package prbnmcn-linalg
Functional vector and matrix manipulation
Install
Dune Dependency
Authors
Maintainers
Sources
0.0.1.tar.gz
md5=8b82c3fea93d99b25ba945e0fbda9dd4
sha512=38a673af59c5b775cee2586e826b2f346274fc1bfee0f883d47a911ec6300ce1ed5f205d38f0e06cf260766328dad527d067e182e7f0a90cd45c1f06b09befcf
doc/src/prbnmcn-linalg/mat.ml.html
Source file mat.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
open Intf module Make_internal (Repr : Basic_intf.Lang.Empty) (Monad : Basic_intf.Codegen_monad with type 'a m = 'a Repr.m) (S : Tensor with type 'a m = 'a Repr.m and type 'a k = 'a Monad.t) (B : Basic_intf.Lang.Bool with type 'a m = 'a Repr.m) (R : Basic_intf.Lang.Ring with type 'a m = 'a Repr.m) (R_storage : Basic_intf.Lang.Storage with type 'a m = 'a Repr.m and type elt = R.t) (I_ring : Basic_intf.Lang.Ring with type 'a m = 'a Repr.m and type t = S.pos) (E : Basic_intf.Lang.Exn with type 'a m = 'a Repr.m) (M : Basic_intf.Lang.Sequencing with type 'a m = 'a Repr.m) (P : Basic_intf.Lang.Product with type 'a m = 'a Repr.m) = struct type 'a m = 'a Repr.m type base_index = S.pos (* An matrix index is a pair (c, r) of a column index c and a row index r. *) type 'a shape = 'a S.t let index ~c ~r = P.prod c r (* Could we pass this as argument to the matrix functor? *) (* module V = Vec.Make_internal (Repr) (B) (R) (R_storage) (S) (E) (M) (Monad) *) include ( Vec.Make_internal (Repr) (Monad) (S) (B) (R) (R_storage) (E) (M) : module type of Vec.Make_internal (Repr) (Monad) (S) (B) (R) (R_storage) (E) (M) with type 'a shape := 'a shape and type 'a m := 'a m) open Monad.Infix let cols (Vec (s, _)) = S.fst s let rows (Vec (s, _)) = S.snd s let identity size = let shape = S.tensor size size in Vec ( shape, fun i -> B.dispatch (S.pos_equal size (P.fst i) (P.snd i)) @@ function | true -> R.one | false -> R.zero ) let diagonal (Vec (idim, v)) = let shape = S.tensor idim idim in Vec ( shape, fun i -> B.dispatch (S.pos_equal idim (P.fst i) (P.snd i)) @@ function | true -> let open M in let* i' = P.fst i in v i' | false -> R.zero ) let unsafe_col (Vec (s, v)) c = Vec (S.snd s, fun r -> v (P.prod c r)) let col (Vec (s, v)) c = let*! _ = B.dispatch (S.mem (S.fst s) c) @@ function | false -> E.raise_ Intf.Out_of_bounds | true -> M.unit in Monad.return (Vec (S.snd s, fun r -> v (P.prod c r))) let of_col (Vec (s, v)) = let shape = S.tensor S.scalar s in let m index = let open M in let* r = P.snd index in v r in Vec (shape, m) let unsafe_row (Vec (s, v)) r = Vec (S.fst s, fun c -> v (P.prod c r)) let row (Vec (s, v)) r = let*! _ = B.dispatch (S.mem (S.snd s) r) @@ function | false -> E.raise_ Intf.Out_of_bounds | true -> M.unit in Monad.return (Vec (S.fst s, fun c -> v (P.prod c r))) let of_row (Vec (s, v)) = let shape = S.tensor s S.scalar in let m index = let open M in let* r = P.fst index in v r in Vec (shape, m) let swap_rows (Vec (s, m)) r1 r2 = let rows_shape = S.snd s in let*! _ = B.dispatch B.(S.mem rows_shape r1 && S.mem rows_shape r2) @@ function | false -> E.raise_ Intf.Out_of_bounds | true -> M.unit in Monad.return (Vec ( s, fun i -> let open M in let* ri = P.snd i in B.dispatch (S.pos_equal rows_shape ri r1) @@ function | true -> m (P.prod (P.fst i) r2) | false -> ( B.dispatch (S.pos_equal rows_shape ri r2) @@ function | true -> m (P.prod (P.fst i) r1) | false -> m i) )) let swap_cols (Vec (s, m)) c1 c2 = let cols_shape = S.fst s in let*! _ = B.dispatch B.(S.mem cols_shape c1 && S.mem cols_shape c2) @@ function | false -> E.raise_ Intf.Out_of_bounds | true -> M.unit in Monad.return (Vec ( s, fun i -> let open M in let* ci = P.fst i in B.dispatch (S.pos_equal cols_shape ci c1) @@ function | true -> m (P.prod c2 (P.snd i)) | false -> ( B.dispatch (S.pos_equal cols_shape ci c2) @@ function | true -> m (P.prod c1 (P.snd i)) | false -> m i) )) let concat_horiz (Vec (s1, m1)) (Vec (s2, m2)) = let cols1 = S.fst s1 in let* shape = S.concat s1 s2 (S.Path.left ()) in let*! cols1_dim = S.dim cols1 S.Path.empty in let f index = let open M in let* c = P.fst index in let* r = P.snd index in B.dispatch (S.mem cols1 c) @@ function | true -> m1 index | false -> let* index = P.prod I_ring.(sub c cols1_dim) r in m2 index in Monad.return (Vec (shape, f)) let concat_vert (Vec (s1, m1)) (Vec (s2, m2)) = let rows1 = S.snd s1 in let* shape = S.concat s1 s2 (S.Path.right ()) in let*! rows1_dim = S.dim rows1 S.Path.empty in let f index = let open M in let* c = P.fst index in let* r = P.snd index in B.dispatch (S.mem rows1 r) @@ function | true -> m1 index | false -> let* index = P.prod c I_ring.(sub r rows1_dim) in m2 index in Monad.return (Vec (shape, f)) let mm (Vec (l_shape, _) as lhs) (Vec (r_shape, _) as rhs) = let*! _ = B.dispatch S.(equal (fst l_shape) (snd r_shape)) @@ function | false -> E.raise_ Intf.Dimensions_mismatch | true -> M.unit in let shape = S.tensor (S.fst r_shape) (S.snd l_shape) in Monad.return (Vec ( shape, fun i -> let open M in let* r = P.snd i in let* c = P.fst i in let row = unsafe_row lhs r in let col = unsafe_col rhs c in unsafe_dot (idim row) row col )) end [@@inline] module Make : functor (Repr : Basic_intf.Lang.Empty) (Monad : Basic_intf.Codegen_monad with type 'a m = 'a Repr.m) (S : Tensor with type 'a m = 'a Repr.m and type 'a k = 'a Monad.t) (B : Basic_intf.Lang.Bool with type 'a m = 'a Repr.m) (R : Basic_intf.Lang.Ring with type 'a m = 'a Repr.m) (R_storage : Basic_intf.Lang.Storage with type 'a m = 'a Repr.m and type elt = R.t) (I_ring : Basic_intf.Lang.Ring with type 'a m = 'a Repr.m and type t = S.pos) (E : Basic_intf.Lang.Exn with type 'a m = 'a Repr.m) (M : Basic_intf.Lang.Sequencing with type 'a m = 'a Repr.m) (P : Basic_intf.Lang.Product with type 'a m = 'a Repr.m) -> Intf.Mat with type 'a k = 'a Monad.t and type 'a m = 'a Repr.m and type base_index = I_ring.t and type 'a shape = 'a S.t and type ('a, 'b) morphism = ('a, 'b) S.Morphism.t and type elt = R.t = Make_internal (* Matrices backed by arrays *) (* Instantiate some typical schemes *) module Array_backed_column_major (Repr : Basic_intf.Lang.Empty) (Monad : Basic_intf.Codegen_monad with type 'a m = 'a Repr.m) (S : Intf.Tensor with type 'a m = 'a Repr.m) (B : Basic_intf.Lang.Bool with type 'a m = 'a Repr.m) (R : Basic_intf.Lang.Ring with type 'a m = 'a Repr.m and type t = S.pos) (R_ord : Basic_intf.Lang.Infix_order with type 'a m = 'a Repr.m and type t = R.t) (A : Basic_intf.Lang.Array with type index = R.t and type 'a m = 'a Repr.m) (E : Basic_intf.Lang.Exn with type 'a m = 'a Repr.m) (P : Basic_intf.Lang.Product with type 'a m = 'a Repr.m) (M : Basic_intf.Lang.Sequencing with type 'a m = 'a Repr.m) = struct type index = S.pos * S.pos open Monad.Infix let of_array shape (a : A.t Repr.m) = let rows = S.snd shape in let num_rows = S.dim rows S.Path.empty in let*! numel = S.numel shape in let*! l = A.length a in let*! _ = B.dispatch R_ord.(l = numel) @@ function | false -> E.raise_ Intf.Dimensions_mismatch | true -> M.unit in let vec = Vec ( shape, fun i -> let l = R.(add (P.snd i) (mul num_rows (P.fst i))) in A.unsafe_get a l ) in let ovec = OVec ( shape, fun i v -> let l = R.(add (P.snd i) (mul num_rows (P.fst i))) in A.unsafe_set a l v ) in Monad.return (vec, ovec) let in_of_array shape a = let rows = S.snd shape in let num_rows = S.dim rows S.Path.empty in let*! numel = S.numel shape in let*! l = A.length a in let*! _ = B.dispatch R_ord.(l = numel) @@ function | false -> E.raise_ Intf.Dimensions_mismatch | true -> M.unit in let vec = Vec ( shape, fun i -> let l = R.(add (P.snd i) (mul num_rows (P.fst i))) in A.unsafe_get a l ) in Monad.return vec let out_of_array shape a = let rows = S.snd shape in let num_rows = S.dim rows S.Path.empty in let*! numel = S.numel shape in let*! l = A.length a in let*! _ = B.dispatch R_ord.(l = numel) @@ function | false -> E.raise_ Intf.Dimensions_mismatch | true -> M.unit in let ovec = OVec ( shape, fun i v -> let l = R.(add (P.snd i) (mul num_rows (P.fst i))) in A.unsafe_set a l v ) in Monad.return ovec end [@@inline] (**/**) module BL = Basic_impl.Lang (**/**) module Make_native (R : Basic_intf.Lang.Ring with type 'a m = 'a) (R_storage : Basic_intf.Lang.Storage with type 'a m = 'a and type elt = R.t) = Make (BL.Empty) (BL.Codegen) (Tensor.Int) (BL.Bool) (R) (R_storage) (BL.Int) (BL.Exn) (BL.Sequencing) (BL.Product) module Float = Make_native (BL.Float) (BL.Float_storage) module Rational = Make_native (BL.Rational) (BL.Make_storage (BL.Rational))
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>