let arrow = [%type: [%t type_constr_of_string context.type_names.gadt ~args:context.gadt_args] -> [%t Ppxlib.Ast_helper.Typ.constr (Metapp.mkloc (subst_ident gadt_name constr)) args]] in context.rec_type_refs |> Metapp.mutate (IntSet.add index); [%type: [`SubGADT of [`Rec of [%t binary_type_of_int index length]]]], [%expr Refl.SubGADT (Refl.Rec { index = [%e ReflValueExp.binary_selection_of_int index length]; desc = [%e ident_of_str (Metapp.mkloc desc_name)]} : [%t arrow])] in (* let t, desc = match rec_type with | Some _ -> t, desc | None -> begin let ty = Ppxlib.Ast_helper.Typ.constr (Metapp.mkloc (subst_ident gadt_name constr)) args in let ty = subst_free_variables (subst_type_vars_exists context.vars.map) ty in let eq_index = !(context.eqs_counter) in context.eqs_counter := succ eq_index; context.rev_eqs := ty :: !(context.rev_eqs); [%type: [`SelectGADT of [%t t] * [%t peano_type_of_int eq_index]]], [%expr Refl.SelectGADT { index = [%e ReflValueExp.selection_of_int (succ eq_index)]; desc = [%e desc] }] end in *) let t, desc = if type_args_regular context args && match context.name with | None -> true | Some name -> constr = Lident name then begin if rec_type = None then context.constraints |> Metapp.mutate (fun constraints -> args |> ListExt.fold_lefti (fun i (constraints : Constraints.t) arg -> Constraints.add_variable i ([(constr, i)], Direct) constraints) constraints); t, desc end else let args = args |> List.map begin fun arg -> let old_ref = context.constraints in let old_kinds, old_variables = !old_ref in let constraints' = ref (old_kinds, Constraints.Variables.bottom) in let context = { context with constraints = constraints'; origin = []; selector = Direct; } in let structure = structure_of_type context arg in let kinds, variables = !constraints' in old_ref := (kinds, old_variables); structure, variables end in let args, variables = List.split args in let args_type, args_expr = List.split args in let args_type = type_sequence_of_list args_type in let transfer_arguments transfer = ReflValueExp.transfer_arguments_of_list (List.init (StringIndexer.count context.vars) transfer) in let transfer_matrix variables = let transfer_positive = transfer_arguments begin fun j -> Constraints.Variables.make_transfer variables Right j |> make_transfer [%expr Refl.Transfer] [%expr Refl.Skip] compose_expr end in let transfer_negative = transfer_arguments begin fun j -> Constraints.Variables.make_transfer variables Left j |> make_transfer [%expr Refl.Transfer] [%expr Refl.Skip] compose_expr end in let transfer_direct = transfer_arguments begin fun j -> Constraints.Variables.make_transfer variables Direct j |> make_transfer [%expr Refl.Transfer] [%expr Refl.Skip] compose_expr end in [%expr { pp = [%e transfer_positive]; pn = [%e transfer_negative]; np = [%e transfer_negative]; nn = [%e transfer_positive]; }, [%e transfer_direct]] in let transfer = ReflValueExp.transfer_of_list (List.map transfer_matrix variables) in let args_count = List.length args in let skip_item name i = [%expr fun () -> [%e Ppxlib.Ast_helper.Exp.ident (Metapp.mkloc (map_lident (fun constr -> name constr i) constr))] Refl.VKeep Refl.VSkip] in let make_skip_vector list = ReflValueExp.typed_vector_of_list (ReflValueExp.construct (refl_dot "SKNil") []) (refl_dot "SKCons") list in let skip_positive = make_skip_vector (List.init args_count (fun i -> skip_item Constraints.Variables.positive_name i)) in let skip_negative = make_skip_vector (List.init args_count (fun i -> skip_item Constraints.Variables.negative_name i)) in let skip_direct = make_skip_vector (List.init args_count (fun i -> skip_item Constraints.Variables.direct_name i)) in let transfer = [%expr Transfer_skip { transfer_vector = [%e transfer]; skip_positive = [%e skip_positive]; skip_negative = [%e skip_negative]; skip_direct = [%e skip_direct]}] in let nb_args = List.length args in let variable_types name = variable_types constr nb_args name (fun _ -> [%type: [`Absent]]) in let subpositive = variable_types Constraints.Variables.positive_name in let subnegative = variable_types Constraints.Variables.negative_name in let subdirect = variable_types Constraints.Variables.direct_name in let arity = StringIndexer.count context.vars in let arguments = type_sequence_of_list (variables |> List.map begin fun variables -> let argument_positive = type_sequence_of_list (List.init arity begin fun j -> Constraints.Variables.make_transfer variables Right j |> make_transfer [%type: [`Present]] [%type: [`Absent]] compose_type end) in let argument_negative = type_sequence_of_list (List.init arity begin fun j -> Constraints.Variables.make_transfer variables Left j |> make_transfer [%type: [`Present]] [%type: [`Absent]] compose_type end) in let argument_direct = type_sequence_of_list (List.init arity begin fun j -> Constraints.Variables.make_transfer variables Direct j |> make_transfer [%type: [`Present]] [%type: [`Absent]] compose_type end) in [%type: [%t argument_positive] * [%t argument_negative] * [%t argument_direct]] end) in let t = [%type: [`Apply of [%t t] * [%t args_type] * [%t subpositive] * [%t subnegative] * [%t subdirect] * [%t arguments]]] in let desc = [%expr Refl.Apply { arguments = [%e ReflValueExp.vector_of_list args_expr]; desc = [%e desc]; transfer = [%e transfer]; }] in if rec_type = None then context.constraints |> Metapp.mutate (fun constraints -> variables |> ListExt.fold_lefti (fun i (constraints : Constraints.t) variables -> IntMap.fold (fun j path_set constraints -> Constraints.Variables.PathSet.fold (fun (origin, selector) -> let origin = (constr, i) :: origin in Constraints.add_variable j (origin, selector)) path_set constraints) variables constraints) constraints); t, desc in t, desc let expr_of_string s = Ppxlib.Ast_helper.Exp.constant (Ppxlib.Ast_helper.Const.string s) let structure_of_row_field structure_of_type context (row_field : Ppxlib.row_field) : Ppxlib.core_type * Ppxlib.expression = Ppxlib.Ast_helper.with_default_loc (Metapp.Rf.to_loc row_field) @@ fun () -> match Metapp.Rf.destruct row_field with | Rtag (label, _, args) -> let structure, desc = match args with | [] -> [%type: unit], [%expr VNone] | arg :: _ -> let structure, desc = structure_of_type context arg in [%type: [%t structure] * unit], [%expr VSome [%e desc]] in [%type: [`Constr of [%t structure]]], [%expr Refl.VConstructor { name = [%e expr_of_string label.txt]; argument = [%e desc]}] | Rinherit ty -> let structure, desc = structure_of_type context ty in [%type: [`Inherit of [%t structure]]], [%expr Refl.VInherit [%e desc]] let accessors_of_row_field (ty : Ppxlib.core_type Lazy.t) i (row_field : Ppxlib.row_field) : Ppxlib.case * Ppxlib.case = let arg = "arg" in Ppxlib.Ast_helper.with_default_loc (Metapp.Rf.to_loc row_field) @@ fun () -> let module Values (Value : Metapp.ValueS) = struct include ReflValue (Value) let sequence, variant = match Metapp.Rf.destruct row_field with | Rtag (label, _, []) -> sequence_of_list [], variant label.txt None | Rtag (label, _, _) -> let ident = var arg in sequence_of_list [ident], variant label.txt (Some ident) | Rinherit { ptyp_desc = Ptyp_constr (type_name, _); _ } -> let pat () = Ppxlib.Ast_helper.Pat.alias (Ppxlib.Ast_helper.Pat.type_ type_name) (Metapp.mkloc arg) in let expr () = [%expr ([%e ReflValueExp.var arg] :> [%t Lazy.force ty])] in var arg, choice expr pat | _ -> Location.raise_errorf ~loc:!Ppxlib.Ast_helper.default_loc "refl cannot be derived for such polymorphic variants" let choice = choice_of_int i sequence end in let module ValuesExp = Values (Metapp.Exp) in let module ValuesPat = Values (Metapp.Pat) in Ppxlib.Ast_helper.Exp.case ValuesPat.choice ValuesExp.variant, Ppxlib.Ast_helper.Exp.case ValuesPat.variant ValuesExp.choice let structure_of_variant structure_of_type context (fields : Ppxlib.row_field list) : Ppxlib.core_type * Ppxlib.expression = let cases = List.map (structure_of_row_field structure_of_type context) fields in let types, descs = List.split cases in let ty = lazy begin let fields = fields |> List.map begin fun (field : Ppxlib.row_field) -> match Metapp.Rf.destruct field with | Rtag (label, _, list) -> let list = match list with | [] -> [] | _ :: _ -> [[%type: _]] in Metapp.Rf.tag label false list | Rinherit _ -> field end in Ppxlib.Ast_helper.Typ.variant fields Closed None end in let accessors = List.mapi (accessors_of_row_field ty) fields in let construct, destruct = List.split accessors in let construct = construct @ irrefutable () in [%type: [`Variant of [%t type_sequence_of_list types]]], [%expr Refl.Variant { constructors = [%e ReflValueExp.variant_choices_of_list descs]; construct = [%e Ppxlib.Ast_helper.Exp.function_ construct]; destruct = [%e Ppxlib.Ast_helper.Exp.function_ destruct]; }] let structure_of_builtins_or_constr structure_of_type context (ty : Ppxlib.core_type) (constr : Longident.t) (args : Ppxlib.core_type list) : Ppxlib.core_type * Ppxlib.expression = let ty = match ty.ptyp_desc with | Ptyp_constr (lid, args) -> begin match remove_ident_prefix_opt (Lident "Stdlib") lid.txt with | None -> ty | Some txt -> { ty with ptyp_desc = Ptyp_constr ({ lid with txt }, args)} end | _ -> ty in match { ty with ptyp_attributes = [] } with | [%type: bool] | [%type: Bool.t] -> context.constraints |> Metapp.mutate (Constraints.add_direct_kind "Bool"); [%type: [`Builtin of [`Bool]]], [%expr Refl.Builtin Refl.Bool] | [%type: bytes] | [%type: Bytes.t] -> context.constraints |> Metapp.mutate (Constraints.add_direct_kind "Bytes"); [%type: [`Builtin of [`Bytes]]], [%expr Refl.Builtin Refl.Bytes] | [%type: char] | [%type: Char.t] -> context.constraints |> Metapp.mutate (Constraints.add_direct_kind "Char"); [%type: [`Builtin of [`Char]]], [%expr Refl.Builtin Refl.Char] | [%type: float] | [%type: Float.t] -> context.constraints |> Metapp.mutate (Constraints.add_direct_kind "Float"); [%type: [`Builtin of [`Float]]], [%expr Refl.Builtin Refl.Float] | [%type: int] | [%type: Int.t] -> context.constraints |> Metapp.mutate (Constraints.add_direct_kind "Int"); [%type: [`Builtin of [`Int]]], [%expr Refl.Builtin Refl.Int] | [%type: int32] | [%type: Int32.t] -> context.constraints |> Metapp.mutate (Constraints.add_direct_kind "Int32"); [%type: [`Builtin of [`Int32]]], [%expr Refl.Builtin Refl.Int32] | [%type: int64] | [%type: Int64.t] -> context.constraints |> Metapp.mutate (Constraints.add_direct_kind "Int64"); [%type: [`Builtin of [`Int64]]], [%expr Refl.Builtin Refl.Int64] | [%type: nativeint] | [%type: Nativeint.t] -> context.constraints |> Metapp.mutate (Constraints.add_direct_kind "Nativeint"); [%type: [`Builtin of [`Nativeint]]], [%expr Refl.Builtin Refl.Nativeint] | [%type: string] | [%type: String.t] -> context.constraints |> Metapp.mutate (Constraints.add_direct_kind "String"); [%type: [`Builtin of [`String]]], [%expr Refl.Builtin Refl.String] | [%type: unit] -> structure_of_constr structure_of_type context (builtins_dot "unit") args | [%type: [%t? subtype] array] | [%type: [%t? subtype] Array.t] -> context.constraints |> Metapp.mutate (Constraints.add_direct_kind "Array"); let structure, desc = structure_of_type context subtype in [%type: [`Array of [%t structure]]], [%expr Array [%e desc]] | [%type: [%t? _] list] | [%type: [%t? _] List.t] -> structure_of_constr structure_of_type context (builtins_dot "list") args | [%type: ([%t? _], [%t? _]) result] | [%type: ([%t? _], [%t? _]) Result.t ]-> structure_of_constr structure_of_type context (builtins_dot "result") args | [%type: [%t? _] option] | [%type: [%t? _] Option.t] -> structure_of_constr structure_of_type context (builtins_dot "option") args | [%type: [%t? _] ref] -> structure_of_constr structure_of_type context (builtins_dot "ref") args | [%type: [%t? ty] Lazy.t] -> context.constraints |> Metapp.mutate (Constraints.add_direct_kind "Lazy"); let ty, desc = structure_of_type context ty in [%type: [`Lazy of [%t ty]]], [%expr Refl.Lazy [%e desc]] | _ -> structure_of_constr structure_of_type context constr args let find_rec_type context constr = match context.rec_types, constr with | Some rec_types, Longident.Lident name -> StringMap.find_opt name rec_types | _ -> None let free_variable context = let index = !(context.fresh_counter) in context.fresh_counter := succ index; let var = { index; name = Printf.sprintf "free%d" index; bound = false } in context.free_vars := var :: !(context.free_vars); var let name_free_variable context s = match StringHashtbl.find_opt context.free_var_table s with | Some var -> var | None -> let var = free_variable context in StringHashtbl.add context.free_var_table s var; var let structure_of_arrow structure_of_type context (label : Ppxlib.Asttypes.arg_label) parameter result = let label_desc = match label with | Nolabel -> None | Labelled s -> Some (false, s) | Optional s -> Some (true, s) in let parameter = match label with | Nolabel | Labelled _ -> parameter | Optional _ -> [%type: [%t parameter] option] in let parameter_structure, parameter_desc = let context = { context with selector = Constraints.Variables.Path.left context.selector } in structure_of_type context parameter in let result_structure, result_desc = let context = { context with selector = Constraints.Variables.Path.right context.selector } in structure_of_type context result in begin match label_desc with | None -> [%type: [`Arrow of [%t parameter_structure] -> [%t result_structure]]], [%expr Refl.Arrow { parameter = [%e parameter_desc]; result = [%e result_desc]; }] | Some (optional, s) -> [%type: [`LabelledArrow of [%t parameter_structure] -> [%t result_structure]]], [%expr Refl.LabelledArrow { label = [%e expr_of_string s]; optional = [%e if optional then [%expr true] else [%expr false]]; parameter = [%e parameter_desc]; result = [%e result_desc]; wrap = (fun f -> [%e Ppxlib.Ast_helper.Exp.fun_ label None [%pat? x] [%expr f x]]); unwrap = (fun f x -> [%e Ppxlib.Ast_helper.Exp.apply [%expr f] [label, [%expr x]]]); }] end let structure_of_object_field structure_of_type context (object_field : Metapp.Of.t) : (Ppxlib.core_type * Ppxlib.expression) * ((Ppxlib.pattern * Ppxlib.class_field) * Ppxlib.expression) = let loc = Metapp.Of.to_loc object_field in Ppxlib.Ast_helper.with_default_loc loc @@ fun () -> match Metapp.Of.destruct object_field with | Otag (label, argument) -> let structure, desc = structure_of_type context argument in let structure = [%type: [`Method of [%t structure]]], [%expr Refl.OMethod { name = [%e expr_of_string label.txt]; desc = [%e desc]}] in let construct = ((Ppxlib.Ast_helper.Pat.var label, Ppxlib.Ast_helper.Cf.method_ label Public (Ppxlib.Ast_helper.Cf.concrete Fresh [%expr [%e Ppxlib.Ast_helper.Exp.ident (Metapp.lid_of_str label)] ()])), [%expr fun () -> [%e Metapp.Exp.send [%expr c] label]]) in structure, construct | Oinherit _ -> Location.raise_errorf ~loc "ppx_refl does not support object inheritance" let delays_dot = refl_dot "Delays" let structure_of_object structure_of_type context (fields : Metapp.Of.t list) : Ppxlib.core_type * Ppxlib.expression = let methods = List.map (structure_of_object_field structure_of_type context) fields in let structures, constructs = List.split methods in let types, descs = List.split structures in let construct, destruct = List.split constructs in let patterns, results = List.split construct in let construct = [Ppxlib.Ast_helper.Exp.case (ReflValuePat.list ~prefix:delays_dot patterns) (Ppxlib.Ast_helper.Exp.object_ (Ppxlib.Ast_helper.Cstr.mk [%pat? _] results))] in let destruct = [Ppxlib.Ast_helper.Exp.case (ReflValuePat.var "c") (ReflValueExp.list ~prefix:delays_dot destruct)] in [%type: [`Object of [%t type_sequence_of_list types]]], [%expr Refl.Object { methods = [%e ReflValueExp.object_methods_of_list descs]; construct = [%e Ppxlib.Ast_helper.Exp.function_ construct]; destruct = [%e Ppxlib.Ast_helper.Exp.function_ destruct]; }] let make_variables variable_count variables selector e = let list = List.init variable_count begin fun i -> Constraints.Variables.make_transfer variables selector i |> make_transfer [%type: [`Present]] [%type: [`Absent]] compose_type end in append_type_sequence_of_list list e let make_presences variable_count variables = iterate_i [%expr Refl.Presences] (fun i acc -> Constraints.Variables.make_transfer variables Direct i |> make_transfer [%expr Refl.AddPresent [%e acc]] [%expr Refl.AddAbsent [%e acc]] compose_expr) variable_count let constructor_of_attr_name attr_name = Printf.sprintf "Attribute_%s" attr_name let rec lid_of_rev_path rev_path name : Longident.t = match rev_path with | [] -> Lident name | head :: tail -> Ldot (lid_of_rev_path tail head, name) let lid_of_attr_name attr_name = match List.rev (String.split_on_char '.' attr_name) with | [] -> assert false | head :: tail -> lid_of_rev_path (List.map String.capitalize_ascii tail) (constructor_of_attr_name head) let make_arity_types arity = type_sequence_of_list (List.init arity (fun i -> type_constr_of_string (type_arg i))) let make_attributes context ty attributes : Ppxlib.expression = let cases = attributes |> List.map begin fun (attribute : Ppxlib.attribute) -> let name = lid_of_attr_name (Metapp.Attr.name attribute).txt in let name : Longident.t = match name with | Ldot (Lident "Ocaml", attr) -> Ldot (Ldot (Lident "Refl", "Ocaml_attributes"), attr) | _ -> name in let expr = Metapp.Exp.of_payload (Metapp.Attr.payload attribute) in Ppxlib.Ast_helper.Exp.case (Metapp.Pat.construct name []) [%expr Some [%e expr]] end in let cases = cases @ [Ppxlib.Ast_helper.Exp.case (Ppxlib.Ast_helper.Pat.any ()) [%expr None ]] in let accu = ref StringSet.empty in let ty = subst_free_variables (instantiate_with_free accu context.vars.map) ty in let arity_types = make_arity_types (StringIndexer.count context.vars) in let forall_types = List.map Metapp.mkloc ("__attribute" :: StringSet.elements !accu) in [%expr { Refl.typed = [%e List.fold_right Metapp.Exp.newtype forall_types (Ppxlib.Ast_helper.Exp.constraint_ (Ppxlib.Ast_helper.Exp.function_ cases) [%type: ([%t ty], [%t arity_types], __attribute) Refl.typed_attribute_kind -> __attribute option])] }] let transform_attr context structure desc (ty : Ppxlib.core_type) = match ty.ptyp_attributes with | [] -> structure, desc | attr -> let attributes = make_attributes context ty attr in [%type: [`Attributes of [%t structure]]], [%expr Refl.Attributes { attributes = [%e attributes]; desc = [%e desc]; }] let rec structure_of_type context (ty : Ppxlib.core_type) : Ppxlib.core_type * Ppxlib.expression = Ppxlib.Ast_helper.with_default_loc ty.ptyp_loc @@ fun () -> let transform ty = match ty with | [%type: _] -> let var = free_variable context in context.constraints |> Metapp.mutate begin Constraints.add_variable var.index (context.origin, context.selector) end; Ppxlib.Ast_helper.Typ.var var.name, ident_of_str (Metapp.mkloc var.name) | { ptyp_desc = Ptyp_var s; _ } -> begin match StringIndexer.find_opt s context.vars with | Some i -> context.constraints |> Metapp.mutate begin fun c -> c |> Constraints.add_direct_kind "Variable" |> Constraints.add_variable i (context.origin, context.selector) end; [%type: [`Variable of [%t peano_type_of_int i]]], [%expr Refl.Variable [%e ReflValueExp.variable_of_int i]] | None -> let var = name_free_variable context s in context.constraints |> Metapp.mutate begin Constraints.add_variable var.index (context.origin, context.selector) end; Ppxlib.Ast_helper.Typ.var var.name, ident_of_str (Metapp.mkloc var.name) end | { ptyp_desc = Ptyp_arrow (label, parameter, result); _} -> context.constraints |> Metapp.mutate (Constraints.add_direct_kind "Arrow"); structure_of_arrow structure_of_type context label parameter result | { ptyp_desc = Ptyp_tuple types; _ } -> context.constraints |> Metapp.mutate (Constraints.add_direct_kind "Tuple"); structure_of_tuple structure_of_type context types | { ptyp_desc = Ptyp_constr (constr, args); _ } -> begin match find_rec_type context constr.txt, Metapp.Attr.find "nobuiltin" ty.ptyp_attributes with | None, None -> structure_of_builtins_or_constr structure_of_type context ty constr.txt args | rec_type, _ -> structure_of_constr structure_of_type context constr.txt args ?rec_type end | { ptyp_desc = Ptyp_variant (fields, _, _); _ } -> context.constraints |> Metapp.mutate (Constraints.add_direct_kind "Variant"); structure_of_variant structure_of_type context fields | { ptyp_desc = Ptyp_object (methods, closed_flag); _ } -> if closed_flag = Open then Location.raise_errorf ~loc:!Ppxlib.Ast_helper.default_loc "Open object types are not supported by ppx_refl"; context.constraints |> Metapp.mutate (Constraints.add_direct_kind "Object"); structure_of_object structure_of_type context methods | { ptyp_desc = Ptyp_alias (ty, name); _ } -> let var = name_free_variable context name in var.bound <- true; let structure, desc = structure_of_type context ty in Ppxlib.Ast_helper.Typ.alias structure var.name, Ppxlib.Ast_helper.Exp.let_ Recursive [Ppxlib.Ast_helper.Vb.mk (Metapp.Pat.var var.name) desc] (Metapp.Exp.var var.name) | { ptyp_desc = Ptyp_poly (vars, ty); _ } -> let context = { context with vars = context.vars |> StringIndexer.union (StringIndexer.of_list (vars |> List.map (fun var -> Some (Metapp.Typ.poly_name var))))} in structure_of_type context ty | _ -> Location.raise_errorf ~loc:!Ppxlib.Ast_helper.default_loc "Unsupported type" in match Metapp.Attr.chop "opaque" ty.ptyp_attributes with | Some (_, attributes) -> let ty = { ty with ptyp_attributes = attributes } in let ty = subst_free_variables (subst_type_vars context.vars.map) ty in context.constraints |> Metapp.mutate (Constraints.add_direct_kind "Opaque"); let eq_index = !(context.eqs_counter) in context.eqs_counter := succ eq_index; context.rev_eqs := ty :: !(context.rev_eqs); let structure = [%type: [`Opaque of [%t peano_type_of_int eq_index]]] in let desc = [%expr Refl.Opaque [%e ReflValueExp.selection_of_int (succ eq_index)]] in transform_attr context structure desc ty | _ -> match Metapp.Attr.chop "mapopaque" ty.ptyp_attributes with | None -> let structure, desc = transform ty in transform_attr context structure desc ty | Some (_, attributes) -> context.constraints |> Metapp.mutate (Constraints.add_direct_kind "MapOpaque"); let kinds = fst !(context.constraints) in let ty = { ty with ptyp_attributes = attributes } in let structure, desc = transform ty in let structure, desc = transform_attr context structure desc ty in context.constraints := (kinds, snd !(context.constraints)); let variable_count = StringIndexer.count context.vars in let variables = snd !(context.constraints) in let direct_type = make_variables variable_count variables Direct [%type: unit] in [%type: [`MapOpaque of [%t structure] * [%t direct_type]]], [%expr Refl.MapOpaque { desc = [%e desc] }] let fold_free_variables (f : Location.t -> string option -> 'acc -> 'acc) (ty : Ppxlib.core_type) (acc : 'acc) : 'acc = let fold = object inherit ['acc] Ppxlib.Ast_traverse.fold as super method! core_type ty acc = match var_of_core_type_opt ty with | None -> super#core_type ty acc | Some var -> f ty.ptyp_loc var acc end in fold#core_type ty acc let fold_map_free_variables (f : Location.t -> string option -> 'acc -> Ppxlib.core_type * 'acc) (ty : Ppxlib.core_type) (acc : 'acc) : Ppxlib.core_type * 'acc = let fold_map = object inherit ['acc] Ppxlib.Ast_traverse.fold_map as super method! core_type ty acc = match var_of_core_type_opt ty with | None -> super#core_type ty acc | Some var -> f ty.ptyp_loc var acc end in fold_map#core_type ty acc let extract_gadt_equalities context (constructor : Ppxlib.constructor_declaration) = match constructor.pcd_res with | None -> [], context | Some ty -> let args = match ty with | { ptyp_desc = Ptyp_constr ({ txt = Lident name; _ }, args); _ } when Some name = context.name -> args | _ -> Location.raise_errorf ~loc:!Ppxlib.Ast_helper.default_loc "Type constructor '%s' expected" (Option.get context.name) in let arg_count = List.length args in let arity = StringIndexer.count context.vars in if arg_count <> arity then Location.raise_errorf ~loc:!Ppxlib.Ast_helper.default_loc "Type constructor '%s' has %d parameters but %d arguments given" (Option.get context.name) arity arg_count; let add_eq (eqs, vars) arg = match var_of_core_type_opt arg with | Some None -> let (_, vars) = StringIndexer.fresh vars in (eqs, vars) | Some (Some var) when not (StringIndexer.mem var vars) -> let (_, vars) = StringIndexer.force_add var vars in (eqs, vars) | _ -> let (index, vars) = StringIndexer.fresh vars in ((index, arg) :: eqs, vars) in let eqs, vars = List.fold_left add_eq ([], StringIndexer.empty) args in let eqs = eqs |> List.map begin fun (index, ty) -> let a = Ppxlib.Ast_helper.Typ.var (type_arg index) in let b = subst_free_variables (subst_type_vars vars.map) ty in [%type: ([%t a], [%t b]) Refl.eq] end in if eqs <> [] then context.constraints |> Metapp.mutate (Constraints.add_direct_kind "GADT"); eqs, { context with vars } let args_of_constructor (constructor : Ppxlib.constructor_declaration) : Ppxlib.core_type list = match constructor.pcd_args with | Pcstr_tuple items -> items | Pcstr_record labels -> List.map (fun (label : Ppxlib.label_declaration) -> label.pld_type) labels let variables_type name arity sign = type_sequence_of_list (List.init arity (fun i -> type_constr_of_string (sign name i) ~args:[[%type: [`Present]]; [%type: [`Absent]]])) type variables_structure = { arity_types : Ppxlib.core_type; count_length : Metapp.value; count_append : Metapp.value; variables : Ppxlib.expression; positives : Ppxlib.core_type; negatives : Ppxlib.core_type; directs : Ppxlib.core_type; positive : Ppxlib.core_type; negative : Ppxlib.core_type; direct : Ppxlib.core_type; } let make_variables_structure context variable_count variables = let presences = make_presences variable_count variables in let count_length = ReflValueVal.length_of_int variable_count in let count_append = ReflValueVal.append_of_int variable_count in let initial_arity = StringIndexer.count context.vars in let arity_types = make_arity_types initial_arity in { arity_types; count_length; count_append; variables = [%expr { presences = [%e presences]; positive_count = [%e count_length.exp]; positive = [%e count_append.exp]; negative_count = [%e count_length.exp]; negative = [%e count_append.exp]; direct_count = [%e count_length.exp]; direct = [%e count_append.exp]; }]; positives = make_variables variable_count variables Right [%type: unit]; negatives = make_variables variable_count variables Left [%type: unit]; directs = make_variables variable_count variables Direct [%type: unit]; positive = make_variables variable_count variables Right (variables_type (Option.get context.name) initial_arity Constraints.Variables.positive_name); negative = make_variables variable_count variables Left (variables_type (Option.get context.name) initial_arity Constraints.Variables.negative_name); direct = make_variables variable_count variables Direct (variables_type (Option.get context.name) initial_arity Constraints.Variables.direct_name); } let is_singleton list = match list with | [_] -> true | _ -> false let empty_type_annotation = Ppxlib.Asttypes.NoVariance, Ppxlib.Asttypes.NoInjectivity let structure_of_label_declaration context prefix single_label (label : Ppxlib.label_declaration) item = match label.pld_type with | { ptyp_desc = Ptyp_poly (vars, field_type); _ } -> context.constraints |> Metapp.mutate (Constraints.add_direct_kind "Poly"); let free_variables = StringIndexer.of_list (List.map (fun v -> Some (Metapp.Typ.poly_name v)) vars) in let vars = context.vars |> StringIndexer.union free_variables in let context' = { context with vars; constraints = ref Constraints.bottom } in let field_structure, field_desc = structure_of_type context' field_type in let variables = snd !(context'.constraints) in context.constraints := Constraints.union !(context.constraints) !(context'.constraints); let count = StringIndexer.count free_variables in let count_type = peano_type_of_int count in let { arity_types; count_length; count_append; variables; positives; negatives; directs; positive; negative; direct } = make_variables_structure context count variables in let structure = [%type: [`Poly of [%t field_structure] * [%t count_type] * [%t positives] * [%t negatives] * [%t directs]]] in let type_args = List.map type_constr_of_string context.type_args in let kinds = type_constr_of_string context.type_names.kinds in let rec_group = type_constr_of_string context.type_names.rec_group in let gadt = type_constr_of_string context.type_names.gadt ~args:type_args in let internal_name, internal_label, type_declarations = if single_label then Option.get context.name, label.pld_name, [] else let internal_name = Printf.sprintf "%s__%s" prefix label.pld_name.txt in let internal_name_str = Metapp.mkloc internal_name in let type_declaration = Ppxlib.Ast_helper.Type.mk internal_name_str ~params:(List.map (fun x -> x, empty_type_annotation) context.original_vars) ~kind:(Ptype_record [Ppxlib.Ast_helper.Type.field internal_name_str label.pld_type]) in internal_name, internal_name_str, [type_declaration] in let destructed = ReflValueVal.record [Lident internal_label.txt, item] in let internal_type = type_constr_of_string internal_name ~args:type_args in let desc = [%expr let substructure = [%e field_desc] in let forall_destruct : type forall subarity . ([%t count_type], forall) Refl.length -> (forall, [%t arity_types], subarity) Refl.append -> ([%t internal_type], [%t field_structure], subarity, [%t rec_group], [> [%t kinds]], [%t positive], [%t negative], [%t direct], [%t gadt]) Refl.forall_destruct_result = fun [%p count_length.pat] [%p count_append.pat] -> Refl.ForallDestruct { desc = substructure; destruct = fun [%p Ppxlib.Ast_helper.Pat.record [Metapp.lid_of_str internal_label, Ppxlib.Ast_helper.Pat.var internal_label] Closed] -> [%e Ppxlib.Ast_helper.Exp.ident (Metapp.lid_of_str internal_label)]; } in Refl.Poly { label = [%e expr_of_string label.pld_name.txt]; variables = [%e variables]; destruct = { forall_destruct }; construct = fun { forall_construct } -> [%e Ppxlib.Ast_helper.Exp.record [Metapp.lid_of_str internal_label, [%expr fun x -> forall_construct [%e count_length.exp] [%e count_append.exp] substructure x]] None]}] in (structure, desc), ((destructed, internal_type), type_declarations) | field_type -> let field_structure, field_desc = structure_of_type context field_type in let structure = [%type: [`Mono of [%t field_structure]]] in let desc = [%expr Refl.Mono { label = [%e expr_of_string label.pld_name.txt]; desc = [%e field_desc]; attributes = [%e make_attributes context field_type label.pld_attributes]; }] in (structure, desc), ((item, field_type), []) let make_constructor_kind context (constructor : Ppxlib.constructor_declaration) (args : Ppxlib.core_type list) : Metapp.value list * Ppxlib.core_type * Ppxlib.core_type list * Ppxlib.expression * Metapp.value list * Ppxlib.type_declaration list = let items = List.mapi (fun i _ -> Metapp.Value.var (item i)) args in match constructor.pcd_args with | Pcstr_tuple _ -> let structures = List.map (structure_of_type context) args in let types, descs = List.split structures in let arg_types = args |> List.map (subst_free_variables (subst_type_vars context.vars.map)) in items, [%type: [`Tuple of [%t type_sequence_of_list types]]], arg_types, [%expr Refl.CTuple [%e ReflValueExp.tuple_of_list descs]], items, [] | Pcstr_record labels -> let single_label = is_singleton labels in let prefix = Printf.sprintf "%s__%s" (Option.get context.name) constructor.pcd_name.txt in let structures = List.map2 (structure_of_label_declaration context prefix single_label) labels items in let structures, destructs = List.split structures in let types, descs = List.split structures in let destructs, type_declarations = List.split destructs in let destructs, arg_types = List.split destructs in let type_declarations = List.flatten type_declarations in let arg_types = arg_types |> List.map (subst_free_variables (subst_type_vars context.vars.map)) in items, [%type: [`Record of [%t type_sequence_of_list types]]], arg_types, [%expr Refl.CRecord [%e ReflValueExp.record_of_list descs]], destructs, type_declarations let make_constructor_args (constructor : Ppxlib.constructor_declaration) items = match items with | [] -> None | _ :: _ -> let args = match constructor.pcd_args with | Pcstr_tuple _ -> Metapp.Value.tuple items | Pcstr_record labels -> let fields = List.map2 begin fun (label : Ppxlib.label_declaration) x -> Longident.Lident label.pld_name.txt, x end labels items in Metapp.Value.record fields in Some args let tuple_of_types types = match types with | [] -> [%type: unit] | [ty] -> ty | _ -> Ppxlib.Ast_helper.Typ.tuple types let rec fold_map_aux f list acc_list accu = match list with | [] -> (List.rev acc_list, accu) | head :: tail -> let (value, accu) = f head accu in fold_map_aux f tail (value :: acc_list) accu let fold_map f list accu = fold_map_aux f list [] accu let structure_of_exists single_constructor ctor_count i context (constructor : Ppxlib.constructor_declaration) (result : Ppxlib.core_type) : (((Ppxlib.core_type * Ppxlib.expression) * Ppxlib.core_type) * (Ppxlib.case * Ppxlib.case)) * (Ppxlib.type_declaration list * Ppxlib.type_extension list) = let result_args = match result with | { ptyp_desc = Ptyp_constr (_, args); _ } -> args | _ -> assert false in let add_arg (parameters, vars) arg = match var_of_core_type_opt arg with | Some None -> let (_, vars) = StringIndexer.fresh vars in (parameters, vars) | Some (Some var) -> begin match StringIndexer.find_opt var vars with | None -> let (_, vars) = StringIndexer.force_add var vars in (parameters, vars) | Some index' -> let (index, vars) = StringIndexer.fresh vars in ((index, arg) :: (index', arg) :: parameters, vars) end | _ -> let (index, vars) = StringIndexer.fresh vars in ((index, arg) :: parameters, vars) in let (parameters, vars) = List.fold_left add_arg ([], StringIndexer.empty) result_args in let check_free_variable _loc var indexer = let (var, indexer) = match var with | None -> let var = Printf.sprintf "free_var__%d" (StringIndexer.count indexer) in let (_, indexer) = StringIndexer.force_add var indexer in (var, indexer) | Some var -> if StringIndexer.mem var vars then (var, indexer) else let (_, indexer) = StringIndexer.add var indexer in (var, indexer) in (Ppxlib.Ast_helper.Typ.var var, indexer) in let args = args_of_constructor constructor in let (parameters, renamed_args), free_variables = let (parameters, indexer) = fold_map begin fun (index, arg) indexer -> let (arg, indexer) = fold_map_free_variables check_free_variable arg indexer in ((index, arg), indexer) end parameters StringIndexer.empty in let (renamed_args, indexer) = fold_map (fold_map_free_variables check_free_variable) args indexer in ((parameters, renamed_args), indexer) in let vars = vars |> StringIndexer.union free_variables in let branch_name = Printf.sprintf "%s_%s" (Option.get context.name) constructor.pcd_name.txt in let context' = { context with vars; constraints = ref Constraints.bottom; gadt_args = result_args; } in let items, structure, _types, kind, destructs, type_declarations = make_constructor_kind context' constructor renamed_args in let free_variable_count = StringIndexer.count free_variables in context.constraints := Constraints.union !(context.constraints) (Constraints.offset_variables free_variable_count !(context'.constraints)); let eq_index = !(context.eqs_counter) in context.eqs_counter := eq_index + 1; let constructor_args = make_constructor_args constructor items in let constructor_with_args = Metapp.Value.force_construct (Metapp.mkloc (Longident.Lident constructor.pcd_name.txt)) constructor_args in let count = peano_type_of_int free_variable_count in let composed, value_type_name, type_declarations = if single_constructor then constructor_with_args, Option.get context.name, type_declarations else let branch_constructor = String.capitalize_ascii branch_name in let res = type_constr_of_string branch_name ~args:result_args in let kind = Ppxlib.Ptype_variant [Ppxlib.Ast_helper.Type.constructor (Metapp.mkloc branch_constructor) ~args:(Pcstr_tuple args) ~res] in Metapp.Value.construct (Lident branch_constructor) items, branch_name, Ppxlib.Ast_helper.Type.mk (Metapp.mkloc branch_name) ~kind ~params:(List.map (fun x -> x, empty_type_annotation) context.type_vars) :: type_declarations in let type_args = List.map type_constr_of_string context.type_args in let value_type = type_constr_of_string value_type_name ~args:type_args in let parameter_types = parameters |> List.map begin fun (index, _) -> type_constr_of_string (type_arg index) end in let parameter_type_tuple = tuple_of_types parameter_types in let decomposed = ReflValueVal.sequence_of_list destructs in let parameter_tuple = tuple_of_types (parameters |> List.map (fun (_index, parameter) -> subst_free_variables (subst_type_vars vars.map) parameter)) in let parameter_sequence = type_sequence_of_list (List.init free_variable_count (fun i -> Ppxlib.Ast_helper.Typ.var (type_arg i))) in let type_extensions, constraints_pattern = if parameters = [] then [], ReflValueVal.construct (refl_dot "NoConstraints") [] else let constraints = Printf.sprintf "Constraints_%s" branch_name in let constraints_pattern = ReflValueVal.construct (Lident constraints) [] in [(Ppxlib.Ast_helper.Te.mk (Metapp.mkloc (refl_dot "gadt_constraints")) ~params:[[%type: _], empty_type_annotation; [%type: _], empty_type_annotation] [Ppxlib.Ast_helper.Te.decl (Metapp.mkloc constraints) ~res:[%type: ([%t parameter_tuple], [%t parameter_sequence]) Refl.gadt_constraints]])], constraints_pattern in let parameter_type_vars = parameters |> List.map begin fun (index, _) -> Ppxlib.Ast_helper.Typ.var (type_arg index) end in let parameter_type_vars_tuple = tuple_of_types parameter_type_vars in context.rev_eqs := parameter_type_vars_tuple :: !(context.rev_eqs); let kinds = type_constr_of_string context.type_names.kinds in let rec_group = type_constr_of_string context.type_names.rec_group in let gadt = type_constr_of_string context.type_names.gadt ~args:type_args in let variables = snd !(context'.constraints) in context.exists := Some begin let previous = match !(context.exists) with | Some previous -> previous | None -> Absent in iterate_i previous (fun i acc -> Constraints.Variables.make_transfer variables Direct i |> make_transfer Constraints.Transfer.Present acc compose_transfer) free_variable_count end; let presence_type = iterate_i [%type: [`Absent]] (fun i acc -> Constraints.Variables.make_transfer variables Direct i |> make_transfer [%type: [`Present]] acc compose_type) free_variable_count in let presence_expr = iterate_i [%expr Refl.Absent] (fun i acc -> Constraints.Variables.make_transfer variables Direct i |> make_transfer [%expr Refl.Present] acc compose_expr) free_variable_count in let { arity_types; count_length; count_append; variables; positives; negatives; directs; positive; negative; direct } = make_variables_structure context free_variable_count variables in let ty = [%type: [`Exists of [%t peano_type_of_int eq_index] * [%t peano_type_of_int free_variable_count] * [%t structure] * [%t presence_type] * [%t positives] * [%t negatives] * [%t directs]]] in let match_constraints expr = if parameters = [] then expr else [%expr match _constraints with | [%p constraints_pattern.pat] -> [%e expr] | _ -> assert false] in let desc = [%expr let kind = [%e kind] in let construct : type exists subarity . ([%t count], exists) Refl.length -> ([%t parameter_type_tuple], exists) Refl.gadt_constraints -> (exists, [%t arity_types], subarity) Refl.append -> ([%t value_type], [%t structure], subarity, [%t rec_group], [> [%t kinds]], [%t positive], [%t negative], [%t direct], [%t gadt]) Refl.exists_construct = fun exists_count _constraints exists -> let [%p count_length.pat] = exists_count in let [%p count_append.pat] = exists in [%e match_constraints [%expr Refl.ExistsConstruct { kind; construct = [%e Ppxlib.Ast_helper.Exp.function_ [Ppxlib.Ast_helper.Exp.case decomposed.pat composed.exp]];}]] in let destruct = [%e List.fold_right (fun txt e -> Metapp.Exp.newtype (Metapp.mkloc txt) e) context.type_args [%expr (fun ([%p composed.pat] : [%t value_type]) : ([%t count], [%t parameter_type_tuple], [%t value_type], [%t structure], [%t arity_types], [%t rec_group], [> [%t kinds]], [%t positive], [%t negative], [%t direct], [%t gadt]) Refl.exists_destruct -> Refl.ExistsDestruct { exists_count = [%e count_length.exp]; exists = [%e count_append.exp]; constraints = [%e constraints_pattern.exp]; kind; values = [%e decomposed.exp] })]] in Refl.Exists { name = [%e expr_of_string constructor.pcd_name.txt]; construct; destruct; selection = [%e ReflValueExp.selection_of_int (succ eq_index)]; presence = [%e presence_expr]; variables = [%e variables]; }] in context.constraints |> Metapp.mutate (Constraints.add_direct_kind "Exists"); let choice = ReflValueVal.binary_choice_of_int i ctor_count composed in let signature = (type_declarations, type_extensions) in (((ty, desc), value_type), (Ppxlib.Ast_helper.Exp.case choice.pat constructor_with_args.exp, Ppxlib.Ast_helper.Exp.case constructor_with_args.pat choice.exp)), signature let structure_of_constructor single_constructor context count i (constructor : Ppxlib.constructor_declaration) : (((Ppxlib.core_type * Ppxlib.expression) * Ppxlib.core_type) * (Ppxlib.case * Ppxlib.case)) * (Ppxlib.type_declaration list * Ppxlib.type_extension list) = try let eqs, context = extract_gadt_equalities context constructor in let args = args_of_constructor constructor in let items, ty, types, kind, destructs, type_declarations = make_constructor_kind context constructor args in let base_eq_index = !(context.eqs_counter) in let eq_count = List.length eqs in context.eqs_counter := base_eq_index + eq_count; context.rev_eqs := List.rev_append eqs !(context.rev_eqs); let gadt_indexes = List.init eq_count (fun i -> i + base_eq_index) in let eq_refs = ReflValueExp.equalities_of_list (List.map ReflValueExp.selection_of_int (List.map succ gadt_indexes)) in let gadt = type_sequence_of_list (List.map peano_type_of_int gadt_indexes) in let ty = [%type: [`Constructor of [%t ty] * [%t gadt]]] in let attributes = match constructor.pcd_args with | Pcstr_record labels when List.exists (fun (label : Ppxlib.label_declaration) -> match label.pld_type with | { ptyp_desc = Ptyp_poly _; _ } -> true | _ -> false ) labels -> [%expr Refl.Tools.attributes_empty] | _ -> make_attributes context (type_sequence_of_list args) constructor.pcd_attributes in let desc = [%expr Refl.Constructor { name = [%e expr_of_string constructor.pcd_name.txt]; kind = [%e kind]; eqs = [%e eq_refs]; attributes = [%e attributes]; }] in let value_eqs = List.init eq_count (fun _ -> Metapp.Value.construct (refl_dot "Eq") []) in let sequence = Metapp.Value.tuple [ReflValueVal.sequence_of_list destructs; ReflValueVal.sequence_of_list value_eqs] in let choice = ReflValueVal.binary_choice_of_int i count sequence in let args = make_constructor_args constructor items in let construct = Metapp.Value.force_construct (Metapp.mkloc (Longident.Lident constructor.pcd_name.txt)) args in let choice_ty = [%type: [%t type_sequence_of_list types] * [%t type_sequence_of_list eqs]] in (((ty, desc), choice_ty), (Ppxlib.Ast_helper.Exp.case choice.pat construct.exp, Ppxlib.Ast_helper.Exp.case construct.pat choice.exp)), (type_declarations, []) with (Exists (loc, name)) -> match constructor.pcd_res with | Some ty -> structure_of_exists single_constructor count i context constructor ty | None -> match name with | None -> Location.raise_errorf ~loc "Free variable types are not allowed outside GADT constructors" | Some name -> Location.raise_errorf ~loc "The type variable '%s is unbound in this type declaration." name let temp_binding_count = ref 0 let structure_of_constr context (constructors : Ppxlib.constructor_declaration list) : (Ppxlib.core_type * Ppxlib.expression) * (Ppxlib.type_declaration list * Ppxlib.type_extension list * Ppxlib.structure) = let single_constructor = is_singleton constructors in let count = List.length constructors in let cases = List.mapi (structure_of_constructor single_constructor context count) constructors in let cases, signature = List.split cases in let cases, accessors = List.split cases in let structures, choices = List.split cases in let types, descs = List.split structures in let construct, destruct = List.split accessors in let construct = construct @ irrefutable () in let choice_ty = [%type: [%t binary_type_of_list choices] Refl.binary_choice] in let make_fun_type left right cases = let left = subst_free_variables instantiate left in let right = subst_free_variables instantiate right in let arrow_ty = [%type: [%t left] -> [%t right]] in [%expr ([%e Ppxlib.Ast_helper.Exp.function_ cases] : [%t arrow_ty])] in let bindings, descs = if context.type_vars = [] then List.fold_left_map (fun bindings ((cstr : Ppxlib.constructor_declaration), desc) -> if cstr.pcd_args = Pcstr_tuple [] && cstr.pcd_res = None then let temp_binding_index = !temp_binding_count in temp_binding_count := succ temp_binding_index; let construct_name = Printf.sprintf "constructor%d" temp_binding_index in [%stri let [%p Metapp.Pat.var construct_name] = [%e desc] (*assert false let module M = struct let v = [%e desc] end in let module T = struct module type S = module type of M end in let module (N : T.S) = struct let v = assert false end in let (m : (module T.S)) = if Random.int 2 < 1 then (module M) else (module N) in let module M' = (val m) in M'.v*)] :: bindings, Metapp.Exp.var construct_name else bindings, desc) [] (List.combine constructors descs) else [], descs in context.constraints |> Metapp.mutate (Constraints.add_direct_kind "Constr"); let expr = [%expr Refl.Constr { constructors = [%e ReflValueExp.binary_choices_of_list descs]; construct = [%e make_fun_type choice_ty context.type_expr construct]; destruct = [%e make_fun_type context.type_expr choice_ty destruct]; }] in let type_declarations, type_extensions = List.split signature in let type_declarations = List.flatten type_declarations in let type_extensions = List.flatten type_extensions in ([%type: [`Constr of [%t binary_type_of_list types]]], expr), (type_declarations, type_extensions, bindings) let structure_of_record context (labels : Ppxlib.label_declaration list) : (Ppxlib.core_type * Ppxlib.expression) * (Ppxlib.type_declaration list * Ppxlib.type_extension list * 'a list) = let items = List.init (List.length labels) (fun i -> ReflValueVal.var (item i)) in context.constraints |> Metapp.mutate (Constraints.add_direct_kind "Record"); let single_label = is_singleton labels in let structures = List.map2 (structure_of_label_declaration context (Option.get context.name) single_label) labels items in let structures, destructs = List.split structures in let types, descs = List.split structures in let destructs, type_declarations = List.split destructs in let type_declarations = List.flatten type_declarations in let destructs, _ = List.split destructs in let sequence = ReflValueVal.sequence_of_list destructs in let record = ReflValueVal.record (List.map2 (fun (label : Ppxlib.label_declaration) item -> (Longident.Lident label.pld_name.txt, item)) labels items) in let expr = [%expr Refl.Record { structure = [%e ReflValueExp.record_of_list descs]; construct = [%e Ppxlib.Ast_helper.Exp.function_ [Ppxlib.Ast_helper.Exp.case sequence.pat record.exp]]; destruct = [%e Ppxlib.Ast_helper.Exp.function_ [Ppxlib.Ast_helper.Exp.case record.pat sequence.exp]]; }] in ([%type: [`Record of [%t type_sequence_of_list types]]], expr), (type_declarations, [], []) let structure_of_type_declaration context (td : Ppxlib.type_declaration) : (Ppxlib.core_type * Ppxlib.expression) * (Ppxlib.type_declaration list * Ppxlib.type_extension list * Ppxlib.structure_item list) = Ppxlib.Ast_helper.with_default_loc td.ptype_loc @@ fun () -> let (structure, unwrapped_desc), sides = match td.ptype_kind with | Ptype_variant constructors -> structure_of_constr context constructors | Ptype_record labels -> structure_of_record context labels | Ptype_abstract -> begin match td.ptype_manifest with | None -> Location.raise_errorf ~loc:!Ppxlib.Ast_helper.default_loc "refl cannot be derived for fully abstract types" | Some ty -> (structure_of_type context ty), ([], [], []) end | Ptype_open -> Location.raise_errorf ~loc:!Ppxlib.Ast_helper.default_loc "refl cannot be derived for open types" in let structure = [%type: [`Name of [%t structure]]] in let unwrapped_desc = [%expr Refl.Name { refl = [%e Metapp.Exp.construct (Lident (type_refl_ctor td.ptype_name.txt)) []]; name = [%e Metapp.Exp.of_string td.ptype_name.txt]; desc = [%e unwrapped_desc]; }] in (structure, unwrapped_desc), sides type type_structure = { type_info : type_info; context : context; arity_type : Ppxlib.core_type; structure : Ppxlib.core_type; unwrapped_desc : Ppxlib.expression; constraints : Constraints.t; rec_type_refs : IntSet.t; } let subgadt_mapper context type_extensions = let type_extension_count = ref 0 in let mapper = object inherit Ppxlib.Ast_traverse.map as super method! core_type ty = match super#core_type ty with | [%type: [`SubGADT of [%t? ty']]] -> if context.name = None then ty' else ty | ty -> ty method! expression e = match super#expression e with | [%expr Refl.SubGADT ([%e? desc] : [%t? base] -> [%t? sub])] -> begin match context.name with | None -> desc | Some name -> let index = !type_extension_count in type_extension_count := succ index; let constructor_name = Printf.sprintf "%s__sub_%d" (String.capitalize_ascii name) index in let constructor = Metapp.Value.construct (Lident constructor_name) [] in type_extensions := Ppxlib.Ast_helper.Te.mk (Metapp.mkloc (refl_dot "sub_gadt_ext")) ~params:[[%type: _], empty_type_annotation; [%type: _], empty_type_annotation] [Ppxlib.Ast_helper.Te.decl (Metapp.mkloc constructor_name) ~res:[%type: ([%t base], [%t sub]) Refl.sub_gadt_ext]] :: !type_extensions; [%expr let sub_gadt_functional : type gadt sub_gadt0 sub_gadt1 . (gadt, sub_gadt0) Refl.sub_gadt_ext -> (gadt, sub_gadt1) Refl.sub_gadt_ext -> (sub_gadt0, sub_gadt1) Refl.eq = fun sub sub' -> match sub, sub' with | [%p constructor.pat], [%p constructor.pat] -> Eq | _ -> assert false in Refl.SubGADT { desc = [%e desc]; sub_gadt = { Refl.sub_gadt_ext = [%e constructor.exp]; sub_gadt_functional }}] end | e -> e end in mapper let type_structure_of_type_info rec_types type_info = let { arity; td; _ } = type_info in Ppxlib.Ast_helper.with_default_loc td.ptype_loc @@ fun () -> let context = context_of_type_declaration td rec_types in let (structure, unwrapped_desc), (type_declarations, type_extensions, value_bindings) = structure_of_type_declaration context td in let arity_type = peano_type_of_int arity in let type_extensions = ref type_extensions in let mapper = subgadt_mapper context type_extensions in let unwrapped_desc = mapper#expression unwrapped_desc in let structure = mapper#core_type structure in let declarations = [ Ppxlib.Ast_helper.Type.mk (Metapp.mkloc context.type_names.arity) ~manifest:arity_type; Ppxlib.Ast_helper.Type.mk (Metapp.mkloc context.type_names.structure) ~manifest:structure; ] in let arity_type = type_constr_of_string context.type_names.arity in let structure = type_constr_of_string context.type_names.structure in let constraints = !(context.constraints) in let constraints = match !(context.exists) with | None -> constraints | Some exists -> Constraints.add_exists_kind exists constraints in let type_extensions = !type_extensions in let type_extensions = Ppxlib.Ast_helper.Te.mk (Metapp.mkloc (refl_dot "refl")) ~params:[[%type: _], empty_type_annotation] [Ppxlib.Ast_helper.Te.decl (Metapp.mkloc context.type_names.refl_ctor) ~res:[%type: [%t context.type_expr] Refl.refl]] :: type_extensions in ((declarations @ type_declarations), (type_extensions, value_bindings)), { type_info; context; arity_type; structure; unwrapped_desc; constraints; rec_type_refs = !(context.rec_type_refs) } let types_of_transfers transfers = let present = [%type: 'present] in let unknown = [%type: 'unknown] in let params = [present, empty_type_annotation; unknown, empty_type_annotation] in transfers |> List.map begin fun (name, transfer) -> let manifest = transfer |> make_transfer present unknown compose_type in Ppxlib.Ast_helper.Type.mk ~params (Metapp.mkloc name) ~manifest end let funs_of_transfers transfers = transfers |> List.map begin fun (name, transfer) -> let str = Metapp.mkloc name in Ppxlib.Ast_helper.Val.mk str [%type: 'present -> 'unknown -> [%t Ppxlib.Ast_helper.Typ.constr (Metapp.lid_of_str str) [[%type: 'present]; [%type: 'unknown]]]], Ppxlib.Ast_helper.Vb.mk (Ppxlib.Ast_helper.Pat.var str) [%expr fun refl__present refl__absent -> [%e transfer |> make_transfer [%expr refl__present] [%expr refl__absent] compose_expr]] ~attrs:[Metapp.Attr.mk (Metapp.mkloc "ocaml.warning") (PStr [%str "-27-32"])] end let module_of_type_structure rec_group constraints i type_structure : ((Ppxlib.type_declaration list * Ppxlib.type_declaration list) * (Ppxlib.value_description * Ppxlib.value_binding) list) * (Ppxlib.signature_item * Ppxlib.value_binding) = let { type_info = { td; desc_name; arity; _ }; structure; unwrapped_desc; context; _ } = type_structure in Ppxlib.Ast_helper.with_default_loc td.ptype_loc @@ fun () -> let types = type_sequence_of_list context.type_vars in let rec_group_type = type_constr_of_string context.type_names.rec_group in let rec_group_decl = let (declared, manifest) = !rec_group in if not declared then rec_group := (true, rec_group_type); Ppxlib.Ast_helper.Type.mk (Metapp.mkloc context.type_names.rec_group) ~manifest in let constraints = constraints i in let kinds = type_constr_of_string context.type_names.kinds in let kinds_decl = let manifest = Constraints.Kinds.to_type (fst constraints) in Ppxlib.Ast_helper.Type.mk (Metapp.mkloc context.type_names.kinds) ~manifest in let variable_transfers = Constraints.Variables.make_transfers td.ptype_name.txt arity (snd constraints) in let transfers_types = types_of_transfers variable_transfers in let transfers_funs = funs_of_transfers variable_transfers in let variable_types name _absent = variable_types (Lident td.ptype_name.txt) arity name (fun _i -> [%type: [`Absent]]) in let gadt = type_constr_of_string context.type_names.gadt ~args:context.type_vars in let gadt_decl = let params = context.type_vars |> List.map (fun ty -> (ty, empty_type_annotation)) in let manifest = type_sequence_of_list (List.rev !(context.rev_eqs)) in Ppxlib.Ast_helper.Type.mk (Metapp.mkloc context.type_names.gadt) ~manifest ~params in let desc_type = [%type: ([%t context.type_expr], [%t structure], [%t types], [%t rec_group_type], [> [%t kinds]], [%t variable_types Constraints.Variables.positive_name (fun i -> "absent_positive" ^ string_of_int i)], [%t variable_types Constraints.Variables.negative_name (fun i -> "absent_negative" ^ string_of_int i)], [%t variable_types Constraints.Variables.direct_name (fun i -> "absent_direct" ^ string_of_int i)], [%t gadt]) Refl.desc] in let desc_sig = Ppxlib.Ast_helper.Sig.value (Ppxlib.Ast_helper.Val.mk (Metapp.mkloc desc_name) desc_type) in let type_loc = List.map Metapp.mkloc context.type_args in let desc = List.fold_right Metapp.Exp.newtype type_loc unwrapped_desc in let desc_def = Ppxlib.Ast_helper.Vb.mk [%pat? ([%p Metapp.Pat.var desc_name] : [%t Metapp.Typ.poly type_loc desc_type])] desc ~attrs:[Metapp.Attr.mk (Metapp.mkloc "ocaml.warning") (PStr [%str "-32-34"])] in ((transfers_types, [rec_group_decl; kinds_decl; gadt_decl]), transfers_funs), (desc_sig, desc_def) let rec_types_of_type_info (rec_flag : Ppxlib.Asttypes.rec_flag) type_infos = match rec_flag with | Nonrecursive -> None | Recursive -> let count = List.length type_infos in Some (make_index (fun { td; _ } -> Some td.ptype_name.txt) type_infos count) type modules = { desc_sig : Ppxlib.signature; desc_def : Ppxlib.structure; } let modules_of_type_declarations (rec_flag, tds) = let recursive = ref Ppxlib.Asttypes.Nonrecursive in let type_infos = tds |> List.map (type_info_of_type_declaration recursive) in let rec_types = rec_types_of_type_info rec_flag type_infos in let type_structures = List.map (type_structure_of_type_info rec_types) type_infos in let signature, type_structures = List.split type_structures in let indexed_type_structures = Array.of_list type_structures in let module F = Fix.Fix.ForType (Int) (Constraints) in let constraints = F.lfp begin fun i constraints -> let type_structure = indexed_type_structures.(i) in let union j cstr = Constraints.union (constraints j) cstr in IntSet.fold union type_structure.rec_type_refs (Constraints.union (constraints i) type_structure.constraints) end in let rec_group_type = binary_type_of_list (type_structures |> List.map begin fun (type_structure : type_structure) : Ppxlib.core_type -> [%type: [%t type_structure.arity_type] * [%t type_structure.structure]] end) in (* let rec_group_expr = rec_group_of_list (type_structures |> List.map begin fun (type_structure : type_structure) -> exp [%expr [%e expression_of_value (length_of_int type_structure.type_info.arity)], [%e Ppxlib.Ast_helper.Exp.ident { loc; txt = Lident (type_structure.type_info.desc_name)}]] end) in *) let type_declarations, type_extensions = List.split signature in let type_declarations = List.flatten type_declarations in let type_extensions, value_bindings = List.split type_extensions in let type_extensions = List.flatten type_extensions in let value_bindings = List.flatten value_bindings in let desc = List.mapi (module_of_type_structure (ref (false, rec_group_type)) constraints) type_structures in let decls, desc = List.split desc in let types, vals = List.split decls in let transfers, types = List.split types in let type_declarations = List.flatten transfers @ type_declarations @ List.flatten types in let desc_sig, desc_bindings = List.split desc in (* let rec_group_name = (List.hd type_structures).context.type_names.rec_group in let desc_sig = Ppxlib.Ast_helper.Sig.value (Ppxlib.Ast_helper.Value.mk { loc; txt = rec_group_name } (Ppxlib.Ast_helper.Typ.constr { loc; txt = (refl_dot "rec_group") } [type_constr_of_string rec_group_name; type_constr_of_string rec_group_name])) :: desc_sig in let desc_bindings = Ppxlib.Ast_helper.Vb.mk (Ppxlib.Ast_helper.Pat.var { loc; txt = rec_group_name }) (expression_of_value rec_group_expr) :: desc_bindings in *) let val_desc, val_bindings = List.split (List.flatten vals) in let val_sig = List.map Ppxlib.Ast_helper.Sig.value val_desc in let desc_def = Ppxlib.Ast_helper.Str.type_ Recursive type_declarations :: List.map Ppxlib.Ast_helper.Str.type_extension type_extensions @ value_bindings @ [Ppxlib.Ast_helper.Str.value !recursive desc_bindings] in let desc_sig = Ppxlib.Ast_helper.Sig.type_ Recursive type_declarations :: List.map Ppxlib.Ast_helper.Sig.type_extension type_extensions @ val_sig @ desc_sig in let desc_def = if val_bindings = [] then desc_def else Ppxlib.Ast_helper.Str.value Nonrecursive val_bindings :: desc_def in { desc_sig; desc_def } let make_str ~loc type_declarations : Ppxlib.structure = Ppxlib.Ast_helper.with_default_loc loc @@ fun () -> let { desc_def; _ } = modules_of_type_declarations type_declarations in let stop_doc = [%str (**/**)] in stop_doc @ desc_def @ stop_doc (* let str_type_decl = Ppxlib.Deriving.Generator.make_noarg make_str *) let make_sig ~loc type_declarations : Ppxlib.signature = let { desc_sig; _ } = modules_of_type_declarations type_declarations in let stop_doc = [%sig: (**/**)] in stop_doc @ desc_sig @ stop_doc (* let sig_type_decl = Ppxlib.Deriving.Generator.make_noarg make_sig *) let enumerate_free_variables (ty : Ppxlib.core_type) : StringSet.t * int = fold_free_variables begin fun _loc var (names, anonymous) -> match var with | None -> names, anonymous + 1 | Some name -> StringSet.add name names, anonymous end ty (StringSet.empty, 0) let extension ty : Ppxlib.expression = let names, anonymous = enumerate_free_variables ty in let arity = StringSet.cardinal names + anonymous in let context = make_context None [] (StringIndexer.of_fresh arity) in let _structure, expr = structure_of_type context ty in let mapper = subgadt_mapper context (ref []) in let expr = mapper#expression expr in let expr = match !(context.free_vars) with | [] -> expr | free_vars -> let bindings = List.rev free_vars |> List.filter (fun var -> not var.bound) |> List.mapi begin fun i (var : free_variable) -> Ppxlib.Ast_helper.Vb.mk (Metapp.Pat.var var.name) [%expr Refl.Variable [%e ReflValueExp.variable_of_int i]] end in Ppxlib.Ast_helper.Exp.let_ Nonrecursive bindings expr in expr let sig_type_decl = Ppxlib.Deriving.Generator.make Ppxlib.Deriving.Args.empty (fun ~loc ~path:_ -> make_sig ~loc) let str_type_decl = Ppxlib.Deriving.Generator.make Ppxlib.Deriving.Args.empty (fun ~loc ~path:_ -> make_str ~loc) let () = Ppxlib.Deriving.add "refl" ~sig_type_decl ~str_type_decl ~extension:(fun ~loc:_ ~path:_ -> extension) |> Ppxlib.Deriving.ignore (* let var_list = ref [] in let var_counter = ref 0 in let fresh_var () = let index = !var_counter in let var_name = Printf.sprintf "free%d" index in var_list := var_name :: !var_list; Ppxlib.Ast_helper.Typ.var var_name in let table = StringHashtbl.create 17 in let f _ var = match var with | None -> fresh_var () | Some name -> try StringHashtbl.find table name with Not_found -> let result = fresh_var () in StringHashtbl.add table name result; result in let target_type = subst_free_variables f ty in let var_list = !var_list in let arity = type_sequence_of_list (List.map Ppxlib.Ast_helper.Typ.var var_list) in let ty = [%type: ( [%t target_type], _, [%t arity], _, _, _, _, _) Refl.desc] in let ty = if var_list = [] then ty else Ppxlib.Ast_helper.Typ.poly (List.map (fun txt -> { loc; txt }) var_list) ty in [%expr let result : [%t ty] = [%e expr] in result] *) (* let deriver = Ppxlib.Deriving.add "refl" ~str_type_decl ~sig_type_decl ~extension *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>