package rdf
OCaml library to manipulate RDF graphs; implements SPARQL
Install
Dune Dependency
Authors
Maintainers
Sources
ocaml-rdf-1.1.0.tar.bz2
md5=fdca8ab06da34d9d76fe273f654ec6a1
sha512=fff3ad6cb5978e43ac3c509cc25a01d16be6e21b04df607e0595ec0e7226ba7b6e4e2ec86bbeae4aa3d6a181fa399c7c00a4b1c788ddc98486f5c8badf8867f7
doc/src/rdf/xml.ml.html
Source file xml.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
(*********************************************************************************) (* OCaml-RDF *) (* *) (* Copyright (C) 2012-2024 Institut National de Recherche en Informatique *) (* et en Automatique. All rights reserved. *) (* *) (* This program is free software; you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License version *) (* 3 as published by the Free Software Foundation. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU General Public License for more details. *) (* *) (* You should have received a copy of the GNU General Public License *) (* along with this program; if not, write to the Free Software *) (* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA *) (* 02111-1307 USA *) (* *) (* Contact: Maxence.Guesdon@inria.fr *) (* *) (*********************************************************************************) (** *) open Graph;; open Term;; (** {2 Using trees for XML docs} Code taken from Xmlm examples. Thanks to Xmlm, namespaces are already handled by the parser :-) *) type tree = E of Xmlm.tag * tree list | D of string let in_tree i = let el tag childs = E (tag, childs) in let data d = D d in try Xmlm.input_doc_tree ~el ~data i with Xmlm.Error ((line, col), error) -> let msg = Printf.sprintf "Line %d, column %d: %s" line col (Xmlm.error_message error) in failwith msg let out_tree o t = let frag = function | E (tag, childs) -> `El (tag, childs) | D d -> `Data d in Xmlm.output_doc_tree frag o t let apply_namespaces = Dot.apply_namespaces;; let output_doc_tree ns ?(decl=true) dest tree = let map (pref, s) = match pref with "" -> apply_namespaces ns s | _ -> (pref, s) in let tree = match tree with D _ -> tree | E ((tag,atts),subs) -> let atts = List.fold_left (fun acc (((pref,s),v) as att) -> if pref = Xmlm.ns_xmlns then acc else att :: acc ) [] atts in let ns_atts = List.map (fun (pref,iri) -> ((Xmlm.ns_xmlns, pref), iri)) ns in E ((tag, ns_atts @ atts), subs) in let ns_prefix s = Some s in let output = Xmlm.make_output ~ns_prefix ~decl dest in let frag = function | D d -> `Data d | E (((pref,s),atts), childs) -> let (pref, s) = map (pref, s) in let atts = List.map (fun ((pref,s),v) -> (map (pref, s), v)) atts in `El (((pref,s),atts), childs) in Xmlm.output_doc_tree frag output (None, tree); ;; let string_of_xmls namespaces trees = try let b = Buffer.create 256 in List.iter (output_doc_tree namespaces ~decl: false (`Buffer b)) trees; Buffer.contents b with Xmlm.Error ((line, col), error) -> let msg = Printf.sprintf "Line %d, column %d: %s" line col (Xmlm.error_message error) in failwith msg ;; let xml_of_string str = try let i = Xmlm.make_input ~strip: true (`String (0, str)) in let (_,tree) = in_tree i in (*prerr_endline "parse ok";*) tree with Xmlm.Error ((line, col), error) -> let msg = Printf.sprintf "Line %d, column %d: %s\n%s" line col (Xmlm.error_message error) str in failwith msg ;; let xmls_of_string str = (*prerr_endline "xmls_of_string";*) let str = "<foo__>"^str^"</foo__>" in match xml_of_string str with E ((("","foo__"),_),subs) -> subs | _ -> assert false ;; let get_first_child xml tag = match xml with D _ -> None | E ((_,_),subs) -> try Some (List.find (function E ((t,_),_) -> t = tag | _ -> false) subs) with Not_found -> None ;; let is_element iri (pref,loc) = let iri2 = Iri.of_string (pref^loc) in let b = Iri.compare iri iri2 = 0 in (*prerr_endline (Printf.sprintf "is_element %s %s: %b" (Iri.to_string iri) (Iri.to_string iri2) b);*) b ;; (** {2 Input} *) module SMap = Types.SMap;; module Irimap = Iri.Map type state = { subject : Term.term option ; predicate : Iri.t option ; xml_base : Iri.t ; xml_lang : string option ; datatype : Iri.t option ; namespaces : string Irimap.t ; } type global_state = { blanks : Term.blank_id SMap.t ; gnamespaces : string Irimap.t ; } exception Invalid_rdf of string let error s = raise (Invalid_rdf s);; let () = Printexc.register_printer (function | Invalid_rdf str -> Some (Printf.sprintf "Invalid RDF: %s" str) | _ -> None) let get_att att l = try Some (List.assoc att l) with Not_found -> None;; let get_att_iri = let rec iter pred = function [] -> None | (x,v) :: q -> if pred x then Some v else iter pred q in fun iri l -> iter (is_element iri) l ;; (* let abs_iri state iri = prerr_endline (Printf.sprintf "resolve base=%s iri=%s" (Iri.to_string state.xml_base) (Iri.ref_to_string iri)); let iri = Iri.resolve ~base: state.xml_base iri in prerr_endline (Printf.sprintf "=> %s" (Iri.to_string iri)); iri *) let abs_iri state iri = (*prerr_endline (Printf.sprintf "resolve base=%s iri=%s" (Iri.to_string state.xml_base) (Iri.to_string iri));*) let iri = match Iri.is_relative iri with false -> iri | true -> Iri.resolve ~base: state.xml_base iri in (*prerr_endline (Printf.sprintf "=> %s" (Iri.to_string iri));*) iri let set_xml_base state = function D _ -> state | E ((_,atts),_) -> match get_att (Xmlm.ns_xml, "base") atts with None -> state | Some s -> let r = Iri.of_string s in let xml_base = abs_iri state r in { state with xml_base } ;; let set_xml_lang state = function D _ -> state | E ((_,atts),_) -> match get_att (Xmlm.ns_xml, "lang") atts with None -> state | Some s -> (*prerr_endline ("setting lang to "^s);*) { state with xml_lang = Some s } ;; let set_namespaces gstate state = function D _ -> (gstate, state) | E ((_,atts),_) -> let f (gstate, state) ((pref,s),v) = if pref = Xmlm.ns_xmlns then begin let iri = Iri.of_string v in let gstate = { gstate with gnamespaces = Irimap.add iri s gstate.gnamespaces } in let state = { state with namespaces = Irimap.add iri s state.namespaces } in (gstate, state) end else (gstate, state) in List.fold_left f (gstate, state) atts ;; let update_state gstate state t = set_namespaces gstate (set_xml_lang (set_xml_base state t) t) t;; let get_blank_node g gstate id = try (Blank_ (SMap.find id gstate.blanks), gstate) with Not_found -> (*prerr_endline (Printf.sprintf "blank_id for %s not found, forging one" id);*) let bid = g.new_blank_id () in let gstate = { gstate with blanks = SMap.add id bid gstate.blanks } in (Blank_ bid, gstate) let rec input_node g state gstate t = let (gstate, state) = update_state gstate state t in match t with D s when state.predicate = None -> let msg = Printf.sprintf "Found (Data %S) with no current predicate." s in error msg | D s -> let obj = Term.term_of_literal_string ?typ: state.datatype ?lang: state.xml_lang s in let sub = match state.subject with None -> assert false | Some s -> s in let pred = match state.predicate with None -> assert false | Some u -> u in g.add_triple ~sub ~pred ~obj; gstate | E (((pref,s), atts), children) -> let (node, gstate) = match get_att_iri Rdf_.about atts with Some s -> (Iri (abs_iri state (Iri.of_string s)), gstate) | None -> match get_att_iri Rdf_.id atts with Some id -> (Iri (Iri.of_string ((Iri.to_string state.xml_base)^"#"^id)), gstate) | None -> match get_att_iri Rdf_.nodeID atts with Some id -> get_blank_node g gstate id | None -> (Blank_ (g.new_blank_id ()), gstate) in begin match state.subject, state.predicate with Some sub, Some pred -> g.add_triple ~sub ~pred ~obj: node | _ -> () end; let state = { state with subject = Some node ; predicate = None } in (* add a type arc if the node is not introduced with rdf:Description *) if not (is_element Rdf_.description (pref,s)) then begin let type_iri = Iri.of_string (pref^s) in g.add_triple ~sub: node ~pred: Rdf_.type_ ~obj: (Iri type_iri) end; (* all remaining attributes define triples with literal object values *) let f ((pref, s), v) = if pref <> Xmlm.ns_xml && pref <> Xmlm.ns_xmlns then begin let iri_prop = Iri.of_string (pref^s) in if not (List.exists (Iri.equal iri_prop) [ Rdf_.about ; Rdf_.id; Rdf_.nodeID ]) then begin let obj = Term.term_of_literal_string ?lang: state.xml_lang v in g.add_triple ~sub: node ~pred: iri_prop ~obj end end in List.iter f atts; let (gstate, _) = List.fold_left (input_prop g state) (gstate, 1) children in gstate (* FIXME: handle rdf:ID *) and input_prop g state (gstate, li) t = let (gstate, state) = update_state gstate state t in match t with D s -> let msg = Printf.sprintf "Found (Data %S) but expected a property node." s in error msg | E (((pref,s),atts),children) -> let sub = match state.subject with None -> assert false | Some sub -> sub in let prop_iri = Iri.of_string (pref^s) in let (prop_iri, li) = if Iri.equal prop_iri Rdf_.li then (Rdf_.n li, li + 1) else (prop_iri, li) in match get_att_iri Rdf_.resource atts with Some s -> let iri = Iri.of_string s in let obj = Iri (abs_iri state iri) in g.add_triple ~sub ~pred: prop_iri ~obj ; (gstate, li) | None -> match get_att_iri Rdf_.nodeID atts with Some id -> let (obj, gstate) = get_blank_node g gstate id in g.add_triple ~sub ~pred: prop_iri ~obj ; (gstate, li) | None -> match get_att_iri Rdf_.parseType atts with Some "Literal" -> let xml = string_of_xmls (Irimap.fold (fun iri s acc -> (s, Iri.to_string iri) :: acc) state.namespaces []) children in let obj = Term.term_of_literal_string ~typ: Rdf_.dt_XMLLiteral xml in g.add_triple ~sub ~pred: prop_iri ~obj; (gstate, li) | Some "Resource" -> begin let node = Blank_ (g.new_blank_id ()) in g.add_triple ~sub ~pred: prop_iri ~obj: node ; let state = { state with subject = Some node ; predicate = None } in List.fold_left (input_prop g state) (gstate, 1) children end | Some "Collection" -> begin let rec f (gstate, previous) = function [] -> assert false | first :: rest -> let state = { state with subject = Some previous ; predicate = Some Rdf_.first } in let gstate = input_node g state gstate first in match rest with [] -> g.add_triple ~sub: previous ~pred: Rdf_.rest ~obj: (Iri Rdf_.nil); (gstate, previous) | _ -> let blank = Term.Blank_ (g.new_blank_id ()) in g.add_triple ~sub: previous ~pred: Rdf_.rest ~obj: blank; f (gstate, blank) rest in let gstate = match children with [] -> gstate | _ -> let blank = Term.Blank_ (g.new_blank_id ()) in g.add_triple ~sub ~pred: prop_iri ~obj: blank; fst (f (gstate, blank) children) in (gstate, li) end | Some s -> error (Printf.sprintf "Unknown parseType %S" s) | None -> match get_att_iri Rdf_.datatype atts, children with | Some s, [D lit] -> let typ = abs_iri state (Iri.of_string s) in let obj = Term.term_of_literal_string ~typ ?lang: state.xml_lang lit in g.add_triple ~sub ~pred: prop_iri ~obj; (gstate, li) | Some s, _ -> let msg = Printf.sprintf "Property %S with datatype %S but no data" (Iri.to_string prop_iri) s in error msg | None, _ -> (* if we have other attributes than the ones filtered above, they are property relations, with ommited blank nodes *) let pred ((pref,s),v) = pref <> Xmlm.ns_xml && pref <> Xmlm.ns_xmlns && (let iri = Iri.of_string (pref^s) in not (Iri.equal iri Rdf_.id)) in match List.filter pred atts with [] -> let state = { state with predicate = Some prop_iri } in let gstate = List.fold_left (input_node g state) gstate children in (gstate, li) | l -> let node = Blank_ (g.new_blank_id ()) in g.add_triple ~sub ~pred: prop_iri ~obj: node ; let f ((pref,s),lit) = let obj = Term.term_of_literal_string ?lang: state.xml_lang lit in let iri_prop = Iri.of_string (pref^s) in g.add_triple ~sub: node ~pred: iri_prop ~obj in List.iter f l; (gstate, li) ;; let input_tree g ?(base=g.Graph.name()) t = let state = { subject = None ; predicate = None ; xml_base = base ; xml_lang = None ; datatype = None ; namespaces = Irimap.empty ; } in let gstate = { gnamespaces = Irimap.empty ; blanks = SMap.empty } in let (gstate, state) = update_state gstate state t in let gstate = match t with D _ -> assert false | E ((e,_),children) when is_element Rdf_._RDF e -> List.fold_left (input_node g state) gstate children | t -> input_node g state gstate t in (* add namespaces *) let add_ns iri prefix = g.add_namespace iri prefix in Irimap.iter add_ns gstate.gnamespaces ;; let from_input g ?base i = let (_, tree) = in_tree i in input_tree g ?base tree ;; let from_xml = input_tree;; let from_string g ?base s = let i = Xmlm.make_input ~strip: true (`String (0, s)) in from_input g ?base i ;; let from_file g ?base file = let ic = open_in file in let i = Xmlm.make_input ~strip: true (`Channel ic) in let (_,tree) = try let t = in_tree i in close_in ic; t with e -> close_in ic; raise e in input_tree g ?base tree ;; (** {2 Output} *) let output ?(compact=true) g = let xml_prop pred_iri obj = let (atts, children) = match obj with | Iri iri -> ([("", Iri.to_string Rdf_.resource), Iri.to_string iri], []) | Blank_ id -> ([("", Iri.to_string Rdf_.nodeID), Term.string_of_blank_id id], []) | Blank -> assert false | Literal lit -> let (atts, subs) = match lit.lit_type with None -> ([], [D lit.lit_value]) | Some iri when Iri.equal iri Rdf_.dt_XMLLiteral -> let subs = xmls_of_string lit.lit_value in ( [("",Iri.to_string Rdf_.parseType), "Literal"], subs ) | Some iri -> ( [("",Iri.to_string Rdf_.datatype), Iri.to_string iri], [D lit.lit_value] ) in let atts = atts @ (match lit.lit_language with None -> [] | Some lang -> [(Xmlm.ns_xml, "lang"), lang]) in (atts, subs) in E ((("",Iri.to_string pred_iri),atts),children) in let subject_atts = function | Iri iri -> [("", Iri.to_string Rdf_.about), Iri.to_string iri] | Blank_ id -> [("", Iri.to_string Rdf_.nodeID), Term.string_of_blank_id id] | Blank -> assert false | Literal _ -> assert false in let fold_props map = let f iri set acc = let fo obj acc = let n = xml_prop iri obj in n :: acc in Term.TSet.fold fo set acc in Iri.Map.fold f map [] in let xmls = match g.folder () with | Some map when compact -> let f sub map acc = let xml_props = fold_props map in let atts = subject_atts sub in let node = E ((("",Iri.to_string Rdf_.description), atts), xml_props) in node :: acc in Term.TMap.fold f map [] | _ -> let f_triple acc (sub, pred, obj) = let atts = subject_atts sub in let xml_prop = xml_prop pred obj in let node = E ((("",Iri.to_string Rdf_.description), atts), [xml_prop]) in node :: acc in List.fold_left f_triple [] (g.find ()) in E ((("", Iri.to_string Rdf_._RDF),[]), xmls) let to_ ?compact ?namespaces g dest = let namespaces = Dot.build_namespaces ?namespaces g in try let tree = output ?compact g in output_doc_tree namespaces ~decl: true dest tree with Xmlm.Error ((line, col), error) -> let msg = Printf.sprintf "Line %d, column %d: %s" line col (Xmlm.error_message error) in failwith msg ;; let to_string ?compact ?namespaces g = let buf = Buffer.create 256 in let dest = `Buffer buf in to_ ?compact ?namespaces g dest; Buffer.contents buf ;; let to_file ?compact ?namespaces g file = let oc = open_out file in try to_ ?compact ?namespaces g (`Channel oc); close_out oc with e -> close_out oc ; raise e ;;
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>