package qcheck-core
Core qcheck library
Install
Dune Dependency
Authors
Maintainers
Sources
0.17.tar.gz
md5=605165edc328ae144341a2d73c7fc5fc
sha512=647c1beefba8fce32daac91bd42976ddf2926cff2e78e43ac3afb6e59ec660f0f6e684f5954d6b1fab6d11328690b236e40c30980a22a999c4b826ae2a0dcaea
doc/src/qcheck-core/QCheck.ml.html
Source file QCheck.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
(* QCheck: Random testing for OCaml copyright (c) 2013-2017, Guillaume Bury, Simon Cruanes, Vincent Hugot, Jan Midtgaard all rights reserved. *) (** {1 Quickcheck inspired property-based testing} *) let poly_compare=compare open Printf module RS = Random.State let (|>) x f = f x let rec foldn ~f ~init:acc i = if i = 0 then acc else foldn ~f ~init:(f acc i) (i-1) let _is_some = function Some _ -> true | None -> false let _opt_map_or ~d ~f = function | None -> d | Some x -> f x let _opt_or a b = match a with | None -> b | Some x -> x let _opt_map ~f = function | None -> None | Some x -> Some (f x) let _opt_map_2 ~f a b = match a, b with | Some x, Some y -> Some (f x y) | _ -> None let _opt_map_3 ~f a b c = match a, b, c with | Some x, Some y, Some z -> Some (f x y z) | _ -> None let _opt_map_4 ~f a b c d = match a, b, c, d with | Some x, Some y, Some z, Some w -> Some (f x y z w) | _ -> None let _opt_sum a b = match a, b with | Some _, _ -> a | None, _ -> b let sum_int = List.fold_left (+) 0 exception FailedPrecondition (* raised if precondition is false *) exception No_example_found of string (* raised if an example failed to be found *) let assume b = if not b then raise FailedPrecondition let assume_fail () = raise FailedPrecondition let (==>) b1 b2 = if b1 then b2 else raise FailedPrecondition module Gen = struct type 'a t = RS.t -> 'a type 'a sized = int -> Random.State.t -> 'a let return x _st = x let pure = return let (>>=) gen f st = f (gen st) st let (<*>) f x st = f st (x st) let map f x st = f (x st) let map2 f x y st = f (x st) (y st) let map3 f x y z st = f (x st) (y st) (z st) let map_keep_input f gen st = let x = gen st in x, f x let (>|=) x f st = f (x st) let (<$>) f x st = f (x st) let oneof l st = List.nth l (Random.State.int st (List.length l)) st let oneofl xs st = List.nth xs (Random.State.int st (List.length xs)) let oneofa xs st = Array.get xs (Random.State.int st (Array.length xs)) let frequencyl l st = let sums = sum_int (List.map fst l) in let i = Random.State.int st sums in let rec aux acc = function | ((x,g)::xs) -> if i < acc+x then g else aux (acc+x) xs | _ -> failwith "frequency" in aux 0 l let frequencya a = frequencyl (Array.to_list a) let frequency l st = frequencyl l st st let small_nat st = let p = RS.float st 1. in if p < 0.75 then RS.int st 10 else RS.int st 100 (* natural number generator *) let nat st = let p = RS.float st 1. in if p < 0.5 then RS.int st 10 else if p < 0.75 then RS.int st 100 else if p < 0.95 then RS.int st 1_000 else RS.int st 10_000 let big_nat st = let p = RS.float st 1. in if p < 0.75 then nat st else RS.int st 1_000_000 let unit _st = () let bool st = RS.bool st let float st = exp (RS.float st 15. *. (if RS.float st 1. < 0.5 then 1. else -1.)) *. (if RS.float st 1. < 0.5 then 1. else -1.) let pfloat st = abs_float (float st) let nfloat st = -.(pfloat st) let float_bound_inclusive bound st = RS.float st bound let float_bound_exclusive bound st = match bound with | 0. -> raise (Invalid_argument "Gen.float_bound_exclusive") | b_pos when bound > 0. -> RS.float st (b_pos -. epsilon_float) | b_neg -> RS.float st (b_neg +. epsilon_float) let float_range low high = if high < low || high -. low > max_float then invalid_arg "Gen.float_range"; fun st -> low +. (float_bound_inclusive (high -. low) st) let (--.) = float_range let neg_int st = -(nat st) let opt f st = let p = RS.float st 1. in if p < 0.15 then None else Some (f st) (* Uniform random int generator *) let pint = if Sys.word_size = 32 then fun st -> RS.bits st else (* word size = 64 *) fun st -> RS.bits st (* Bottom 30 bits *) lor (RS.bits st lsl 30) (* Middle 30 bits *) lor ((RS.bits st land 3) lsl 60) (* Top 2 bits *) (* top bit = 0 *) let int st = if RS.bool st then - (pint st) - 1 else pint st let int_bound n = if n < 0 then invalid_arg "Gen.int_bound"; if n <= (1 lsl 30) - 2 then fun st -> Random.State.int st (n + 1) else fun st -> let r = pint st in r mod (n + 1) let int_range a b = if b < a then invalid_arg "Gen.int_range"; if a >= 0 || b < 0 then ( (* range smaller than max_int *) assert (b-a >= 0); fun st -> a + (int_bound (b-a) st) ) else ( (* range potentially bigger than max_int: we split on 0 and choose the itv wrt to their size ratio *) fun st -> let f_a = float_of_int a in let ratio = (-.f_a) /. (1. +. float_of_int b -. f_a) in if Random.State.float st 1. <= ratio then - (int_bound (- (a+1)) st) - 1 else int_bound b st ) let (--) = int_range (* NOTE: we keep this alias to not break code that uses [small_int] for sizes of strings, arrays, etc. *) let small_int = small_nat let small_signed_int st = if bool st then small_nat st else - (small_nat st) let char_range a b = map Char.chr (Char.code a -- Char.code b) let random_binary_string st length = (* 0b011101... *) let s = Bytes.create (length + 2) in Bytes.set s 0 '0'; Bytes.set s 1 'b'; for i = 0 to length - 1 do Bytes.set s (i+2) (if RS.bool st then '0' else '1') done; Bytes.unsafe_to_string s let ui32 st = Int32.of_string (random_binary_string st 32) let ui64 st = Int64.of_string (random_binary_string st 64) let list_size size gen st = foldn ~f:(fun acc _ -> (gen st)::acc) ~init:[] (size st) let list gen st = list_size nat gen st let list_repeat n g = list_size (return n) g let array_size size gen st = Array.init (size st) (fun _ -> gen st) let array gen st = array_size nat gen st let array_repeat n g = array_size (return n) g let flatten_l l st = List.map (fun f->f st) l let flatten_a a st = Array.map (fun f->f st) a let flatten_opt o st = match o with | None -> None | Some f -> Some (f st) let flatten_res r st = match r with | Ok f -> Ok (f st) | Error e -> Error e let shuffle_a a st = for i = Array.length a-1 downto 1 do let j = Random.State.int st (i+1) in let tmp = a.(i) in a.(i) <- a.(j); a.(j) <- tmp; done let shuffle_l l st = let a = Array.of_list l in shuffle_a a st; Array.to_list a let shuffle_w_l l st = let sample (w, v) = let fl_w = float_of_int w in (float_bound_inclusive 1. st ** (1. /. fl_w), v) in let samples = List.rev_map sample l in List.sort (fun (w1, _) (w2, _) -> poly_compare w1 w2) samples |> List.rev_map snd let pair g1 g2 st = (g1 st, g2 st) let triple g1 g2 g3 st = (g1 st, g2 st, g3 st) let quad g1 g2 g3 g4 st = (g1 st, g2 st, g3 st, g4 st) let char st = char_of_int (RS.int st 256) let printable_chars = let l = 126-32+1 in let s = Bytes.create l in for i = 0 to l-2 do Bytes.set s i (char_of_int (32+i)) done; Bytes.set s (l-1) '\n'; Bytes.unsafe_to_string s let printable st = printable_chars.[RS.int st (String.length printable_chars)] let numeral st = char_of_int (48 + RS.int st 10) let string_size ?(gen = char) size st = let s = Bytes.create (size st) in for i = 0 to Bytes.length s - 1 do Bytes.set s i (gen st) done; Bytes.unsafe_to_string s let string ?gen st = string_size ?gen nat st let string_of gen = string_size ~gen nat let string_readable = string_size ~gen:char nat let small_string ?gen st = string_size ?gen small_nat st let small_list gen = list_size small_nat gen let small_array gen = array_size small_nat gen let join g st = (g st) st (* corner cases *) let graft_corners gen corners () = let cors = ref corners in fun st -> match !cors with [] -> gen st | e::l -> cors := l; e let int_pos_corners = [0;1;2;max_int] let int_corners = int_pos_corners @ [min_int] let nng_corners () = graft_corners nat int_pos_corners () (* sized, fix *) let sized_size s f st = f (s st) st let sized f = sized_size nat f let fix f = let rec f' n st = f f' n st in f' let generate ?(rand=Random.State.make_self_init()) ~n g = list_repeat n g rand let generate1 ?(rand=Random.State.make_self_init()) g = g rand let delay f st = f () st include Qcheck_ops.Make(struct type nonrec 'a t = 'a t let (>|=) = (>|=) let monoid_product a b = map2 (fun x y -> x,y) a b let (>>=) = (>>=) end) end module Print = struct type 'a t = 'a -> string let unit _ = "()" let int = string_of_int let bool = string_of_bool let float = string_of_float let string s = s let char c = String.make 1 c let option f = function | None -> "None" | Some x -> "Some (" ^ f x ^ ")" let pair a b (x,y) = Printf.sprintf "(%s, %s)" (a x) (b y) let triple a b c (x,y,z) = Printf.sprintf "(%s, %s, %s)" (a x) (b y) (c z) let quad a b c d (x,y,z,w) = Printf.sprintf "(%s, %s, %s, %s)" (a x) (b y) (c z) (d w) let list pp l = let b = Buffer.create 25 in Buffer.add_char b '['; List.iteri (fun i x -> if i > 0 then Buffer.add_string b "; "; Buffer.add_string b (pp x)) l; Buffer.add_char b ']'; Buffer.contents b let array pp a = let b = Buffer.create 25 in Buffer.add_string b "[|"; Array.iteri (fun i x -> if i > 0 then Buffer.add_string b "; "; Buffer.add_string b (pp x)) a; Buffer.add_string b "|]"; Buffer.contents b let comap f p x = p (f x) end module Iter = struct type 'a t = ('a -> unit) -> unit let empty _ = () let return x yield = yield x let (<*>) a b yield = a (fun f -> b (fun x -> yield (f x))) let (>>=) a f yield = a (fun x -> f x yield) let map f a yield = a (fun x -> yield (f x)) let map2 f a b yield = a (fun x -> b (fun y -> yield (f x y))) let (>|=) a f = map f a let append a b yield = a yield; b yield let append_l l yield = List.iter (fun s->s yield) l let flatten s yield = s (fun sub -> sub yield) let filter f s yield = s (fun x -> if f x then yield x) let (<+>) = append let of_list l yield = List.iter yield l let of_array a yield = Array.iter yield a let pair a b yield = a (fun x -> b(fun y -> yield (x,y))) let triple a b c yield = a (fun x -> b (fun y -> c (fun z -> yield (x,y,z)))) let quad a b c d yield = a (fun x -> b (fun y -> c (fun z -> d (fun w -> yield (x,y,z,w))))) exception IterExit let find_map p iter = let r = ref None in (try iter (fun x -> match p x with Some _ as y -> r := y; raise IterExit | None -> ()) with IterExit -> () ); !r let find p iter = find_map (fun x->if p x then Some x else None) iter include Qcheck_ops.Make(struct type nonrec 'a t = 'a t let (>|=) = (>|=) let monoid_product a b = map2 (fun x y -> x,y) a b let (>>=) = (>>=) end) end module Shrink = struct type 'a t = 'a -> 'a Iter.t let nil _ = Iter.empty let unit = nil (* balanced shrinker for integers (non-exhaustive) *) let int x yield = let y = ref x in (* try some divisors *) while !y < -2 || !y >2 do y := !y / 2; yield (x - !y); done; (* fast path *) if x>0 then yield (x-1); if x<0 then yield (x+1); () let int32 x yield = let open Int32 in let y = ref x in (* try some divisors *) while !y < -2l || !y > 2l do y := div !y 2l; yield (sub x !y); done; (* fast path *) if x>0l then yield (pred x); if x<0l then yield (succ x); () let int64 x yield = let open Int64 in let y = ref x in (* try some divisors *) while !y < -2L || !y > 2L do y := div !y 2L; yield (sub x !y); done; (* fast path *) if x>0L then yield (pred x); if x<0L then yield (succ x); () (* aggressive shrinker for integers, get from 0 to x, by dichotomy or just enumerating smaller values *) let int_aggressive x yield = let y = ref x in while !y < -2 || !y >2 do y := !y / 2; yield (x - !y); done; (* fast path *) if x>0 then for i=x-1 downto 0 do yield i done; if x<0 then for i=x+1 to 0 do yield i done let filter f shrink x = Iter.filter f (shrink x) let char c yield = if Char.code c > 0 then yield (Char.chr (Char.code c-1)) let option s x = match x with | None -> Iter.empty | Some x -> Iter.(return None <+> map (fun y->Some y) (s x)) let string s yield = for i =0 to String.length s-1 do let s' = Bytes.init (String.length s-1) (fun j -> if j<i then s.[j] else s.[j+1]) in yield (Bytes.unsafe_to_string s') done let array ?shrink a yield = let n = Array.length a in let chunk_size = ref n in while !chunk_size > 0 do for i=0 to n - !chunk_size do (* remove elements in [i .. i+!chunk_size] *) let a' = Array.init (n - !chunk_size) (fun j -> if j< i then a.(j) else a.(j + !chunk_size)) in yield a' done; chunk_size := !chunk_size / 2; done; match shrink with | None -> () | Some f -> (* try to shrink each element of the array *) for i = 0 to Array.length a - 1 do f a.(i) (fun x -> let b = Array.copy a in b.(i) <- x; yield b ) done let list_spine l yield = let n = List.length l in let chunk_size = ref ((n+1)/2) in (* push the [n] first elements of [l] into [q], return the rest of the list *) let rec fill_queue n l q = match n,l with | 0, _ -> l | _, x::xs -> Queue.push x q; fill_queue (n-1) xs q | _, _ -> assert false in (* remove elements from the list, by chunks of size [chunk_size] (bigger chunks first) *) while !chunk_size > 0 do let q = Queue.create () in let l' = fill_queue !chunk_size l q in (* remove [chunk_size] elements in queue *) let rec pos_loop rev_prefix suffix = yield (List.rev_append rev_prefix suffix); match suffix with | [] -> () | x::xs -> Queue.push x q; let y = Queue.pop q in (pos_loop [@tailcall]) (y::rev_prefix) xs in pos_loop [] l'; chunk_size := !chunk_size / 2; done let list_elems shrink l yield = (* try to shrink each element of the list *) let rec elem_loop rev_prefix suffix = match suffix with | [] -> () | x::xs -> shrink x (fun x' -> yield (List.rev_append rev_prefix (x'::xs))); elem_loop (x::rev_prefix) xs in elem_loop [] l let list ?shrink l yield = list_spine l yield; match shrink with | None -> () | Some shrink -> list_elems shrink l yield let pair a b (x,y) yield = a x (fun x' -> yield (x',y)); b y (fun y' -> yield (x,y')) let triple a b c (x,y,z) yield = a x (fun x' -> yield (x',y,z)); b y (fun y' -> yield (x,y',z)); c z (fun z' -> yield (x,y,z')) let quad a b c d (x,y,z,w) yield = a x (fun x' -> yield (x',y,z,w)); b y (fun y' -> yield (x,y',z,w)); c z (fun z' -> yield (x,y,z',w)); d w (fun w' -> yield (x,y,z,w')) end (** {2 Observe Values} *) module Observable = struct (** An observable is a (random) predicate on ['a] *) type -'a t = { print: 'a Print.t; eq: ('a -> 'a -> bool); hash: ('a -> int); } let hash o x = o.hash x let equal o x y = o.eq x y let print o x = o.print x let make ?(eq=(=)) ?(hash=Hashtbl.hash) print = {print; eq; hash; } module H = struct let combine a b = Hashtbl.seeded_hash a b let combine_f f s x = Hashtbl.seeded_hash s (f x) let int i = i land max_int let bool b = if b then 1 else 2 let char x = Char.code x let string (x:string) = Hashtbl.hash x let opt f = function | None -> 42 | Some x -> combine 43 (f x) let list f l = List.fold_left (combine_f f) 0x42 l let array f l = Array.fold_left (combine_f f) 0x42 l let pair f g (x,y) = combine (f x) (g y) end module Eq = struct type 'a t = 'a -> 'a -> bool let int : int t = (=) let string : string t = (=) let bool : bool t = (=) let float : float t = (=) let unit () () = true let char : char t = (=) let rec list f l1 l2 = match l1, l2 with | [], [] -> true | [], _ | _, [] -> false | x1::l1', x2::l2' -> f x1 x2 && list f l1' l2' let array eq a b = let rec aux i = if i = Array.length a then true else eq a.(i) b.(i) && aux (i+1) in Array.length a = Array.length b && aux 0 let option f o1 o2 = match o1, o2 with | None, None -> true | Some _, None | None, Some _ -> false | Some x, Some y -> f x y let pair f g (x1,y1)(x2,y2) = f x1 x2 && g y1 y2 end let unit : unit t = make ~hash:(fun _ -> 1) ~eq:Eq.unit Print.unit let bool : bool t = make ~hash:H.bool ~eq:Eq.bool Print.bool let int : int t = make ~hash:H.int ~eq:Eq.int Print.int let float : float t = make ~eq:Eq.float Print.float let string = make ~hash:H.string ~eq:Eq.string Print.string let char = make ~hash:H.char ~eq:Eq.char Print.char let option p = make ~hash:(H.opt p.hash) ~eq:(Eq.option p.eq) (Print.option p.print) let array p = make ~hash:(H.array p.hash) ~eq:(Eq.array p.eq) (Print.array p.print) let list p = make ~hash:(H.list p.hash) ~eq:(Eq.list p.eq) (Print.list p.print) let map f p = make ~hash:(fun x -> p.hash (f x)) ~eq:(fun x y -> p.eq (f x)(f y)) (fun x -> p.print (f x)) let pair a b = make ~hash:(H.pair a.hash b.hash) ~eq:(Eq.pair a.eq b.eq) (Print.pair a.print b.print) let triple a b c = map (fun (x,y,z) -> x,(y,z)) (pair a (pair b c)) let quad a b c d = map (fun (x,y,z,u) -> x,(y,z,u)) (pair a (triple b c d)) end type 'a stat = string * ('a -> int) (** A statistic on a distribution of values of type ['a] *) type 'a arbitrary = { gen: 'a Gen.t; print: ('a -> string) option; (** print values *) small: ('a -> int) option; (** size of example *) shrink: ('a -> 'a Iter.t) option; (** shrink to smaller examples *) collect: ('a -> string) option; (** map value to tag, and group by tag *) stats: 'a stat list; (** statistics to collect and print *) } let make ?print ?small ?shrink ?collect ?(stats=[]) gen = { gen; print; small; shrink; collect; stats; } let set_small f o = {o with small=Some f} let set_print f o = {o with print=Some f} let set_shrink f o = {o with shrink=Some f} let set_collect f o = {o with collect=Some f} let set_stats s o = {o with stats=s} let add_stat s o = {o with stats=s :: o.stats} let set_gen g o = {o with gen=g} let add_shrink_invariant f o = match o.shrink with | None -> o | Some shr -> {o with shrink=Some (Shrink.filter f shr)} let gen o = o.gen let small1 _ = 1 let make_scalar ?print ?collect gen = make ~shrink:Shrink.nil ~small:small1 ?print ?collect gen let make_int ?collect gen = make ~shrink:Shrink.int ~small:small1 ~print:Print.int ?collect gen let adapt_ o gen = make ?print:o.print ?small:o.small ?shrink:o.shrink ?collect:o.collect gen let choose l = match l with | [] -> raise (Invalid_argument "quickcheck.choose") | l -> let a = Array.of_list l in adapt_ a.(0) (fun st -> let arb = a.(RS.int st (Array.length a)) in arb.gen st) let unit : unit arbitrary = make ~small:small1 ~shrink:Shrink.nil ~print:(fun _ -> "()") Gen.unit let bool = make_scalar ~print:string_of_bool Gen.bool let float = make_scalar ~print:string_of_float Gen.float let pos_float = make_scalar ~print:string_of_float Gen.pfloat let neg_float = make_scalar ~print:string_of_float Gen.nfloat let float_bound_inclusive bound = make_scalar ~print:string_of_float (Gen.float_bound_inclusive bound) let float_bound_exclusive bound = make_scalar ~print:string_of_float (Gen.float_bound_exclusive bound) let float_range low high = make_scalar ~print:string_of_float (Gen.float_range low high) let int = make_int Gen.int let int_bound n = make_int (Gen.int_bound n) let int_range a b = make_int (Gen.int_range a b) let (--) = int_range let pos_int = make_int Gen.pint let small_int = make_int Gen.small_int let small_nat = make_int Gen.small_nat let small_signed_int = make_int Gen.small_signed_int let small_int_corners () = make_int (Gen.nng_corners ()) let neg_int = make_int Gen.neg_int let int32 = make ~print:(fun i -> Int32.to_string i ^ "l") ~small:small1 ~shrink:Shrink.int32 Gen.ui32 let int64 = make ~print:(fun i -> Int64.to_string i ^ "L") ~small:small1 ~shrink:Shrink.int64 Gen.ui64 let char = make_scalar ~print:(sprintf "%C") Gen.char let printable_char = make_scalar ~print:(sprintf "%C") Gen.printable let numeral_char = make_scalar ~print:(sprintf "%C") Gen.numeral let string_gen_of_size size gen = make ~shrink:Shrink.string ~small:String.length ~print:(sprintf "%S") (Gen.string_size ~gen size) let string_gen gen = make ~shrink:Shrink.string ~small:String.length ~print:(sprintf "%S") (Gen.string ~gen) let string = string_gen Gen.char let string_of_size size = string_gen_of_size size Gen.char let small_string = string_gen_of_size Gen.small_nat Gen.char let printable_string = string_gen Gen.printable let printable_string_of_size size = string_gen_of_size size Gen.printable let small_printable_string = string_gen_of_size Gen.small_nat Gen.printable let numeral_string = string_gen Gen.numeral let numeral_string_of_size size = string_gen_of_size size Gen.numeral let list_sum_ f l = List.fold_left (fun acc x-> f x+acc) 0 l let mk_list a gen = (* small sums sub-sizes if present, otherwise just length *) let small = _opt_map_or a.small ~f:list_sum_ ~d:List.length in let print = _opt_map a.print ~f:Print.list in make ~small ~shrink:(Shrink.list ?shrink:a.shrink) ?print gen let list a = mk_list a (Gen.list a.gen) let list_of_size size a = mk_list a (Gen.list_size size a.gen) let small_list a = mk_list a (Gen.small_list a.gen) let array_sum_ f a = Array.fold_left (fun acc x -> f x+acc) 0 a let array a = let small = _opt_map_or ~d:Array.length ~f:array_sum_ a.small in make ~small ~shrink:(Shrink.array ?shrink:a.shrink) ?print:(_opt_map ~f:Print.array a.print) (Gen.array a.gen) let array_of_size size a = let small = _opt_map_or ~d:Array.length ~f:array_sum_ a.small in make ~small ~shrink:(Shrink.array ?shrink:a.shrink) ?print:(_opt_map ~f:Print.array a.print) (Gen.array_size size a.gen) let pair a b = make ?small:(_opt_map_2 ~f:(fun f g (x,y) -> f x+g y) a.small b.small) ?print:(_opt_map_2 ~f:Print.pair a.print b.print) ~shrink:(Shrink.pair (_opt_or a.shrink Shrink.nil) (_opt_or b.shrink Shrink.nil)) (Gen.pair a.gen b.gen) let triple a b c = make ?small:(_opt_map_3 ~f:(fun f g h (x,y,z) -> f x+g y+h z) a.small b.small c.small) ?print:(_opt_map_3 ~f:Print.triple a.print b.print c.print) ~shrink:(Shrink.triple (_opt_or a.shrink Shrink.nil) (_opt_or b.shrink Shrink.nil) (_opt_or c.shrink Shrink.nil)) (Gen.triple a.gen b.gen c.gen) let quad a b c d = make ?small:(_opt_map_4 ~f:(fun f g h i (x,y,z,w) -> f x+g y+h z+i w) a.small b.small c.small d.small) ?print:(_opt_map_4 ~f:Print.quad a.print b.print c.print d.print) ~shrink:(Shrink.quad (_opt_or a.shrink Shrink.nil) (_opt_or b.shrink Shrink.nil) (_opt_or c.shrink Shrink.nil) (_opt_or d.shrink Shrink.nil)) (Gen.quad a.gen b.gen c.gen d.gen) let option a = let g = Gen.opt a.gen and shrink = _opt_map a.shrink ~f:Shrink.option and small = _opt_map_or a.small ~d:(function None -> 0 | Some _ -> 1) ~f:(fun f o -> match o with None -> 0 | Some x -> f x) in make ~small ?shrink ?print:(_opt_map ~f:Print.option a.print) g let map ?rev f a = make ?print:(_opt_map_2 rev a.print ~f:(fun r p x -> p (r x))) ?small:(_opt_map_2 rev a.small ~f:(fun r s x -> s (r x))) ?shrink:(_opt_map_2 rev a.shrink ~f:(fun r g x -> Iter.(g (r x) >|= f))) ?collect:(_opt_map_2 rev a.collect ~f:(fun r f x -> f (r x))) (fun st -> f (a.gen st)) let fun1_unsafe : 'a arbitrary -> 'b arbitrary -> ('a -> 'b) arbitrary = fun a1 a2 -> let magic_object = Obj.magic (object end) in let gen : ('a -> 'b) Gen.t = fun st -> let h = Hashtbl.create 10 in fun x -> if x == magic_object then Obj.magic h else try Hashtbl.find h x with Not_found -> let b = a2.gen st in Hashtbl.add h x b; b in let pp : (('a -> 'b) -> string) option = _opt_map_2 a1.print a2.print ~f:(fun p1 p2 f -> let h : ('a, 'b) Hashtbl.t = Obj.magic (f magic_object) in let b = Buffer.create 20 in Hashtbl.iter (fun key value -> Printf.bprintf b "%s -> %s; " (p1 key) (p2 value)) h; "{" ^ Buffer.contents b ^ "}" ) in make ?print:pp gen let fun2_unsafe gp1 gp2 gp3 = fun1_unsafe gp1 (fun1_unsafe gp2 gp3) module Poly_tbl : sig type ('a, 'b) t val create: 'a Observable.t -> 'b arbitrary -> int -> ('a, 'b) t Gen.t val get : ('a, 'b) t -> 'a -> 'b option val size : ('b -> int) -> (_, 'b) t -> int val shrink1 : ('a, 'b) t Shrink.t val shrink2 : 'b Shrink.t -> ('a, 'b) t Shrink.t val print : (_,_) t Print.t end = struct type ('a, 'b) t = { get : 'a -> 'b option; p_size: ('b->int) -> int; p_shrink1: ('a, 'b) t Iter.t; p_shrink2: 'b Shrink.t -> ('a, 'b) t Iter.t; p_print: unit -> string; } let create (type k)(type v) k v size st : (k,v) t = let module T = Hashtbl.Make(struct type t = k let equal = k.Observable.eq let hash = k.Observable.hash end) in let tbl_to_list tbl = T.fold (fun k v l -> (k,v)::l) tbl [] and tbl_of_list l = let tbl = T.create (max (List.length l) 8) in List.iter (fun (k,v) -> T.add tbl k v) l; tbl in (* make a table @param extend if true, extend table on the fly *) let rec make ~extend tbl = { get=(fun x -> try Some (T.find tbl x) with Not_found -> if extend then ( let v = v.gen st in T.add tbl x v; Some v ) else None); p_print=(fun () -> match v.print with | None -> "<fun>" | Some pp_v -> let b = Buffer.create 64 in T.iter (fun key value -> Printf.bprintf b "%s -> %s; " (k.Observable.print key) (pp_v value)) tbl; Buffer.contents b); p_shrink1=(fun yield -> Shrink.list (tbl_to_list tbl) (fun l -> yield (make ~extend:false (tbl_of_list l))) ); p_shrink2=(fun shrink_val yield -> (* shrink bindings one by one *) T.iter (fun x y -> shrink_val y (fun y' -> let tbl' = T.copy tbl in T.replace tbl' x y'; yield (make ~extend:false tbl'))) tbl); p_size=(fun size_v -> T.fold (fun _ v n -> n + size_v v) tbl 0); } in make ~extend:true (T.create size) let get t x = t.get x let shrink1 t = t.p_shrink1 let shrink2 p t = t.p_shrink2 p let print t = t.p_print () let size p t = t.p_size p end (** Internal representation of functions *) type ('a, 'b) fun_repr_tbl = { fun_tbl: ('a, 'b) Poly_tbl.t; fun_arb: 'b arbitrary; fun_default: 'b; } type 'f fun_repr = | Fun_tbl : ('a, 'ret) fun_repr_tbl -> ('a -> 'ret) fun_repr | Fun_map : ('f1 -> 'f2) * 'f1 fun_repr -> 'f2 fun_repr type _ fun_ = | Fun : 'f fun_repr * 'f -> 'f fun_ (** Reifying functions *) module Fn = struct type 'a t = 'a fun_ let apply (Fun (_,f)) = f let make_ (r:_ fun_repr) : _ fun_ = let rec call : type f. f fun_repr -> f = fun r -> match r with | Fun_tbl r -> begin fun x -> match Poly_tbl.get r.fun_tbl x with | None -> r.fun_default | Some y -> y end | Fun_map (g, r') -> g (call r') in Fun (r, call r) let mk_repr tbl arb def = Fun_tbl { fun_tbl=tbl; fun_arb=arb; fun_default=def; } let map_repr f repr = Fun_map (f,repr) let map_fun f (Fun (repr,_)) = make_ (map_repr f repr) let shrink_rep (r: _ fun_repr): _ Iter.t = let open Iter in let rec aux : type f. f fun_repr Shrink.t = function | Fun_tbl {fun_arb=a; fun_tbl=tbl; fun_default=def} -> let sh_v = match a.shrink with None -> Shrink.nil | Some s->s in (Poly_tbl.shrink1 tbl >|= fun tbl' -> mk_repr tbl' a def) <+> (sh_v def >|= fun def' -> mk_repr tbl a def') <+> (Poly_tbl.shrink2 sh_v tbl >|= fun tbl' -> mk_repr tbl' a def) | Fun_map (g, r') -> aux r' >|= map_repr g in aux r let shrink (Fun (rep,_)) = let open Iter in shrink_rep rep >|= make_ let rec size_rep : type f. f fun_repr -> int = function | Fun_map (_, r') -> size_rep r' | Fun_tbl r -> let size_v x = match r.fun_arb.small with None -> 0 | Some f -> f x in Poly_tbl.size size_v r.fun_tbl + size_v r.fun_default let size (Fun (rep,_)) = size_rep rep let print_rep r = let buf = Buffer.create 32 in let rec aux : type f. Buffer.t -> f fun_repr -> unit = fun buf r -> match r with | Fun_map (_, r') -> aux buf r' | Fun_tbl r -> Buffer.add_string buf (Poly_tbl.print r.fun_tbl); Printf.bprintf buf "_ -> %s" (match r.fun_arb.print with | None -> "<opaque>" | Some s -> s r.fun_default ); in Printf.bprintf buf "{"; aux buf r; Printf.bprintf buf "}"; Buffer.contents buf let print (Fun (rep,_)) = print_rep rep let gen_rep (a:_ Observable.t) (b:_ arbitrary): _ fun_repr Gen.t = fun st -> mk_repr (Poly_tbl.create a b 8 st) b (b.gen st) let gen a b = Gen.map make_ (gen_rep a b) end let fun1 o ret = make ~shrink:Fn.shrink ~print:Fn.print ~small:Fn.size (Fn.gen o ret) module Tuple = struct (** heterogeneous list (generic tuple) used to uncurry functions *) type 'a t = | Nil : unit t | Cons : 'a * 'b t -> ('a * 'b) t let nil = Nil let cons x tail = Cons (x,tail) type 'a obs = | O_nil : unit obs | O_cons : 'a Observable.t * 'b obs -> ('a * 'b) obs let o_nil = O_nil let o_cons x tail = O_cons (x,tail) let rec hash : type a. a obs -> a t -> int = fun o t -> match o, t with | O_nil, Nil -> 42 | O_cons (o,tail_o), Cons (x, tail) -> Observable.H.combine (Observable.hash o x) (hash tail_o tail) let rec equal : type a. a obs -> a t -> a t -> bool = fun o a b -> match o, a, b with | O_nil, Nil, Nil -> true | O_cons (o, tail_o), Cons (x1, tail1), Cons (x2,tail2) -> Observable.equal o x1 x2 && equal tail_o tail1 tail2 let print o tup = let rec aux : type a. a obs -> Buffer.t -> a t -> unit = fun o buf t -> match o, t with | O_nil, Nil -> Printf.bprintf buf "()" | O_cons (o, O_nil), Cons (x,Nil) -> Printf.bprintf buf "%s" (Observable.print o x) | O_cons (o, tail_o), Cons (x,tail) -> Printf.bprintf buf "%s, %a" (Observable.print o x) (aux tail_o) tail in let buf = Buffer.create 64 in Buffer.add_string buf "("; aux o buf tup; Buffer.add_string buf ")"; Buffer.contents buf let observable (o:'a obs) : 'a t Observable.t = Observable.make ~eq:(equal o) ~hash:(hash o) (print o) let gen (o:'a obs) (ret:'b arbitrary) : ('a t -> 'b) fun_ Gen.t = Fn.gen (observable o) ret module Infix = struct let (@::) x tail = cons x tail let (@->) o tail = o_cons o tail end include Infix end let fun_nary (o:_ Tuple.obs) ret : _ arbitrary = make ~shrink:Fn.shrink ~print:Fn.print ~small:Fn.size (Tuple.gen o ret) let fun2 o1 o2 ret = let open Tuple in map ~rev:(Fn.map_fun (fun g (Cons (x, Cons (y,Nil))) -> g x y)) (Fn.map_fun (fun g x y -> g (x @:: y @:: nil))) (fun_nary (o1 @-> o2 @-> o_nil) ret) let fun3 o1 o2 o3 ret = let open Tuple in map ~rev:(Fn.map_fun (fun g (Cons (x, Cons (y, Cons (z,Nil)))) -> g x y z)) (Fn.map_fun (fun g x y z -> g (x @:: y @:: z @:: nil))) (fun_nary (o1 @-> o2 @-> o3 @-> o_nil) ret) let fun4 o1 o2 o3 o4 ret = let open Tuple in map ~rev:(Fn.map_fun (fun g (Cons (x, Cons (y, Cons (z,Cons (w,Nil))))) -> g x y z w)) (Fn.map_fun (fun g x y z w -> g (x @:: y @:: z @:: w @:: nil))) (fun_nary (o1 @-> o2 @-> o3 @-> o4 @-> o_nil) ret) (* Generator combinators *) (** given a list, returns generator that picks at random from list *) let oneofl ?print ?collect xs = make ?print ?collect (Gen.oneofl xs) let oneofa ?print ?collect xs = make ?print ?collect (Gen.oneofa xs) (** Given a list of generators, returns generator that randomly uses one of the generators from the list *) let oneof l = let gens = List.map (fun a->a.gen) l in let first = List.hd l in let print = first.print and small = first.small and collect = first.collect and shrink = first.shrink in make ?print ?small ?collect ?shrink (Gen.oneof gens) (** Generator that always returns given value *) let always ?print x = let gen _st = x in make ?print gen (** like oneof, but with weights *) let frequency ?print ?small ?shrink ?collect l = let first = snd (List.hd l) in let small = _opt_sum small first.small in let print = _opt_sum print first.print in let shrink = _opt_sum shrink first.shrink in let collect = _opt_sum collect first.collect in let gens = List.map (fun (x,y) -> x, y.gen) l in make ?print ?small ?shrink ?collect (Gen.frequency gens) (** Given list of [(frequency,value)] pairs, returns value with probability proportional to given frequency *) let frequencyl ?print ?small l = make ?print ?small (Gen.frequencyl l) let frequencya ?print ?small l = make ?print ?small (Gen.frequencya l) let map_same_type f a = adapt_ a (fun st -> f (a.gen st)) let map_keep_input ?print ?small f a = make ?print:(match print, a.print with | Some f1, Some f2 -> Some (Print.pair f2 f1) | Some f, None -> Some (Print.comap snd f) | None, Some f -> Some (Print.comap fst f) | None, None -> None) ?small:(match small, a.small with | Some f, _ -> Some (fun (_,y) -> f y) | None, Some f -> Some (fun (x,_) -> f x) | None, None -> None) ?shrink:(match a.shrink with | None -> None | Some s -> let s' (x,_) = Iter.map (fun x->x, f x) (s x) in Some s') Gen.(map_keep_input f a.gen) module TestResult = struct type 'a counter_ex = { instance: 'a; (** The counter-example(s) *) shrink_steps: int; (** How many shrinking steps for this counterex *) msg_l: string list; (** messages. @since 0.7 *) } type 'a failed_state = 'a counter_ex list (** Result state. changed in 0.10 (move to inline records) *) type 'a state = | Success | Failed of { instances: 'a failed_state; (** Failed instance(s) *) } | Failed_other of {msg: string} | Error of { instance: 'a counter_ex; exn: exn; backtrace: string; } (** Error, backtrace, and instance that triggered it *) (* result returned by running a test *) type 'a t = { mutable state : 'a state; mutable count: int; (* number of tests *) mutable count_gen: int; (* number of generated cases *) collect_tbl: (string, int) Hashtbl.t lazy_t; stats_tbl: ('a stat * (int, int) Hashtbl.t) list; mutable warnings: string list; mutable instances: 'a list; } (* indicate failure on the given [instance] *) let fail ~msg_l ~small ~steps:shrink_steps res instance = let c_ex = {instance; shrink_steps; msg_l; } in match res.state with | Success -> res.state <- Failed {instances=[ c_ex ]} | Error _ | Failed_other _ -> () | Failed {instances=[]} -> assert false | Failed {instances=((c_ex'::_) as l)} -> match small with | Some small -> (* all counter-examples in [l] have same size according to [small], so we just compare to the first one, and we enforce the invariant *) begin match poly_compare (small instance) (small c_ex'.instance) with | 0 -> res.state <- Failed {instances=c_ex :: l} (* same size: add [c_ex] to [l] *) | n when n<0 -> res.state <- Failed {instances=[c_ex]} (* drop [l] *) | _ -> () (* drop [c_ex], not small enough *) end | _ -> (* no [small] function, keep all counter-examples *) res.state <- Failed {instances=c_ex :: l} let error ~msg_l ~steps res instance exn backtrace = res.state <- Error {instance={instance; shrink_steps=steps; msg_l; }; exn; backtrace} let collect r = if Lazy.is_val r.collect_tbl then Some (Lazy.force r.collect_tbl) else None let stats r = r.stats_tbl let warnings r = r.warnings let is_success r = match r.state with | Success -> true | Failed _ | Error _ | Failed_other _ -> false end module Test = struct type 'a cell = { count : int; (* number of tests to do *) long_factor : int; (* multiplicative factor for long test count *) max_gen : int; (* max number of instances to generate (>= count) *) max_fail : int; (* max number of failures *) law : 'a -> bool; (* the law to check *) arb : 'a arbitrary; (* how to generate/print/shrink instances *) if_assumptions_fail: [`Fatal | `Warning] * float; mutable name : string; (* name of the law *) } type t = | Test : 'a cell -> t let get_name {name; _} = name let set_name c name = c.name <- name let get_law {law; _} = law let get_arbitrary {arb; _} = arb let get_count {count; _ } = count let get_long_factor {long_factor; _} = long_factor let default_count = 100 let fresh_name = let r = ref 0 in (fun () -> incr r; Printf.sprintf "anon_test_%d" !r) let default_if_assumptions_fail = `Warning, 0.05 let make_cell ?(if_assumptions_fail=default_if_assumptions_fail) ?(count=default_count) ?(long_factor=1) ?max_gen ?(max_fail=1) ?small ?(name=fresh_name()) arb law = let max_gen = match max_gen with None -> count + 200 | Some x->x in let arb = match small with None -> arb | Some f -> set_small f arb in { law; arb; max_gen; max_fail; name; count; long_factor; if_assumptions_fail; } let make ?if_assumptions_fail ?count ?long_factor ?max_gen ?max_fail ?small ?name arb law = Test (make_cell ?if_assumptions_fail ?count ?long_factor ?max_gen ?max_fail ?small ?name arb law) (** {6 Running the test} *) module R = TestResult (* Result of an instance run *) type res = | Success | Failure | FalseAssumption | Error of exn * string (* Step function, called after each instance test *) type 'a step = string -> 'a cell -> 'a -> res -> unit let step_nil_ _ _ _ _ = () (* Events of a test *) type 'a event = | Generating | Collecting of 'a | Testing of 'a | Shrunk of int * 'a | Shrinking of int * int * 'a type 'a handler = string -> 'a cell -> 'a event -> unit let handler_nil_ _ _ _ = () (* state required by {!check} to execute *) type 'a state = { test: 'a cell; step: 'a step; handler : 'a handler; rand: Random.State.t; mutable res: 'a TestResult.t; mutable cur_count: int; (** number of iterations remaining to do *) mutable cur_max_gen: int; (** maximum number of generations allowed *) mutable cur_max_fail: int; (** maximum number of counter-examples allowed *) } let is_done state = state.cur_count <= 0 || state.cur_max_gen <= 0 let decr_count state = state.res.R.count <- state.res.R.count + 1; state.cur_count <- state.cur_count - 1 let new_input state = state.res.R.count_gen <- state.res.R.count_gen + 1; state.cur_max_gen <- state.cur_max_gen - 1; state.test.arb.gen state.rand (* statistics on inputs *) let collect st i = match st.test.arb.collect with | None -> () | Some f -> let key = f i in let (lazy tbl) = st.res.R.collect_tbl in let n = try Hashtbl.find tbl key with Not_found -> 0 in Hashtbl.replace tbl key (n+1) let update_stats st i = List.iter (fun ((_,f), tbl) -> let key = f i in let n = try Hashtbl.find tbl key with Not_found -> 0 in Hashtbl.replace tbl key (n+1)) st.res.R.stats_tbl type res_or_exn = | Shrink_fail | Shrink_exn of exn (* triggered by user to fail with a message *) exception User_fail of string let fail_report m = raise (User_fail m) let fail_reportf m = let buf = Buffer.create 64 in Format.kfprintf (fun out -> Format.fprintf out "@?"; fail_report (Buffer.contents buf)) (Format.formatter_of_buffer buf) m type 'a run_res = | Run_ok | Run_fail of string list let run_law law x = try if law x then Run_ok else Run_fail [] with User_fail msg -> Run_fail [msg] (* try to shrink counter-ex [i] into a smaller one. Returns shrinked value and number of steps *) let shrink st (i:'a) (r:res_or_exn) m : 'a * res_or_exn * string list * int = let is_err = match r with | Shrink_exn _ -> true | _ -> false in let rec shrink_ st i r m ~steps = st.handler st.test.name st.test (Shrunk (steps, i)); match st.test.arb.shrink with | None -> i, r, m, steps | Some f -> let count = ref 0 in let i' = Iter.find_map (fun x -> try incr count; st.handler st.test.name st.test (Shrinking (steps, !count, x)); begin match run_law st.test.law x with | Run_fail m when not is_err -> Some (x, Shrink_fail, m) | _ -> None end with | FailedPrecondition | No_example_found _ -> None | e when is_err -> Some (x, Shrink_exn e, []) (* fail test (by error) *) ) (f i) in match i' with | None -> i, r, m, steps | Some (i',r',m') -> shrink_ st i' r' m' ~steps:(steps+1) (* shrink further *) in shrink_ ~steps:0 st i r m type 'a check_result = | CR_continue | CR_yield of 'a TestResult.t (* test raised [e] on [input]; try to shrink then fail *) let handle_exn state input e bt : _ check_result = (* first, shrink TODO: shall we shrink differently (i.e. expected only an error)? *) let input, r, msg_l, steps = shrink state input (Shrink_exn e) [] in (* recover exception of shrunk input *) let e = match r with | Shrink_fail -> e | Shrink_exn e' -> e' in state.step state.test.name state.test input (Error (e, bt)); R.error state.res ~steps ~msg_l input e bt; CR_yield state.res (* test failed on [input], which means the law is wrong. Continue if we should. *) let handle_fail state input msg_l : _ check_result = (* first, shrink *) let input, _, msg_l, steps = shrink state input Shrink_fail msg_l in (* fail *) decr_count state; state.step state.test.name state.test input Failure; state.cur_max_fail <- state.cur_max_fail - 1; R.fail ~small:state.test.arb.small state.res ~steps ~msg_l input; if _is_some state.test.arb.small && state.cur_max_fail > 0 then CR_continue else CR_yield state.res (* [check_state state] applies [state.test] repeatedly ([iter] times) on output of [test.rand], and if [state.test] ever returns false, then the input that caused the failure is returned in [Failed]. If [func input] raises [FailedPrecondition] then the input is discarded, unless max_gen is 0. *) let rec check_state state : _ R.t = if is_done state then state.res else ( state.handler state.test.name state.test Generating; match new_input state with | i -> check_state_input state i | exception e -> (* turn it into an error *) let bt = Printexc.get_backtrace() in let msg = Printf.sprintf "ERROR: uncaught exception in generator for test %s after %d steps:\n%s\n%s" state.test.name state.test.count (Printexc.to_string e) bt in state.res.R.state <- R.Failed_other {msg}; state.res ) and check_state_input state input = state.handler state.test.name state.test (Collecting input); state.res.R.instances <- input :: state.res.R.instances; collect state input; update_stats state input; let res = try state.handler state.test.name state.test (Testing input); begin match run_law state.test.law input with | Run_ok -> (* one test ok *) decr_count state; state.step state.test.name state.test input Success; CR_continue | Run_fail msg_l -> handle_fail state input msg_l end with | FailedPrecondition | No_example_found _ -> state.step state.test.name state.test input FalseAssumption; CR_continue | e -> let bt = Printexc.get_backtrace () in handle_exn state input e bt in match res with | CR_continue -> check_state state | CR_yield x -> x type 'a callback = string -> 'a cell -> 'a TestResult.t -> unit let callback_nil_ : _ callback = fun _ _ _ -> () (* check that there are sufficiently many tests which passed, to avoid the case where they all passed by failed precondition *) let check_if_assumptions target_count cell res : unit = let percentage_of_count = float_of_int res.R.count /. float_of_int target_count in let assm_flag, assm_frac = cell.if_assumptions_fail in if R.is_success res && percentage_of_count < assm_frac then ( let msg = format_of_string "%s: \ only %.1f%% tests (of %d) passed precondition for %S\n\n\ NOTE: it is likely that the precondition is too strong, or that \ the generator is buggy.\n%!" in match assm_flag with | `Warning -> let msg = Printf.sprintf msg "WARNING" (percentage_of_count *. 100.) cell.count cell.name in res.R.warnings <- msg :: res.R.warnings | `Fatal -> (* turn it into an error *) let msg = Printf.sprintf msg "ERROR" (percentage_of_count *. 100.) cell.count cell.name in res.R.state <- R.Failed_other {msg} ) (* main checking function *) let check_cell ?(long=false) ?(call=callback_nil_) ?(step=step_nil_) ?(handler=handler_nil_) ?(rand=Random.State.make [| 0 |]) cell = let factor = if long then cell.long_factor else 1 in let target_count = factor*cell.count in let state = { test=cell; rand; step; handler; cur_count=target_count; cur_max_gen=factor*cell.max_gen; cur_max_fail=factor*cell.max_fail; res = {R. state=R.Success; count=0; count_gen=0; collect_tbl=lazy (Hashtbl.create 10); instances=[]; warnings=[]; stats_tbl= List.map (fun stat -> stat, Hashtbl.create 10) cell.arb.stats; }; } in let res = check_state state in check_if_assumptions target_count cell res; call cell.name cell res; res exception Test_fail of string * string list exception Test_error of string * string * exn * string (* print instance using [arb] *) let print_instance arb i = match arb.print with | None -> "<instance>" | Some pp -> pp i let print_c_ex arb c : string = let buf = Buffer.create 64 in begin if c.R.shrink_steps > 0 then Printf.bprintf buf "%s (after %d shrink steps)" (print_instance arb c.R.instance) c.R.shrink_steps else Buffer.add_string buf (print_instance arb c.R.instance) end; List.iter (fun msg -> Buffer.add_char buf '\n'; Buffer.add_string buf msg; Buffer.add_char buf '\n') c.R.msg_l; Buffer.contents buf let pp_print_test_fail name out l = let rec pp_list out = function | [] -> () | [x] -> Format.fprintf out "%s@," x | x :: y -> Format.fprintf out "%s@,%a" x pp_list y in Format.fprintf out "@[test `%s`@ failed on ≥ %d cases:@ @[<v>%a@]@]" name (List.length l) pp_list l let asprintf fmt = let buf = Buffer.create 128 in let out = Format.formatter_of_buffer buf in Format.kfprintf (fun _ -> Buffer.contents buf) out fmt let print_test_fail name l = asprintf "@[%a@]@?" (pp_print_test_fail name) l let print_test_error name i e stack = Format.sprintf "@[test `%s`@ raised exception `%s`@ on `%s`@,%s@]" name (Printexc.to_string e) i stack let print_collect c = let out = Buffer.create 64 in Hashtbl.iter (fun case num -> Printf.bprintf out "%s: %d cases\n" case num) c; Buffer.contents out let stat_max_lines = 20 (* maximum number of lines for a histogram *) let print_stat ((name,_), tbl) = let avg = ref 0. in let num = ref 0 in let min_idx, max_idx = Hashtbl.fold (fun i res (m1,m2) -> avg := !avg +. float_of_int (i * res); num := !num + res; min i m1, max i m2) tbl (max_int,min_int) in (* compute average *) if !num > 0 then ( avg := !avg /. float_of_int !num ); (* compute std-dev: sqroot of sum of squared distance-to-average https://en.wikipedia.org/wiki/Standard_deviation *) let stddev = Hashtbl.fold (fun i res m -> m +. (float_of_int i -. !avg) ** 2. *. float_of_int res) tbl 0. |> (fun s -> if !num>0 then s /. float_of_int !num else s) |> sqrt in (* compute median *) let median = ref 0 in let median_num = ref 0 in (* how many values have we seen yet? once >= !n/2 we set median *) (Hashtbl.fold (fun i cnt acc -> (i,cnt)::acc) tbl []) |> List.sort (fun (i,_) (j,_) -> poly_compare i j) |> List.iter (fun (i,cnt) -> if !median_num < !num/2 then ( median_num := !median_num + cnt; (* just went above median! *) if !median_num >= !num/2 then median := i)); (* group by buckets, if there are too many entries: *) (* first compute histogram and bucket size *) let hist_size, bucket_size = let sample_width = Int64.(sub (of_int max_idx) (of_int min_idx)) in if sample_width > Int64.of_int stat_max_lines then stat_max_lines, int_of_float (ceil (Int64.to_float sample_width /. float_of_int stat_max_lines)) else max_idx-min_idx, 1 in let hist_size = if min_idx + bucket_size * hist_size <= max_idx then 1+hist_size else hist_size in (* accumulate bucket counts *) let max_val = ref 0 in (* max value after grouping by buckets *) let bucket_count = Array.init hist_size (fun _ -> 0) in Hashtbl.iter (fun j count -> let bucket = Int64.(to_int (div (sub (of_int j) (of_int min_idx)) (of_int bucket_size))) in let new_count = bucket_count.(bucket) + count in bucket_count.(bucket) <- new_count; max_val := max !max_val new_count) tbl; (* print entries of the table, sorted by increasing index *) let out = Buffer.create 128 in Printf.bprintf out "stats %s:\n" name; Printf.bprintf out " num: %d, avg: %.2f, stddev: %.2f, median %d, min %d, max %d\n" !num !avg stddev !median min_idx max_idx; let indwidth = max (String.length (Printf.sprintf "%d" min_idx)) (max (String.length (Printf.sprintf "%d" max_idx)) (String.length (Printf.sprintf "%d" (min_idx + bucket_size * hist_size)))) in let labwidth = if bucket_size=1 then indwidth else 2+2*indwidth in for i = 0 to hist_size - 1 do let i' = min_idx + i * bucket_size in let blabel = if bucket_size=1 then Printf.sprintf "%*d" indwidth i' else let bucket_bound = i'+bucket_size-1 in Printf.sprintf "%*d..%*d" indwidth i' indwidth (if bucket_bound < i' then max_int else bucket_bound) in let bcount = bucket_count.(i) in (* NOTE: keep in sync *) let bar_len = bcount * 55 / !max_val in Printf.bprintf out " %*s: %-56s %10d\n" labwidth blabel (String.make bar_len '#') bcount done; Buffer.contents out let () = Printexc.register_printer (function | Test_fail (name,l) -> Some (print_test_fail name l) | Test_error (name,i,e,st) -> Some (print_test_error name i e st) | User_fail s -> Some ("qcheck: user fail:\n" ^ s) | _ -> None) let print_fail arb name l = print_test_fail name (List.map (print_c_ex arb) l) let print_fail_other name ~msg = print_test_fail name [msg] let print_error ?(st="") arb name (i,e) = print_test_error name (print_c_ex arb i) e st let check_result cell res = match res.R.state with | R.Success -> () | R.Error {instance; exn; backtrace} -> raise (Test_error (cell.name, print_c_ex cell.arb instance, exn, backtrace)) | R.Failed {instances=l} -> let l = List.map (print_c_ex cell.arb) l in raise (Test_fail (cell.name, l)) | R.Failed_other {msg} -> raise (Test_fail (cell.name, [msg])) let check_cell_exn ?long ?call ?step ?rand cell = let res = check_cell ?long ?call ?step ?rand cell in check_result cell res let check_exn ?long ?rand (Test cell) = check_cell_exn ?long ?rand cell end let find_example ?(name="<example>") ?count ~f g : _ Gen.t = (* the random generator of examples satisfying [f]. To do that we test the property [fun x -> not (f x)]; any counter-example *) let gen st = let cell = let arb = make g in Test.make_cell ~max_fail:1 ?count arb (fun x -> not (f x)) in let res = Test.check_cell ~rand:st cell in begin match res.TestResult.state with | TestResult.Success -> raise (No_example_found name) | TestResult.Error _ -> raise (No_example_found name) | TestResult.Failed {instances=[]} -> assert false | TestResult.Failed {instances=failed::_} -> (* found counter-example! *) failed.TestResult.instance | TestResult.Failed_other {msg=_} -> raise (No_example_found name) end in gen let find_example_gen ?rand ?name ?count ~f g = let g = find_example ?name ?count ~f g in Gen.generate1 ?rand g
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>